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ABSTRACT

We show that, in the |{¢/* theory, the macroscopic

gquantum waves are stable against small perturbations.
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1e2 , we proposed a new strategy

In two previous papers
to understand Helium II superfluidity. Our ideas came from the
observation that Bogoliubou's superfluidity theory3 - in the |¢|*
approxXimation - describes some topological macroécoPic quantum

waves {(MQWs), which cut the condensate into sectors of phase,

analogous to magnetic domains. This provides a nice insight into

the origin of the A-transition. We noticed also that quasi-
particles bound to MOWs have an spectrum similar to that of liquid
Heliuml’_z. .

More recently, we showed that MQWs occur in a large

class of local4 and non local5 theories ~ coming these results to

reinforce our original proposal.

The topological charge these waﬁes carries is itself an
strong evidence of their_stability(l’2'4). Nevertheless, it is.
also very instructive to understand this fact in terms of stability
angles. By using the language of Dashen, Hasslacher and Neveu®
(DHN) , we confirm here that, at least in the realm of the |[¢]|"
theory, the MOWs are indeed stable cbjects.

The equation of motion in the |¢|* theory is:

13,4 = - == V20 + Ap¥e? . | W
t 2m .
¢ is the “He field, and m its mass.

In a system of density p , the velocity of phonons with

large wave length (which we call the sound velocity) isl—3

c = VYr o/m .
Consider the real members V such that (V| < 1 , and
define vy = v¥1-v?2 . If x is a particular coordinate and :

g =mc (x - cVt) , the MQWs are the following solutions of (1):
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iytgh v&) /b exp (- ilpt) .. (2
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Wy, describes  a sheet of low density moving in the condensate-with'
velocity ¢V. Its topological charge isl’z 2 arc COS-V :+:the'.
difference between the phases of  W{+w) . and'-W(-m);
To study the stability of -WV' in the manner of DHN. we

add to it a small fluctuation n exp{- idpt} , defining the field.
{(vVv - iy tgh vE) ¥p + n} exp(- irpt) . : ' (3)
Plugging this expression in Eg. (1), and retaining only terms of’

first order in n , one gets the equation of motion of the fluid

elémentary excitations in the presence of a MQOW:

_. 1 2 - -1 2 . - 2 . 2
(l/mCZ)a n o= (= —— Vi -5 32 + ive, + 1 - 2v*sech” y&ln +
t 2m°c Z‘ 2 g g
+ (V2 - y% + v% sech? yg - 2iV y tgh v&)in* - | S
where 4 = (y,2z) 1is made up by. the co6rdina£es traﬁsvérse to the

MQW's motion; Vi is the transverse Laplacian; and n = n(&,z,t).-
A _ _

Since there is invariance under translations on the
transverse directions, and since Eq. (4) contains n as well as
n* , it is convenient to represent the eigensolutions of (4) in

the following'wayl’z:

nE = uf{&) exp-i(ﬁz-wt) + V(£) exp i(—ﬁz+wt) | (5}
X is the transverse wave number and w is the fluctuation
frequency.

To verify the MQOW's stability it must be shown that w
is always a real number. In refs. (1) and (2) , when quantizing'
n by means of the Bohr-Sommerfeld rule, we have :uqﬁichﬂy assumed

w to be real, otherwise the fluctuation should not have periodicity
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to make the rule useful. Of cdurse, such an assumption_waS'
légitimated-by the existence of topological charges, but it is
still deserving an explicit proof. In what follows we shall show
that w is in fact'always real,. |

Inserting r|E + given by Eg. (5), in Eq, (4), we obtain

a system of coupled equation for u(f) and v(E&):

Ik = Yooy, - | (62)

mc

Here ¢ is an "spinor" defined in terms of u{f) and w*(f)

a(&) : .
v* () : : o

~

and the operator I is_given_by'

~ X 2 .
Z(V,k} = (- % 32 - 2 y% sech? vz + 1 +,—$——— )T+
+ (ivag)c3 + (V2-y?+y? sech®? vE)o, + (2vy tgh y&)o, . (6¢)

I is the identity matrix and {Gi}_ are the Pauli matrices.
To show that « is a real number we notice that Eq. (6a)

can be written as

where the operators T and R are respectively'

1 : o |
T = 5 (-13,0,+2 Y toh ygoa-;VGl) | - - (8)

and -
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R = (o/mc*)o, + (l--2w2)o1 + %‘{l—3y2+(k/mc)2}1 (9)

From Egq. (7) one concludes that IR is a self-adjoint
operatér. Inspecting then Eg. (9) one observes that this fact
makes w to be alwavys real.

We have therefore shown that, in the [¢!* theory,
MQWs are stable against infinitesimal perturbatigns (as already

expected) .
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