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 ABSTRACT

We present here a general method to deduce topological

macroscopic quantum waves (MQWs) solutions in non relativistic

local field theories. It is shown that every theory Al¢!™ (with
A>b.ahd.n$2) exhibits subsdnié MQWS. Explicit.solutions aré
giveﬁHfor the g | énd |t§>{.6 models. The fact that theée topolo~
gical waves are a common feature of a wide class of bosonic:

(1,2)

theories is an important support for our conjecture - that

they exist in liquid “He.
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(1,2)

Recently | We'fOuna-that'Bogoliubovfs theory of superflui-

:dity( )

dlsplays some topologlcal macroscoplc quantum waves (MQWs) .
ThlS achlevement 1ed us . to: propose. a new mlcroscoplc descrlptlon
of superfluldlty, since the-MQWS-partltlon the condensate into

domalns of ‘phase and prov1de a beaultiful explanatlon of- what'

| 'could be the Pe tran31tlon. BESldes that bound in the topologlcal

'Hwaves, there ex1st a new type of qua51-part1cles, whlch dlffer
'from Bogoliubov Srphonons, and_have”a;spectrum slmllar‘to liquid
:“He spectrum(er)_ PR : _ : -

In references (1) and (2)_our argumentation is_entirely_.
developed in the realm of the [¢|" theory. The purposes of this
?aper are: (aj to deduce the MQWS solutions-from the equations of
'motioh;'and (b) to show that theSe-waves-also exist-in ahjhohe of
t‘he non-relativistic"lq)[ models Wlth n> 2, The fact that the MQWs are
a common feature of a 1arge class of bosonlc theorles comes .tO
favor. our proposal that they should ex1st ln llquld Hellum

The Hamlltonlan and the equatlon of motlon of the I¢[”
theory are respectlvely (take n>2)3u |

1

CH= -5 f.di?.- ¢_-*V2_¢' + 2 paxle|®, o m

- and -
_-l—-v¢+;\!¢| = 13,6 | ' (2)

$ 1is a bosonic non_relativistio field - the “He atom field, for
| example. ) |

| : In the. classical version of the lg|" theory}-the ground
states-of systems'of_denSity p are solutions'of (2), which do not
" depend on X, A ' ' ‘ ' '

Qéé = .{E wexPai{Gb :— (/Ein;QXti”l;.o i‘ A." . (3?'
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TheY have a degeneracy of 1nf1n;te degree because.e oan be any
real constant 7

Con51der a partlcular coordinate X. 'The'macroscopic guantumr

waves are solutions W of Eq (2)., such that(l 2)

limW=29,  and  lim ‘W=Q, . T o qay
9, ‘8, (4
X¥=o o S Rt .

- These new solutions have -a topological.charge that is just the

phase difference 6;~8;. Therefore a MOW must be stable, since its
topology is inequivalent to that of the ground state.
Phonons are small excitations of the ground state -and in

order to  study their motion we define the field

o = (/5 +n) expl-i(/OP 2081 I A

.where n represents a small fluctuation. After_plugginggthis

representation of ¢ in‘Eq;(2),_and'retaining'only_terms which-ere_
linear in n , We:get'the'phonons equation of motion:
iatn + L Vzn = me? (n*+n) : R .-_._ o (Gfl

In the last equation we have.
1.

e L, o R : “ e
= {(n-2) (/p)" 2 A/2m} ¢ . B : S ()

c is the velocity of large wave length phonons (see_Eq.(Q)).

The eigensolutions of - (6) are

2 . 1 ' . _1."
ng = — {( L3 mc2‘_+‘w)3/2 exp i(i§~wt),~ (~— + mc? - w)/a
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Here A is a real conStant' V is the volume where we deflne the

model ~and w is the frequence Whlch depends on the wave number k:

w(k)= ck {1 + (k/2mc)2} é~ .teQ ; | TP “"' o (9)

To.quantize the phonons_one can employ,-for inetanoe,'the
'field theoretic version of the BohreSOmmerfeld'quentization rule,
as is done in ref (2) R e h

._ Now, let V be a real number such that 8 |£i,'TS iook fot MQWs

:we deflne the aux111ary varlable’

feme(x-cve) . an

(cV is the MOW's veloc1ty and x is a partlcular coordinate,-along
Wthh the MW will move) , and. seek solutlons of Eq (2) that can

be wrltten in the form

= /P ETEY exp 10(5) expl-i(/m™ 2 ae} o an
~ where 5 (&) and 6(&) are real functions, 4 (&) being'also,non nega-
tive. Plugging Wy, in Eq.(2) we conclude that é(é) end_e(i) obey

the following system of coupled eguations:

[ L B A S W BT

l 2 12 = 0 o 2

.2/2_359 + 8;V8 3.6 VB, Vs | | (12b)
Note that conditions (4) implies that

lim  s(£) =1 ; | -  (13a)

| €}
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£ ] | S |
: Eq. (12b) ban'be’integtatéd to;giVe (after using (13))
de . v(]_—...) _ | N - - T | (14
:Once 4 () is known, 6(&) can be obtained by integrating the above
equation. .
Substituting (14) in (l2a), it follows that
_32/' P AVC T Y, S (./‘)n 1, .o - (15)
2: 42 - n-2 - '
If.ﬁe multiply Eqk(lS)-by'(Bgé)/VZ'andﬁintegraté the result-
i ing expression  (imposing (13a) we obtain | |
& . ir2 n o .
£(8€/Z)2 + L8+ %) +.§ﬁ2 - 403 BT L RS . S (16)
2 | 2, “  n(n-2) n-2.  n(n-2)
Finaily, mgltiplying this last equation by 85, we get
(Bgé) + UV(A) | 0 | o AN
where
‘nUV(é) = - (¢*)n+2 + _6 2 + 4V2($2+1)f8(V2+nE2 . )5
' n(n-2) o (n-2) L LT n{n-2)
(18). -
¢ y : ‘ _
| ~ Therefore, in order to get MQWs solutions in the [¢|" theory,
4 it is necessary to: (a) solvequ3(17),'imposingfthe'boundary-

conditions (13a); (b) 1ntegrate Eq (14); and (c) plug 4(5) and

8(£) so obtained in Eq. (ll)

To implement the first step is equlvalent to solve an



.ofdinéry problem of tlaésiéal.mechanics:'the frictionléss ﬁot%dh
tof a particlé, whose”mass i§-1/2_and whose enérgy is zero, uﬁdér
.the'action'of the potential'nU'(g) 7 R

Let us list some propertles of U (&) . Flrst of all we observé

that U (1) =0="y (l), and U {0)=4V2>0,

-A-simple analysisﬂshowsxthat (recall that n$2) if 0<|V[<1(4),
nUv has the_followingrpropérties; o e |
{a.i) - The point #il-is'a point of_maximum,
(a.ii)_— Tn the interval Oisﬁl,.nuﬁ has one and only point of
minimum. | | o |

Then, when 0<|V|<1,'thé7shapé of nUV(A) is likeithat of fig:

'1; and, for any real number Ed, Eqg.(17) shall have'a-sQlution-é(E),t

which obeys the boundary;condition:(13a) and the inequality
12 s(8) 28(6) =a S asn

where a # 1l is glven by - nU (a) 0 (see flg 1).

By u51ng Eq (14) we get

-1
4(E")

o) =v S5 - a’ o e
Ihequality (19) implies that thefintegfaﬁd of (20) is regular.
thé.that:bjis an arbitrary real-conStaht. Sﬁch an - arbitrariness
éomeS'froﬁ'thé gauge -invariance of the model, since, if W is a'.-
solutioﬁ.of Eq.(2),;w exp i@o (Where eo is any real constantj_r
shall be another one. |

| Plugglng 4({£) and B(E) in Eg. (11l), we obtain a macroscopic
quantquwave,_mov1ng Wlth-velocity-cv. We_conclude,.therefore;_
thatﬁevery_theOry_of_the_type o™ (with n>2) describes subsonic
| MOWs. o S : | |

It_isgvery.easy‘tp-see}that, ilevtkljlthe:propertiestdf-
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I
: Uv(s) are:

(b.i) -~ The point 4=1 is a point of minimum.
(b.ii) - In the interval 02451, "U,(4) is positive and
monotonic.

Fig.2 shows the shape of nUV(é) whén ]V[Sl, In this case the

~only solution coﬁpatible with the boundary conditions (13a) shall

be'the,constént (8 =1, and there are no supersonic MOWs.

| Nevertheless,-in the supersonic‘case, Eq;(l7)rdé5cribes ex-
gitétions bouncing around the minimum at 4=1 (see f£ig.2). To treat.
theismall excitations we define r=1-4, and take into account, in

EqQ(l?), only terms of second order in r, so obtaining

E;)? + 4(v2-1)r? =0 S e e T e 21)

This last equation'describes.phonons which move.ih!Bog¢liubov's

condensate with velocity cV. By‘solving_(2l)_andﬁusingl(l¢)tkwe

‘are lead to solutions of type (8).

Now we will present explicit examples of MOWs. .0

is

In. the |¢]|" theory, ”UV

“Uv = 4 {=4° +(2+V2)s2=-(2VE+1)s+V2} B 22y

So that Eq.(17) can be integrated to give (observe that conditions

(l3a)'are satisfied)

5%(E) = 1 - ¥*° séchzyg o S (23)
whére
Yy = /T =V S . - (24)

Taking the arbitrary constant b of Eq.(20) to be zero, we get.



8.

9°(8) = - arc tg ( tgh vE) o ey

If we plug (23) “and (25) in (11), we find the MQWS of the
|¢|”' theory

Wy = (V- iy tgh YE) Vp exp (-imc?t) R - (26)
:The_momentum_per unit of area carried by W%fﬁis(zx

P = -2 oV /TR o @n

To deduce the energy 1t carries per unit of area, we must

‘use Eq (l) and subtract the ground state energy( )._-This,procef.

_dure leads to

(=1
w

o* (V). == ¢ pv?

w

: The-tepological charge associated te W%h is given by:
8% (») = 8% (-w) =-2 arc cos V g | | (29)

On the other hand, in the 6] theory, the potential_GUV
shall be | |

Uy = 3 (=" + 3(L4V2)42 - 2(3VE+1)s + 377 6o

In this case, after imposing (13a), the 1ntegratlon of . (17) leads
(5)

'_As(é) = l;— — 3y

_ reo _ | | _£3l)

28y



whereas integration (20) gives

8% () = - arctg {- 3.jV;tgh'Y£ j_ - T (32)
‘/.4_3YE+2__3,Y2 o

Hence, the macroscopic quantum waves of the |¢|® theory are

W% =2 (cos & cosh Y& - irsen 8 ?enh .yg) /E'GEPPﬁgfzt) (33)
{(2/{4—3 vI) o+ cosh'z_yg}’f . '

where

§ = arc tg { ' Y SR S - (34)
- VE = 3y + 2 - 3 y% |

..+ The topological charge.of‘W% is-2§, and the momentum'and

energy it carries per unit of area are respectively

|5

: ;; _ | 2 + 3y . I _ e

and
Y3l 2 2 + V3Y '
5 = C { + — v* &n (__...._._.)} _
ot (v) = co {y +5 s Ll - (36)

'The.deductive.method‘?resented here can be used to look for
topological Wéves_in'any theory of.the_type POM); where PQM) ié:
a polincomial. | o

In a fdrthcoming paper, we shall show that a wide class of
non local models (which includes the fukawa potential theoryj
also displays MQWs solutions.

These facts are, of course, a. support for our conjec— 

ture that MOWs exist in Helium IT.
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FIGURE CAPTIONS

FIG. 1 - The potehtial‘nUv(s) in the subsonic case (!v]<1) that
| *displays'MQWs. |
FIG. 2 - The potentlal U (A) of the supersonlc case (iV|>l) In

thlS 51tuatlon, Eqg. (17) has only phonon llke solutlons.
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