INSTITUTO _
DE FISICA

preprint

IFUSP/P-172

B e e S s

ON.THE QUANTIZATION AND ASYMPTOTIC FREEDOM
OF YANG-MILLS THEORY IN THE TEMPORAL GAUGE

by

J. Frenkel

v Instituto de Fisica, Universidade de S3o Paulo
Sao Paulo, Brasil

UNW[RSIUABE DE SAD PM”.U
INSTITUTO DE FISICA

g Caixa Postal - 20.516

ta Cidade Universitdria

| S40 Paulo- BRASIL.

S5 -
AT Rt

T d/dsndT

v
]



Q'_

ON THE QUANTIZATION AND ASYMPTOTIC FREEDOM

OF YANG-MILLS THEORY IN THE TEMPORAL GAUGE

J. Frenkel

Instituto de Fisica, Universidade de S0 Paulo

S20 Paulo - Brasil

Abstract : We study the relevance of the longitudinal gluons
in the derivatien of the Feynman rules in the teﬁ- |
poral gauge, via the canonical approach. It is then
shown that these giuons are also fundamental for
the asymptotic freedem of the Yang-Mills theory.
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The temporal gauge is very appropriate for the investig-
ation of various aspects of gauge theories, like the analysis of
instantons(1) and the study of Drell-Yang processes(a), With the
help of the canonical approach, several methbds have recently been
developed which allow for the elimination, in this gauge, of the
unphysical degrees of freedom corresponding to the gauge symmetry
of the theory'>) |

In this note, using the canonical quantization procedure
we will give a simple derivation of the Feynman rules, which were
previously obtained by the path-integral method(u). In this derlv-
ation, the longitudinal gluons play a relevant role. Moreover, we
will show that they are also very important for the asymptotic
freedom of the Yang-Mills theory. |

We start with the Légrangean density(5)

df?= - .L.I:;f; F o | | (1aj

4 pov
where _
afzaﬂnmv'apn;*;/““,q/ﬂm (10)

In this expression, & denotes an internal symmetry 1ndex,é; is the
coupling constant of the gluon fields ﬁ and f' are the antlsym—
metric structure constants of the Yang—Mllls theory In the tempo-
ral gauge, characterized by the condltion ﬁ , the canonical
momenta E are s:mnply given by 9 F} . In terms of the canonical
variables :QL and Ef y the Hamiltonlan density in the Heisenberg
picture is given by

%:‘. EE aopc""’g“ Ky Ec . * Z ¢ FL‘J (2)
From here, the equations of motion can be obtained as usual, with
the help of the following equal-time commutatioh relations '

e, Al h] - LESG ESea]-0

LA (L), E;’ £)) = € Sap 3 (X~ )Sj BRES

3 _
In terms of the Hamiltonian H = JM;Q one finds



AT = (LA AT ET (R (4a)
% E; (x .= L[H E (.xﬂ] 'D F «rdctjabc f"_ (4D)
Y
‘Note that Gauss law |
abe . ._b:__D"‘-’b-b__ L _
(?JS%‘Q'} HJ)tj - J }:_]’“O SN - (5a)

which follows from the Euler-~Lagrange field equatiohs does not

involve time derivativés,'and'therefoféfcannot be obtained as one
of Hamilton's equations of motion. Instead, this law must be im-
posed as a constralnt on the phy81cal states(B)

DJ- e PlIY>so - . - (5b)
Now, let us pass to the interaction picture, where, for
simplicity of notation, we denote the field variables by the same

symbols. In this picture, the canonical commutation relations re-
main unchanged and the fields satisfy free~field equations given

by (see (4)) _

N o |
In order to solve this equation, we remark that, in view of the
commutation relation (3b), we need‘3 ﬁ?ou to be non-zero. Corre-

- spondingly, we decompose H into a sum of transversal and longitu-

dinal fields as follows _ )

AT(RE) = AT R ) - AT (E0) (72)
where the transverse field F?éﬂ'{f:tjsatisfies;

. T . T oy
?Qq" [‘;ei,'t]:Q, / —azﬁ‘?’; (‘.}.r't).-:o

(?b)

That 15, the fleld F}' represents just the usual transverse free—
field, which can be expanded in terms of one~particle creation and
annihilation operators. '
a L, - :
The longitudinal field A~ (*,!) can be written as
BL_¢°“(§ﬂt) so that from (6) we see that Qﬁovsatisfies

2 L e . : |
3L gH (Rt =0 - (8a)
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Solving this equation, we can express the field F)e in the follow=-
ing convenient form '

o b - O ; o, + o
AT ) =2, [V 2AT ot + AT (R (8b)
+ _
where A™~ denote hermitian operators which will be specified by

the commutation relations (3) and the subsidiary condition. Imn or-
der to satisfy (3) we need that o

AN () A%~ ()=l A= R, AT w0 (ga
+ -0}y ' 3 VAL .
LA™~ (%), A (X)) = L éap & (¥ - X ) (559

Furthermore, it is necessary that the longitudinal and transversal
fields commute '

—

: a L b, o,

[_/q,;-' (?,{:)}lﬂj ’ [x,“]rO (10a)
while the transversal fields satisfy the usual commutation relation
o7 ~9 6,T ] = . 3 oy |

(A" %), 9, Ry (74 ] £3as (8,,-V 7398 - (100

To get a physical insight into the meaning of the opera-
tors ﬁ&’t and complete their specification, we will now consider
the subsidiary condition in the interaction picture. To obtain this;
we perform the usual unitary transformations on the canonical vari-

ables and on the physical states which connect the Heisenberg and
interaction pictures. We then obtain from (5b)

ab _b
D, E; | WLt)> =0 (11a)
where the physical state‘l'Y’(t)> has its time evolution given by -
L I WLEYD> = Heng | W) (1)

In the interaction picture, cht “—'543x ﬂ,;n-t. is determined by (see -
(2)) |

‘ abe G . b . ¢
Hoow = £33 (20A] - 2RIV AR

R I (110)

In order that the constraint equation (11a) be satisfied at all.

)
ab'e!

b e b’ c.’.
A ﬂJ ﬂt. HJ.'

times, it is necessary that its time derivative vanishes at any



I
time. It is straightforward to check, using (6), (11b), (11c) as
well as the commutation relatioéns (9) and (10), that indeed

ab _bL A o
2.l :D:j E: |pe>] =@ (12)
so that, provided (11a) is satisfied initially, it will remain
valid at any latter time. '
For the treatment of scatterihg processes, we will as-

sume that there is no interaction at t=tw , so that 3 will vanish
at these times. Then, from (11a), we see that

Tl (t=to0) D=0 . (138)
With the help of (7b) and (8b), we can write this as
A% T (X) | p(t=ta0)> =0 (13b)

Thus, since there are no longitudinal gluons in the initial and
final states, it follows that B~ must represent the annihilation

operator for the longltudinal gluon. Furthermore, in view of the
commutation relations (9), we interpret F} as being the creatlon
operator for a longitudinal gluon. '

Now we are in a p031tion to calculate the vacuum expec~
tation value of the time ordered preduct of two gluon fields

T[AIGE ) A 1)1 BOUE-DIATGLY) A% (1) +

* QA Y AT R ) .
The T-product can be written as a sum of a commutator and an anti=-

commutator as follows

TIAT (2,t) MEAURE Le-0) LAl (0, AL @]
L L{AT Y, R’ 1)}

where E£(t-t) = 9(‘{? ')~ ©(t'-t)

This way of writing the T-product is notivated by the
following consideration. There séems to be an amblgulty when one

- (14D)

considers the expectation values of relation (9b) between physical

states at T=*0on the one hand, and condition (13b) on the other.
This situation is not peculiar to the temporal gauge, bul arises,

as discussed in reference (6), in all cases where we have to




(*)

quantize systems subject to subsidiary conditions® “. The way out,
'as shown by Dirac, is that the constraints should not be used
‘under the commutation rélations. The correct way of proceeding

- consists in first calculating the commutators that occur in the

expressions of the quantities of interest and then imposing the
constraint. Proceeding in this manner and then taking the vacuum
expectation value of (14b), we will obtain the propagator in a
way which does not hamper the canonical fields from acting as in-

_dependent variables under the comutation relations.

Since the longitudinal and transversal flelds commute.
(see (10a)), the commutator in (14b) splits into a longltudinal
and a transversal part. Using (8) and (9), we obtain for the com

mutator of the 1ongitudinal fields
. /_____‘.” _,X
1A @0, R ] = k) 8§ Va2 XD

We can'now take the vacuum expectation value of (14b) and apply
condition (13b). Then, since the longitudinal and transversal,
fields are independent, the resulting propagator will be a sum of

. two parts
: ' ab L | a..fa’-l" !
Dcz'f W,?"J"DL-J' XA :DCJ' X (16a).

The first part contains the longitudinal fields and arises only

- from thé'cqmmutator (15)
L’L Y Co e ) -2 ) EPan B
:D"‘J (x x')= 5%a(t-t)(t-t)i7 9.9 STEX) eny

The other part contains the transversal fields and arises from
- both the commutator and the anticommutator. It is given as usual by
T Sas om, - ck(x-x)
o (Xxi) = (b - )e, -
J u(,’U(_, J . .
In order to write the propagator of the longitudinal fields in the

()

momentum space, We use the following integral representation for'&Lt-tj

(*) We encounter a similar case even in ordinary Quantum Mechanics
by considéring, for example, the canonical commutator [CP FD].;E
Taking its vaeuum expectation value, we again have an amblgulty

s:.nce P \0> Q.




| koLt tJ -
E(t- t')= = d’k ? ( n) =  (18a)
L IL ) : :
Where P denotes the prlnclpal value prescr:n.pt:l.on
SR W U R IS . ) |
? ( ko) o2 ( k +v & * RO’LE (18b}

With the help of this relatlon, we obtain from (16b) the result

ab L 4 § Ckole-xy
:DL‘J'-- [.)(,x’)“ ((‘L k= ( T~ "-"'i).e» . (19)

(z‘c)"
In this exp‘ress:l.cn,"l-/ k,o is to be understood as the derivative,
with respect to k of the principal value prescription (18b). From

(16a), (17) and (19), we then obtain the propagator in the tempo-
ral gauge '

' ‘ o b ;[Q-_CX—-X)
ab, . _ Sab "_L_g.-...‘j‘_:ﬂ)a |
D_,(){,X) = "m S‘L k’ ke.( ¢l k; ¢ (20)

whlch is precisely the same as the one derived by the path-lnte-'
gral method. Furthermore, in view of the gauge condltlonF} =0, |
the 1nteractlen Hamiltonian (11c) is equivalent to the correspond=
ing one given in the path-lntegral approach(q)

Although there are no longitudinal gluons in the initial
and final states, these are, of course, present during the inter-.
action., In fact, as we will now show, they are fundamental for the
asymptdtic freedom of the Yang-Mills theory in the temporal gauge.
(For a discussion of asymptotic freedom in other gaugés, see ref-
erence (7)). To see this, let us recall that in this gaugekfhe

ultraviolet divergent part of the self—energy funct:l.on-ﬂ-b

the following form (L) _ 3 |
_—ab\ W T o
( I % ) = o4, Cpe Pi- E’L"J‘ Pa> ! (21a)

where the ultraviolet divergent part —ITwis related to the wave-

function renormalization constant Z 3 by the relation

T = i- 25 | | (21b)
Furthermore, because of the Ward identities, which are similar to |
those in QED, -2'3 is also equal to the renormalization function of
the coupling constant. We have

‘5(%2)2 - Zs N o -. S (2t




where 3, and 3,rdenot,e respectively the bare and the renormalized
coupling constants.

In QED, becauseé the polarization of the vacuum shields
the bare charge, we have 2 > 3%, which implies that the theory
is not asymptotically free. Tn order to understand the reason for
the negative sign of (|~ 3,3'/3_’-) in the Yang~Mills theory, and
hence of its asymptotic freedom, we note that, using (21a), (21b)
and (21¢c), we obtain "

2 ab
l_(%:—)} ~é’—«.} (T(‘*"')Mb; PhPS - (22)

Now we will calculate the rightehand side of this equation, using
the Feynman rules expressed in (11¢), (17) and (19). The relevant
diagrams are shown in the following figure.

T
pT D
- ey -
// \\ ’/ \\
/ \\_ ; / ' \\._
-~ = = —=== -
\ s \ .
N ,’ ~ -
— b JURRRER.
DT Dt ]
(a) (b)

Self~-energy graphs with transverse (DT) and
longitudinal (DL) gluon propagators.

The contributions to 1|— %:’ / 92' resulting from the diagrams above
are given respectively by |
3¢ 42 m A?
o = _ ' (23a)
 4gr? ? | |
T, - =24C gt A’  (23b)

by L2 . _(@bealbe |
Here the constant C is defined by C gq_a’ 35 :} and /\ denotes

the ultraviolet cut-off. (A graph containing two longitudinal gluons
gives zero as a consequence of the principal value prescription (18b)),
Note that diagram (a), which corresponds to vacuum polarization by a
pair of transverse gluons, contributés with a positive sign. (This

is similar to the contribution of a particle-antiparticle pair in
QED). The cause of the overall negative sign of (| — 8,-"/82 )




2 . ' A2
- (A0) = - e gt
g 48 IC | - (2y)
is therefore isolated in gréph (b). This‘diagram, which is c¢crucial
for.achieving the asymptotic freedom, corresponds to the polariza=-
tion of the vacuum by a transverse and a longitudinal gluon.
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