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Abstract: We show that the Cdulomﬁ solution of.
Yang-Mills equations with external
sources represents the maximum.eﬁergy
;configuratibn, when there are no mag=

netic filelds.
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‘A5 is well known, Yang-Mills rie1ds (1) ang quarks form
the.basic constituents of Quantum Chromodynamics (QCDS, arquahtnm
fieid theory of strong interacticns (2). The soiution of the clas
sical eguations repreéentsan important étép towérd the understand-

(3 -7 have recently

ing of QCD. For this reason, several authors
copsidered a simplified model of QCD, namely, the interaction of
Yang-Mills fields with an external source. As a result, itlﬁas-been
established that there exist non-Coulombic solutions uith lower

energy than the Coulomb'energy

In this note, we will consider a general SU(N) Yang-Mills_ '

theory with an external source. We will show that, for conflgura~
tions withou® magnetic fields, Gauss' law, when expressed in terms

of appropriate gauge invariant electric filelds and sources, has a

 form similar to that in QED. As a consequence, it follows in a very = =

- simple way, that the Coulomb solution has necéssarily higher energy
than any other solution. |

The classical equations of the theory are

(1a)

ca,b.c,
.’%“ /ov é?f: ,u ;ow = Syuo ?fb
where ? (x) denotes the external source den51ty and ‘
A abc b < b
Fus = G A= AL « 97T AL A (10)

Here,/? represent the Yang-Mills fields, which transferm as an
ad301nt representation of SU(N), and j are the completely anti
symmetric structure constants of the theory.

Taking Yv=¢ in the above equatien, we obtain the non-

abelian version of Gauss' law

a abe b —C _ o _ e (2)
QBT g pTATES = (DE)T - g |
~ where the electric field Ei?'is given by F}z” . Because of the non-
abelian nature of the covariant derivativeillj, this equation is,

in general, much more difficult to solve than in the corresponding



abelian case.
In order teo get a better understanding of the meaning of

I)C’ we will consider configurations with vanishing magnetic fields

B',’”_ _l_ € . [:_q- -« Note that under a gauge transformation
“F LJ k' _
/o R - = (3a)
f; = { f? AU +-- L/ 9 U
where A is a matrlx representatlon of the group generators, we
have : 7 _
By~ = U BT AM UV | S Ge)

s0 that configurations with no magnetic fields have a gauge-lnvarw'
iant meaning. A general solution wlth zero magnetic fields has the -
form. - _ : :
f:}b'a'l\m z -C-;:* Oﬂi J; O : _(_4)‘
| where () is an unitary matrix. In this case, the v= L components
of (1} reduce to ' .~_
% BT *3"“‘“%)5 = (D, E:) =0 (5)
which shows that the electric field "precesses" around #? with
Iangular velocity proportional maé} in such a way that its medulus
(E‘ )/* remains constant in time.

We will now consider more specifically the adjoint repre_
sentation where ( ) ) --‘.jabci This has the important preperty_ o
of making the covariant derivative IDC of a vector (in the_internal '
symmetry space) Vm'proportional te the usual derivative
oVt g4 AL Vs (D v) = [0 5 (oV)]T ©
In this representation () is given by an orthogonal matrix, and Vf
on the'right side of this equation is to be‘understood as a coiumn

vector. We can them write Gauss' law (2) as follows
di(OE:) = Oe | | | (7)
Let us now consider the invariance properties of this

equation. Under the gauge transformation (2a), wlth U in the adaaint
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representation, and using (4), we have

F)J‘:Os.xﬁ::_;.é_ (Oa)q‘ 9‘.: o-’ (8&)
where (‘-0 (/. Furthermore, we obtain | _

EEC_L/\Q': le EL‘CL Ao... U o o | 'l (813).
¢eAT = U gmaT U | o (8e)

It is straightforward to check that the electric fields '8: and the

charge density F defined by _

€ - OF, | . (9a)
| (9b)

P =0y |

are gauge invariant quantities in the sense that Q E, . O'E, and
OQ = O'Q’ . In terms of these quantities we can them write Gauss'.
law (7) in the following form

V. ¢ ;Js | S (10)
which is similar to that encounterd in QED.

Of course there are important differences. Eguation (10)
represents, in fact, a non~linear eguation since E. = Fro is
itself a function of () . Furthermore, for consistency, we need ?
to be covarianily conserved: Do c%: o(f), Together with (5) these
represent a complicated non-linear system of eguations. This system
will admit ¢ > = 7 ) ,” for suitably choosen sources? , finite
energy _ solﬁtio_ns with lower energy than the corresponding
Coulemb solution. Fortunately, for our purposes, we will only need
the functional form of (10).

| We will also use the non-abelian version of Faraday's law

which, for vanishing magnetic fields, reads

L \ = _ 11a)
€ D, Eh_o_ _(,, a
Using (6) we can write (11a) in terms of the invariant field g as

{*) This equation implies that l%i is time inde-péndent.
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From equations {10) and (11) we obtain that ‘_é is given by the
following integral equation  x =(;?, t); x :'(?','t)]
€ x) = - L @"Sd&_ﬁk_?__ o | - (2)
_ 4 /lx‘-ﬁ ! : _
Whlch is the analogue of the correspondlng formula in QED.
Now we can easily obtain the expression for the energy

of the electric flelds We find ( denotes the transpose ofJ° ) 7
e [ a ke | BE

g1 _ \;"... x4 \ ' )
This fbfmula'represents our central result. From equation (5) it
is ﬁlear,that 4 is conserved in time, as it should be. Furthermore
the-effeétive charge density fj is, as we have seen, invariant un-
der gauge transiormations, wﬁ;ch guarantees the gauge invariance
of the energy. Note ihat, due tc ihe orthogonality of the matrix
O,  and q have the same modulus. Using the Schwartz inequality

we see that the maximum_value of H is given by

Ho= L S"LB" W Ag@ign (1)
: Rz | (-] |

In order to understand the physical conteni of equations

(13) and (14), it will be coanvenient to consider the case when the
external source density points into a fixed direction in the inter

nal space, say the first :

qs‘*u-)'z el g ol | (15)
We can alwajs attain such a configuration because the Yamg-Mills
equatidns.are géUge covariant under the gauge transformation (3a)
~and (8c). of course, this choice does not affect gauge invariant

quantitieé, but has the advantage of making the physical content

more transparent. We can then wrlte (14) as

q(x)v =) | | (16)

ix- ‘x‘l-
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Equation (15) can be obtained from (13) if C is independent of x.
Using (1), we see that this requires‘Fft = and ﬁhen'Gauss' law
iﬁplies that Hsbzg ?7‘i %ﬂe. The resulting configuration corre-.
sponds precisely to the Couldmb solution.

. with theexception-of this solution, we observe that the
effect of the non~abelian fields, manifested through the non-trive
ial dependence on X of %} , is8 to roﬁate thé.initially parallel
'sources ?{3)into fﬁx’)z C)(rJ CECX} . In genéral, the angles of
rotation (in the internal space) will be different at distinct
points in space. So, the effective sources Q will point in differ
ent directioﬁs,;ﬁtx) and ?iﬂxj being, in éenerals non-parallel.
Consequently, tihe energiegrof all‘non-trivial solutions will be
necessarily lewer “han the one corresponding to the Coulomb éon-.

figuration.
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After this work was completed, I learant from Pref. Taylor about

related works done at Oxford by R.Hughes, Y.Leroyer and A.Raychaudhuri.



