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PROPERTIES OF GRIFFIN-HILL-WHEELER SPACES - II

ONE- PARAMETER AND TWO-CONJUGATE PARAMETER FAMILIES OF
"GENERATOR STATES

E.J.V. de Passos* and A.F.R. de Toledo Piza

Instituto de Pisica, Universidade de S3o Paulo, SP - Brasil

ABSTRACT

The properties of the subspaces of the many-body Hilbert
space which are associated with the use of the Generator Ceoordinate
Method (GCM) in connection with one parameter, and with two-
conjugate parameter families of generator states are examined in :
detail. These families are obtained by letting unitary displace-
ment operators; having as generators canonical 6perators '§  and
Q0 , defined in the many-body Hilbert space, act on a reference
state. We show that natural orthonormal base vectors in each
case are immediately related to Peierls--Voccoz and Peierls-Thouless
projections respectively. Through the formal consideration of a
cancnical transformation to collective, P  and é ' and_intrinsic
degrees of freedom, we discuss in detail the properties of the
GCM subspaces with respect to the kinematical separation of thesé
degrees of freedém. An application is made; using the ideas
deveioped in this paper, a) to translations; b} to illustrate
the qualitétive understanting of the content of existing GCM
calculétiéns of giant ressonances in light nuclei and c¢) to the
deflnltlon of appropriate asymptotic states in current GCM

descrlptlons of scattering.

* Partially supported by the Conselho Nacional de Desenvolv1mento
Cientifico e Tecnoldgico (CNPgq), Brazil. .



I = INTRODUCTION

The generator cedrdinete”ﬁethod (GCM) provides a
variational approximation to thé dynamical behavior of.quentum
many-body systems which guarentees rhe linear completeness of the
variatienel space. In faet the rariational space of the GCM can
always be associated with a projection operator, defined in the
many-body Hilbert space, which cen be.constructed explicitly in
terms of the adopted set of generator states(lfz).' Characteristic
features resulting from the guantum superposition principle are
thus preserved and this is the foundation of the fully quantum
mechanical character of approximations based on the GCM(3’4)‘
the: GCM scheme the dynamlcal propertles of the many-body system o
are determlned by the prOJectlon of the many- body hamiltonian

H onto the GCM varlatlonal subspace '8, B8HS , where 5§ ‘is the

projection operator associated with the GCM variational subspace S

fj | é;+ A-{

.One of ﬁhe distinguishing features of the GCM is the
fact that the veriationai subspace S can be constructed with no
reference to any cellecﬁive.dynamical fariable. Indeed the
ch01ce of the generator states is made on the basis of educated
guesses as to the nature of the collectlve properties under
con51deratlon (see e.g. references 5, 15, 16 and 18). These
generator states are put in one to one cerrespondence with the'
points 3. ef a.lebel Spaee. The 1abeis 3 .are usually, but not
necessarily, egual or related to the expectatlon values of some
adequate dynamical variables of the many~body system under
consideration. However ence the GCM variational space (or
equivalently the corresponding projection operator 8) is agidfied

through'a definite choice of generetor;states,,one can find, a

In -
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posteriori, natural dynamical variables in. S . These natural
dynamical variables allow us to describe the restricted dynamics
of the many-body systeﬁ-in terms of a small number of specialized
degrees of freedom._ |

The guantum mechanical character of the GCM does not
stand by itself as a sufficient virtué; however. Restricting the
problem to a subspace of the original many-body phase space brings
about truncation effects that are in general difficult to assess.
An obvious additional formal requirement, that the projection
operator involved in.the truncation should be as nearly as possible

a constant of motion(l'Z)

seems to be of little guiding value when
one is confronted with realistic problems.  These ditfficulties . |
stem,; of course, from the.fact that.one is confrontéd'ﬁeré ﬁith a;
dynamical question that cannot be ultimately settled as such
whitout reference to some specific hamiltonian. As we show iﬁ
detail in this paper, however, this dynamical question can be,

so to say, reduced to a "kinematical level" provided that
collective dynamical variables associated with the relevant
collective degrees of freedom is given in the many-body phése
Space'jq . Here lies, of course, the dynamical part of the
problem. - What remains then to be done is to set up a GC scheme
such ‘that the resulting variational space is:well'adapted.to the
unfélding of the corresponding éollective dynamics.

In order to clarify these ideas and gain some general
operational expediency one may.consider sﬁch matters from.the
following point of view. First, consider for definiteness the
case of a canonical degree of freedom, i.e., a collective degree
of freedom associated with a cénonical pa;r suitably defined in
the many-body Hilbert spacé JE(

» A R
[Q,P]:'L'

one can then introduce a canonical tranformation from the particlek
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degrees of freedom P, , §; to P , O and to additional intrinsic
variables &i ’ éi (i=1, 32-1). At the same time we are naturally
led to consider’jq as the-direct product of a collective space

}{c and an intrinsic space Fy, t.e.
Aofef, e

We-may also decompose the hamiltonian describing the systems as

A o A A

H THLC ,5;)+H (T, §)+H(ap§ TTL) (.2

-

where the last term, H' , represents the coupling between
collective and intrinsic degrees of freedom. It is also useful to
consider a subspace of the many-body Hilbert space, to be called
the ideal collective subspace, which is given by the direct'pnxmbt
:of the collective space and a 6ne~dimensionél subspace of the-

intrinsic space: : :
SH=HoarcH g,

In eq. (I.3) we introduced the projection operator onto the

appropriate'one—dimensional-subspace of the intrinsic space fir

| A -
hr = by = b = 1TDCT)
Thus
A 4 oA A . ‘
SC :'5‘_ = Sb_ = .4(.._ @ hy

is the projection operator onto the ideal collective subspace. We

may aiso‘consider the complementary projection operator




Ro< -8 = e (is-ho)

In terms of these operators '1[ can be written as the direct sum

of two complementary spaces

S H o R

while the hamiltonian H of the system under consideration can

be decomposed as

LY A AN A

ﬁ§+gHL+6HR+RH5",m§

= e

-'The last two terms represent the dynamlcal coupllng of the squrmes.;s_ j-

The conditions for the systems to- sustaln a. well
developed collective mode can be stated in terms of a weak coupling
limit, which in the case of the ideal collective mode implies that '
the last two terms in eqg. (I.4) wvanish. The eigenfunctions of

- -~

SCHSC are then determined by the collective hamiltonian ﬁctﬁ, 6),

and the projectors SC and ‘ﬁc are constants of motion. The-

diagonalization of écﬁéc '

A A A A A A A N A
S \-\ - SC( H.le Q)+ 41\\31.\0)6
gives part of the exact energy spectrum of ﬁ .

We may now ask how does the GCM variational subspace S
stands with respect to the product space decomposition (I.3). In
particular we can ask how does the GCM hamiltonian, éﬁé » compares
with écﬁéc . On a purely formalsbasis Aéﬁé_ can be split into

three contributions,

!

505 SRS + 51 15-\- 3 S
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which originates respectively-from'eéch of the terms in eq. (I.2).
We see thus that in general the GC dynamics can be ruled by the
collective hamilﬁonian ﬁ; + by the pureiy intrinsic part ﬁI
and by the coupling‘term H' . Even in the case where H' vanishes
the GC dynamics may still éngage the instrinsic degrees of freeddm
through éﬁIé . The use of the GCM will thus in general give
rise to a spurious "kinematical coupling" (i.e. resulting from the
GC scheme and not from H which in this case does not couple the
intrinsic and collective degrees of freedom) between the intrinsic
and collective degiees of freedom. ‘A typical manifestation of |
such a "kinemétical coupling” (see section V) is the incorrect
translational mass that one in general obtains when one uses the
technique of Peierls-Yoccoz projéction. This amounts in fact to
a particular GCM treatment of the true translational motion of
the system as a whole. B

| In order to obtain an adequate deécription of the
collective dynamics in terms of the GCM , the construction of
the variational space S , which we call in what follows the GCM
collective subspace, must be such as to eliminate such spurious
coupling effects. 1In this paper we show how this can be achieved
once a collective canonicél pailr P and 0 is adopted as
relevant. Specifically, we discuss in detail the GCM collective
subspace S generated by one and two parameter families of
generator states obtained by letting unitary displacement
operators having P and O as generators.act on a reference
state. These spaces can be immediately related to Pehﬁﬂs-Yoccoz.
and to Peierls-Thouless projections respectively. This 15 done
in section II. In section III we discuss the relationship between
these two spaces and.giwacon&itions under which they arelgdemﬂcal;
Né.tural dynamical variables assoclated with_ speciflic reépresentations
in.these spaces are defined in section 1V where thé expression of

885 in terms of these variables is also given. In section V we
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discuss in detail the separation of collective and intrinsic
degrees of freedom in the framework of the GC dynamics and in
section VI we illustrat; the qualitative understanding that can
be gained, using the ideas developed in this paper, of the content
of existing GCM calculations of giant resonances in light nuclei.
The significance of our results for the construction of aswqﬁrtic'

states in scattering theory is alsc shown. Section VII contains

some concluding remarks.
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IT - A REPRESENTATION FOR THE GCM COLLECTIVE SURBSPACE

I.1 - ONE GENERATOR COORDINATE

We define the one parameter family of generator states

(O.P.F.)'as

\N> - e- ‘o> | (I1.1)

The ket |o> stands for a suitably chosen normalized reference or
"fiducial" many-body state and P is a collective hermitian
operator generating relevant changes of the reference state.

The overlap kernel <aloa'>

(o(l;;‘a%m'}

A
Lw-%) P

Lo

depends only on the difference of the generator coordinates and so

Cxia’>

LE

(I11.2)

<ol e

it can be diagonalized by a Fourier transform

4 00

f amt«‘)u'ih)du = 2T ALR)(x|R) (II.3)
- %0

The éigenfunctions and eigenvalues are respectively

RLY-4
(k) = e

\I_

I <u(|0> e -t

ACR) = "'I;'l_ | (TT.4)
- <o

A PY
ol T, 107
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(6}

~PY .
and Hk igs the Peierls-Yoccoz projection operator
o0 . LB
¥ the  _i%P
'ﬁh = 4 dx e c
_ LT f=o0

(II.5a)

= $5(P-h)

The properties of the scalar product in the many-body
Hilbert-space and the time reversal properties of P and | o>
(P is a time odd operator and |[o> a time even state) make A (k)
a scmi-positive definitive.eﬁen function of k . Bésides one has

from egs. {(1r.4) and (II.5a) _

) : | o - . _ -
o j..co dh Aﬁh_)_"§-..4 . - anse)

In what follows we assume that A (k) decreases monotonicaly as
a function of ]k| , i.e., that A (k) has a maximum at k equal
to zero and decreases to zero at infinity. This hypothesis is not
essential and it is made only to simplify the discussion. The .
general case is discussed in detaill in reference 1.

Following reference 1 one can find a representation in
the GCM collective subspace Sl constructing base states in terms
of the eigenfunctions of the overlap kernel <u]af> . In this

case the projection operator in §, can be written as

s\ =X f_ , AR |%a>\r \§ \Y\-«%

The states |wk$Y form a continuous orthonormal base

and they are given as



L10. -

S = 2 . do VoS Cxlin)
\’~L>Y m) A Vel > )

A PY ' (1I1.6}

= 'TT;L \05-
| \}?ol%‘if\o?.

As shown by eq.'(iI.G) théy are equal to normaiized
Peierls-Yoccoz projections of the reference state |o> ,
associated with the operatof B . The'representaﬁion found above
is the specific representation given by the diagonalizétion of the
“overlap ke:nel.' This is very convenient for so#ting out the |
kinematical oddities iﬁherent to.the generator:coordinate meﬁhod
but other representations may be prefereable from a physical point
of view. Thus it.is clear that a transformation theory in the
subspace 'Sl allows us to find, by an unitary transformation,
another representation which diagonalizes any self-adjoint

operator defined in Sl

Ii,2 - TWO CONJUGATE GENERATOR.COORDINATES

We define the two conjugate parameter family of qmmnabdr

states (T.C.P.F.) as

. Py
P

.|°(J(';,> - @& cif’_a" ]0} (IT.7)

wherée P and Q are conjugated collective operators in the many-

body Hilbert space, i.e.,

A e

't: a_)fjl =4

The overlap kernel <aBla'8'> is given by




.11,

<uplot'@> = (i} ()

I

' A A A
il k- P pa | (II.8)
ol et Ot T e Cpy

and its eigenfunctions and eigenvalues are determined by the

equation

/fwmﬁlx’ﬁ')fd?"lkﬁ) dip’= 2T 2,k )(nplkm) '(II_.:9'>

In appendix A we show that the eigenfunctions of <uBkﬂB'>

are

e}.k«. i | -

- = (-

Cotpr] han) = : @n r-h) (II.10)
NZT

and that the eigenvalues A (k) are independent of k . The functions

¢n(6) and the An are eigenfunctions and eigenvalues of the semi~

positive definite Hilbert-Schmidt kernel

oA -t a.. A i ‘a
(mimip ) = <ol e ' Stp)e PQIG) (IT.11)

[((5] ar') §, (ﬁ')a},’: Ner 5544 (%) | (IT.12)

The reduced kernel (B[#|B') can have zero eigenvalues
and when they occur there are two important consequences. One is
that the weight functions defined in the null space of N give
rise to wvectors of Zero nornfin the many-body Hilbert space.
Therefore there is no loss of generality if we restrict the weight

function space to the orthogonal complement of the null space of

R . The other is that the existence of eigenvectors of N with
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zero eigenvalue implies thagﬁgheﬂg@neratot states are not linearly

independent, and the linear dependence is expressed by

I<p> = fdol’ﬂ?‘?/ \p’> R ) (I1.13)

where the kernel R(afR,a'B'} is

Rapp ap') = ;;) #ém (apl ke Y hmals')  (TT+19)
7 ' ) :

which is seen to be equal to the projection operator on the
orthogonal complement of the nuli space of N .

As 'in the previous Q.f,F. caSe_we can find-a répresen—
 tation for the GCM coliective subspace 52 in terms of eigen-
functions of the overlap kernel <ug|a'B'> . In the T.C.P.F.

case the projection operator in 82 is given by

A

.5 . «M,/céb\]‘fhu> <‘V M,‘E | (I1.15)

where the base states are

- {dux im>upl\w)
Xt T

A T N . (11.16)

= 1Th¢~|(y>

In eq; (x1.16) ﬁk nPT is the so-called Peierls-ThouleSs double
(6)

projection operator

A PT [dd# (.’?.0‘1¢ @h) _u(P (/,a .'.;'(11.17)
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The states Iwk,h>T are normalizedfas
'r< “Vh‘,wl \v*_’{,*"'>1'- = $ (_:h\-\r_x)_ $MMf .

and, as shown by eq. (II.lG),.they are equal to the normalized
Peierls-Thouless projection of tﬁe refefence state |o> , asa;ﬁated
with the'0perat0r P . Furthermore they are labelled by two
gquantum numbers, one discrete, h-, and othér continuous, k . The
* number of discrete labels is equal to the number of eigenvectors
of the reduced kernel with non-vanishing eigenvalues; As fhis
kernel is of Hilbert-Schinidt type this number can be finite or
infinite and in the last case Rn has a single iimit.poinﬁ at
r=0 (2} | i

The representation specified by egs. (ITI.15) and.(fI}lé)
. is the one obtained by the diagonalizatioh of the overlap kernel
and by unitary transformations in 82 one can find other repre-
sentation which diagonalizes any self-adjoint operator defined in.

S,
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IIT - RELATIONSHIP BETWEEN THE SUBSPACES

The generator states |a> and |af> are vectors defined
in the GCM collective subspaces Sy and 8, respectively. There-
fore we can find the projection of these states along the base
states lwk>Y and Iwk,n>T . Using egs. (II.3) and (II.6), and

eqs. (IT.9) and (II.16) one has.

<0(\LY\\>Y:- m) (“‘”9\) . .. : .' o (III.1)

<ap) Y yy = V2T € Ctplom) .

The generator states |a> are moreover contained in

the set {aB> since |a> = |a,B = 0> .- Then, using eq. (III.2).

one has

<°“"Yh,M>r - ‘)‘Zﬂ-:\«m (i) @.WC&) (III.3)

where we used the property

gb:(—/") z ¢M (n)

which can be obtained by time revisal, é being taken as a time-
even operator.

Inserting eg. (III.3) into eq. (II.6) and {11.4) we
can write the states |wk>Y as a linear superposition of the

states |¢k RS
!

YD -2 N, (R) \\Yha”">-r (_III._4)
Y -, % J o
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where

\Iﬁux) V-2 @”w

\[Ei >\”L]¢L£h9’
M}‘MIO e

which shows that

M»,“;to | - | |

The projection operators in the GCM collective subspaces

generated by the one and two conjugate parameter famlly of generator

states satisfy therefore the equations

gi\\-vh>Y 3 } YOy (111.6)

n M> \] Lh) \rx}\( (ITI.7)

EQSQ (I11.6) aﬁd (ITI.7) show that 81 " is always contained in. .
S&”, but that, in general, the converse is not true. 5, ‘is
contained in 'Si ‘only when the reduced kernel (II.11) has a
single ‘éigenvector with nonvanishing eigenvalue A

In fact eensideringﬁeq. (III.5) one has
\ \ o I A ey
and the phases can be chosen such that
\’ot_h)'-‘; . " (III.8b)

Thus eq. (IIT.7) becomes
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SV = o dr

In this special case the tﬁo_qonjuéate parameter family is redundant
in the sense that it gives risé.fo tﬁe same:collective subspace as
the one parameter family. As a consequence of this redundancy the
two-conjutate parameter family can be written as a lihééf.sﬁﬁéf4
_position of the one parameter family since in this case the states
|1pk>Y are also a base in 52:. -Thus;:ﬁéing eqs. (III.2), (III.4)

and (II.6), we have

whers'-
o L (=)
P’ ap) = % ¢ ¢, ck-n)

%ch)

It may still be advantageous to use the redundant two-conjugate
parameter family since the generator states |eB8> have in this_
case very .useful mathematical properties. As an example it can
be easily shown that in. this particular casé_the weight function
‘always exists as a regular function and we can find a representa-
tion in the collective.subgpace wbich is diagonal in_the generator
coordinate states. We caﬁ view this pérticular éasé as a slight

generalitation of the concept of coherent;states(7). The property

discussed above is called "global redﬁndanéy":iﬁ.feferences B8 and
9. The concept of a "local_redundancy“, which is a particula: ‘
case of global.redundancy, is also introduced there. .it corre-
sponds to the fact that the action of P on the states |aB> are
equally expressed by the action of 6 on |df> , which in our

case demands
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¢ C','-.f'sf{é)'«’/‘)). +(Q-=) lp> = 0  (min.ao)
| o bo° | o ' |
'whére ' | ' '

 Theleq; (III.10) holds only in the case_where o> is the vacuum .

S of_fhE'boson operator

. L = '\-!)’E (Q--\- t:,é b° ) S

in which case |oB> reduces to a coherent state. -



.18,

IV - GCM COLLECTIVE OPERATORS

IVv.l - THE OPF CASE )

The base states |1,bk>Y dépending on a continuous label
k , can be associated with a pair of canonical operators in §

defined by

A

Pq \d(h}.{ N \\Y;);{' .
é:_\ \ \J(\’-L>Y ‘-'..4 - ;/ahl \{)\’-L»‘( : : ' (IV..]_)

- A A o A
e, Rl s,
The definitions {(IV.l) vield

S PSTASAPEA
Q= [ dh 14,0, 1 5 h-K) LY

.Thus él and ﬁl are natural collective dynamical variables
associated with the representation {|wk>Y} , eq. (II.6).
Instead of using the representation given by eg. (II.6)
directly, other representations may be prefereable. They can be
found in general by unitary transformations in 8, . As an

1

example the Fourier transforms of the states f¢k>Y

~thx | ‘
¥,y = L |e I -2
" \Eﬁf Y .

define another base in Sl in which the operator 61 is diagonal




A
_;Qﬁtlvx:7 = X ‘\th>
o -0 -
Another rapresentétion is obtaihéd by transfbfming (IV.2) by means

of harmonic oscillator wave functions. This is a discrete repre=-

sentation which diagonalizes a boson number'operator constructed

from Pl and Ql .

The relationship between the GCM collective operators
61 and ﬁl in the collective su@space Sl- and_the collective_
Operators._é and f in the full Hilbert_space can be exhibited_
in the foliwing way . Sinée ]¢k>Y_:is_th¢ Peierlszéccoz |
projection_bf the reference state |¢>”; assdciatéd with'the .

operator P , one has by construction that

Pl - k>,

This equation shows that

A A
P o~ ﬁ’fh | (Iv.4)
A a A :

= 5,P

which, using the canonical commutation relations between 6_ and

P gives

A A A A
: _ : (Iv.5)
Q=54as5 |

It can moreover be shown by a'straightfbrward_calculation that,

in general

'

o [Qyé»\] £ 0  _ | o .. :-(va...e)
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In sumary, this discussion shows first that the pair of
canonical operators él and él in S1 are equal to the
projection in Sl of_the.canoniCal operators _ﬁ and Q in the
full Hilbert space; second, P is diagonal in the representation

given by the orthonormal set of eg. (II.6); and finally, there is

no representation of S1 where 6 is diagonal s;nce the chgcthm

 subspace Sl is in general not an eigenspace of né

Iv.2 - THE TCPF CASE

 .The coliéctive éubépaée generated by'the T.C.P.F.-has a
baée inen by the 5t5teslm[¢k;n>i ; These states have two -
gquantum labels oné-continuous and the other diSéféte.. In what
follows ﬁe foéué.oui attention on the continuous label. We could :
also use the discrete label n to define additional dynamicai
variables, commuting with those to be associated with the con-
tihuous label X , but for ease'of"preséntatioﬁ Qé'defer this
discussion until section V.

As in the 0.P.F. case we defiﬁe.é pair of canonical

operators in S, by

P 1%y, = R, )y

A R (IV.7)
Q’.\ \VKIM>T: _-'f‘ géy;}\yh'M>T
The definition (IV.7) leads to
A —
_ :F;;: E&'51411 tﬁthM:>+ ¥\ 1é<\thn~\'
(1v.8) "q

é&-_ Z dhdb |Hhe e, ITEIES
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The fact that |wk n>T is the Peierls-Thouless projection of the
, ,
reference state |o> associated with the operator P (see eq.

(II.16)) gives now :

ﬁ)\\\)h;mv.r':.'h \\\)h‘m>~|—'
(IV.9)

(:l \ ‘Vg'lm).r -~ - %h\\- %_JM)‘_. o

These eguations yield

Thus the canonical collective operators in 82 are the projection

in 5, of the canonical collective operators in the full Hilbert

space é and P . However, unlike in the O0.P.F. case, here both

operators commute with §2 . Therefore the GCM ccllective subspace

[ is an eigenspace of é , and by an unitary transformation in

2

Sy

This can be achleved by means of a Fourier transform

we can find a representation of 52' where é is dlagonal

| o hox (IV.10)
gz e [y % |
T= | h, T
.] _ \/ajr >
Using egs. (IV.9) one can in.fact show that |wx,n>T obeys the
equations | | ' ' |
Q 1Y, o x I Q

(Iv.11)

P LY’_(:M)" - l%x\\y*.'&r
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One can also relate the states (IV.10) directly to the
generator states. Using eq. (II.16) one has

xM> -

> el xon) dudpy (V1R
I A

where {of|xn) is the Fourier transform of {(aB|kn)

| .th '
V2ir ' '

—iplX=-%) o~
- e _é_(x—“‘)

LT

(IV.13)

Here _@n(x) is itself the Fourler transform of ¢, ( ).

The states wa-n p can be thus written as

| _ﬁ_PT >
.ILK(M> - g 10
N T \J.____-
P

where HiTn is the Peierls-Thouless double projection operator
' ; : _ HJ It St =

-

associated with the operator Q

AP -ipX

o~
' epQ _LKP
dx# = ¢(x«-a<)<-:
Aq
The functions (aB]xn) are also eigenfunctions of the overlap
kernel <aB|a'B'> with eigenvalue 2mA . This is indeed
possible due to the degeneracy of the problem (Aﬁ is independent
of k) which implies that any wave packet in k (with fixed n)

is also an eigenfunction of the_overlap kernel with eigenvalue

2TA .
n
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IV.3 - DYNAMICS IN THE GCM COLLECTIVE SUBSPACE

Once a representatlon in the GCM collectlve subspace is
found, one can 1med1ately wrlte down the restrlctlon of the
Hamiltonian to the collective subspace, by just taking matrix
elements with respect to the adopted representation. The
collective dynamical problem reduces then to the diagonalization,
of this restricted:Hamiltonian. .

In the O.P.F. case, the collective wave equation in the

momentum representation reads

jdﬁf Aih,.,hf).-(ﬁ(h‘;{.) - iH agtec A{} o (Iv.14)'
: . o ot R | _

where
NSO RRPSALINAS
| o (IV.15)
= [dadte! Chix) <<} > (A R)
AT Ay V)
and '
Yeht)= LhIPED
with

Slgwy = 19>

The matrix elements of any other operator A between
states defined in S1 can also be written in terms of a matrix

| A(k,k') which is given by an expression analogous to edq. (IV.15)



.24,

-~

where in place of H one has the operator A

We can also try and express any operator defined in Sl '
(or the restriction of any operator to the collective subspace
Sl) in terms of the "fundamental" dynamical variables él and

- 10
P, . Considering the Hamiltonian as an example one has( )
A A =0 2
” () . A - . S : .
" - :-7_ ! (v A % (IV.16)
Loz o AWy
M=o ;zm E .
MW

-~

where ﬁ(m){ﬁ} is the mth anti-commutator of A and B

Aer- (AR, A8y
 and com mididis
and H(m)(Ql) is
A L), _ m "
HCa) = [ Eix) - <y xlHIY o>
' (Iv.l?)
Qe )
= fé_ et 4._4—-—. T<‘.VK+“/&“_”\V"|‘IZ>\K:6
- e =0

In the case of the T.C.P.F. the wave equation in the

collective subspace is

20.th4"

2 fdﬁ’ L.M’Q},h’} Y Lht)= (H ¢ ChtE) (1v.18)
“N d : Jt

where
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\'\ML?:{‘"{) = 4%1«/\ th_m>T

(IV. 19)

[ddcﬁ, dx péb/ [lz«)o([b) <°(f)iH’°‘/">(" lk-u)
2T m _[‘—-—--)\M .

g, (ht) = T(#’hl,wl QPee)>

We can also write the matrix elements of any operator between
states in 52 in terms of the matrix elements of this operator

in the base representation [¢, >q
: _ ‘ '
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V -« THE SEPARATION OF COLLECTIVE AND INTRINSIC DEGREES OF FREEDOM

The constructién of the OPF and of the TCPF in the
preceding sections was based on the consideratioﬁ of a canonically
conjugated pair of collective operators, 0 and P , defined in
the full many-body Hilbert space. We may thus consider a
.canonical transformation, e.g. from microscopic coordinates and
momenta, to a new set of operators that includes the collective
operators 9 and P . Considering, together with 0 , the

remaining N-1 coordinate operators

~

($32CE B 5uu)

which, by the canonical nature of the transformation must commute -

with both O and P , we can arrive at a coordinate representa-

tion of the full many-body space defined by the kets
P Q,% 7

chosen as eigenkets of é and of the operators E . This repre-
sentation is actually a product repr::sentation in the sense that

we can write

sy = 1QY 1%

where the [Q> span a Hilbert space for one single degree of
freedom, the collective space, and the |£> are likewise
assoclated with a Hilbert space for N-1 degrees of freedom, the
intrinsic space. In what follows we sﬁall make a formal use of
this representation of the full mahy-body Hilbert space in order

to exhibit the factorization properties of the GCM collective
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subspaces § and So s constructed in terms of the OPF and of

1
the TCPF of generator states respectively. We shall refer to Q.

and to &£ as the collective coordinate and ‘the intrinsic

coordinates respectively. Unless otherwise stated, we understand
them as a representation of the full many-body space. It should
be always keEt_in mind, moreover that both _Sl and 82 carry .
all the _N” degrees of freedom of the many-body system under
considerétion._ They are distinguished from the full many-body
space in.tnat they contain various imposed correlations among the
N degrees of freedom. The:following discussion will be aimed
precisely at exéosing the general nature of these correlations in
each of the two cases. | -
. We begin by considering the_wavefunctione associated by
the representation |QE> with the TCPF base vectors. These are

easily found to be

LhaG
(QEI N> = &

NZiT

' € (v.1l)
Xm{.j)f .

where the orthonormal states {Xn} ,_which_depend.only on the

intrinsic coordinates, are given by

- . (v.2)
X, 08)= L ¢ (a)<asiod d]
g

-,

~

: The_functions ¢n(Q) are the.Fourier transforms_of the.
¢n(k) (see eq. (II.12)). ‘Using our_previous results, ir'follows
that the number of orthonormal states Xp is equal to the number
of eigenvectors of the reduced kernel (II1.11) with non—vanishing'
eigenvalues. We see now that they span a subspace of the
inrrinsic space associated.with the N-1 degrees of freedom £ .

Furthermore, using eq. (III-2) the reference state lo> can be
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naturally expressed in terms of the X (&) as

<asioy= 3 Vo «;b(a)x () w2

Y

The states Iwk nwp ¢ €9. (V l), thus come out.as products of a
collective wave function (a plane wave in the collectlve varlable)
and an intrinsic wave functlon (dependlng on the 1ntr1n51c
variables £ alone) and thls is true even when the reference
state lo> does not factor in the reoresentatlon |og> {"

. The states fwk y + on ‘the other hand, which are a base.
in the sﬁbspace generated by the O.P.E; of qeeeratof states are

associated by the [Q&> representation with the wave_funetions

.-

<Q@i\l)\m\>-f e \/—?‘l_—-_ -t“:‘.l\'h‘& th' 5) -y

tﬁ'a
:'.,!

where

H

| vh &
X,.(5) /dQe ““casioy
| .211'/\(.1« |
(v.5)

i1

2. N\ k)X, (%)

M rap 0

These wave functions appear as the product of a collective wave
functlon and an intrinsic wave function whlch however, depends
on the eigenvalue k of the operator B . Consequently the
states ]wk V. factor into 1ndependent collectlve and 1ntr1n51c
parts only when the reduced kernel (II.11) has only one non-
vanishing eigenvalue.. In this case, in fact? the reference state

o> itself admits a similar factorization i.e. (see egs. (V.3)
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and (A.5))

(V.6)

<Q"§\o>'='¢oca)'7(a(§)° o I

and by egs. (V.5) and (III1.8) one has.

X\rng) = X,(%¥)

When such a particular reference state 1s used to‘generate the
TCPF, mbreover, one fihds that“thelstateél Iwk>Y..aré'equal to
the.stgteé Iwk'o>T and.Ehé éubspacés. Si ahd' 52 'bebomeﬁ'
identical. . - " -

- It follqws from thé$é proper£ies.that.the natural
repfesentation |wk,n>f fér the subspace S, generated by the
TCPF is itself a product repfesentation. In fact 52 appears as
the direct product of the collective space 1{¢ with an intrihsic 
subspace spanned by the wave functions xn(i) . The dimensionality
of this intrinsic subspace is given by the number of eigenvectors
of the reduced kernel (II.11l) with non-vanishing eigenvalues.

This product decomposition of 82 holds for an arbitrafy reference
state Io# . For reasons to be made clear below, we refer to this -
factorization property as the Galileah”invarian¢e'of:the GCM
collective subspace. On the other hand, the nature of the natural
representation '|wk>Y for the subspace’ Si shows that-in general
S , is not dedomposable onto collective -and intrinsic parts
(i.e., it is not Galilean inVariant)._’In the special case when
the referenge state |o> ‘itself factors in a product of an
intrinsic wave function and a édllective'wave-fﬂnctibﬁ; however,
" the GCM subspace Sy which in’ this  EéSé’iS“identicalsto the
subépace Sé , is in fact Galilean invariant. It is given by the
direct product of the collective space: F{e and a one-dimensional

subspace of the intrinsic space.
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To discuss the properties of the restricted dynamiecs of
the GC scheme consider first the concept of an ideal collective

subspace which was discuséed throughly in Chapter I. The ideal

-~

collective subspace Sc is equal to the product of the collective
space J{¢ and a one~dimensional subspace of the intrinsic space

{1> , such that
X;'SL) fll =0 - v.7)

~ Eg. (V.7) shows that there is no coupling between

intrinsic_and_colléctive degrees of freedom in gc , and that the

-

spectrum of écﬁéc which in what follows we will call the

"collective spectrum", reproduces part of the exact energy spectrum
of H . The l"non-—collective‘__'s1:>ec{_::r:-mr'1“ which is described by the
restricted hamiltonian ﬁcﬁﬁc , Where ﬁc is_the complementary
projection operator _ _

" A "
R :.A" b(_

C
is in this case completely decoupled from the "collective" one.
The GCM collective hamiltonian ézﬁéz will thus have all the
properties of §Cﬁ§c provided the ideal intrinsic state |I> be

a vector defined in the GCM intrinsic space spanned by the states

'{Xn} .. The presence of more than one intrinsic mode in S, will

2

cause -the .GCM hamiltonian S§.HS to have, besides the ”colleqtive“

2772
spectrum, a. 'non-collective" spectrum completely decoupled from
the "collective" .one. On the other hand had we considered the
GCM collective subspace-_sl., which in general does not factor
into a product space, we would find that as a result of the
"kinematical coupling" between the "collective" and "non- collective"
states (see egs. (v.5) and (V.1l1l) ) its spectrum has a "hybrid"

character and can differ considerably from the exact "collective"

spectrum.




.31.

A simple_illuStration of these facts is provided by the
translation of a Galilean invariant“system._\He;e_the_hamiltonian

The collective hamiltonian ﬁc is just-

We = {__ ; M; Amasi T (v.8)

p<

and we.set up GC schemes using 5 and fhe conjﬁgape ¢gn£éx of
mass ppsitiqn operator: é 'as_gpllect}ve_variableé._ As discusséd
abové, whén the_Qfdgpendencé of the.refe;ence:state facths the
GCM collective subspaces_ Sl and ‘Sé  (§¢::§$?onding to thé OP?
and to the TCPF respectively) coincide;énd_thé_GCM collective

hamiltonian becomes

Win )= W) ﬁi\xb) §Lh-W.) (v.9)
LM |

We see that the description of the translational motion is exact
and this fact stems from the Galilean invariance of the collective
subspace., However, even in the case when the reference stéte does
not factor in a product wave function, the collective subspace o
generated by the T.C.P.F. is still Galilean invariant and the

projected hamiltonian is

kMt:,MJ-:.(bf S+ <X 1ML XD ) SCR) V220
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Thus'we see that.the description of the trshslational motion is
exact, wherees the intrinsic stétes.ete_epptoximated by the

diagonalization of ﬁI ' tn the subspace spanned by the ortho-
normal states {Xn} - In the O.P.F. case, Sl_.is”not Galilean

invariant and the projected'hamiltonian is

NCR APy }‘3?' P 3N Lh)()( nx\x \\/ (h.))(v 11)
M. ym!

As a result of the kinematical coupling, the translational mass,
defined in terms of the coefficient of k2 , comes out wrong in
the above equatlon. | ‘ o o A

| R ThlS dlscu551on shows clearly that thlS defect is not .
to be ascrlbea to the generator coordlnate method 1tself but h
rather to the bad ch01ce of the generator states | A good choice
should give rise to a Galllean 1nvarlant collectlve.subspace.

This requirement is always satisfyed by the T.C.P.F..
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VI - APPLICATIONS

VI.1 - GIANT RESSONANCES AND SUM RULES

Extensive ‘calculations of the properties of the giant
ressonances in light nuclei were.performed by Flocard and .
Vautherln( ), in the framework of the generator_coerdinateemethod.
Taking=these-very:complete:calculations,as an example, we illus—.
trate the qualltatlve understandlng of the content. of a GCM

‘calculation that can be. galned using the 1deas developed 1n thls'

paper.

'a) Isoscalar quadrupole and monopoie oscillations

Nuclear collectlve monopole and quadrupole osc111at10ns
are described in reference 5 in terms of a family of ‘Slater
determinants of harmonic oseéillator wave functions, where the size

parameter of the oscillator in the z-direction, Yzli

X;M\-\D
and the size parameter in the plane perpendicular'to the z-direc-

tion

are treated as generator coordinates .’ Thése: generator states can

be written as

\.(LA-Jr" DB“'QM'J["HOLD“- ) (v-I.l.li_

\!;"Yl -

where ﬁi is a dilatation operator in the i-direction
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A . _’i\ A. A A -~
D, = JZi Xi(D -k\q) +’ﬂ(3 ) X;U) i 12,3 (VI-1.2)
2 - ‘2' . -

and.the reference state |o> is a Slater-determinant of harmonic
oscillator wave functions for which the size parameter has the
equilibrium value Y,
It has been shown in reference 1 that the collective
subspace is invériant by a change of labels of the generator

states. Here we use this freedom to rewrite eg. (VI.1l.1l) in terms

cf new generator coordinates «a, and o, defined by

in terms of which

A A A
(o, 0,+%,(0+D,)
b > Ly e OO oo s

As 53 and ﬁl+ 52 are commuting operators, the above states
are a trivial generalization of a standard 0.P.F. and so all the
properties previously discussed hold.

Nuclear monopole oscillations are described in reference

5 by isotropic oscillators given by

A

%0 (VI.T.4)
oy =lwyaw o2y = 105

where D is the dilatation operator

A

D - D;

N

~
11
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| There is a representatlon 1ﬁ the collectlve subspace
Sg ’ assoc1ated w1th the generator states .fa> ; in which D is
diagonal. The base vectors definlng thlslfepresentatlon are the
normalized Pelerls Yoccoz progectlons of the reference state.'.
lo> , associated W1th the dilatation operator. D . Although ae
operator canonically conjugated to the dilatation operator D in

the full Hilbert space, is not given, we can find, using egs.

(IV.1l), an operator conjugated to D in the collective subspace

o

Nuclear quadrupole oscillations are described by the
anisotropic oscillators (VI.1.3),in which we impose the volume

conservation condition

which in terms of a, and :qz,_yields..

O(L:""u.‘.’i.- :
a

The generator states |o, o,> ég. (VI.1.3), becomes, using this

condition,

\(i:}':_'\ pl -'lu( Ky j>

L ( 0,‘+01-203) .. (vi.1.5)
= e ey _

Again these generator states are a standard 0.P.F. and there is
2 .
a representation in the collective subspace Sl , associated with

the generator states |a> in which_.ﬁQg,

A vy A A
Dg= D4+ Ox-.Z D5

is diagonal
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The case of coupled 1soscalar mon0pole and quadrupole

-_0501llat10ns are described by the qenerator states (VI 1.3).

0,2
Thus, there is a representation in the collectlve subspace Sl'

ass001ated w1th the generator states |a1,a > 1n whlch the

- -

commutlng operators Dl and D1+ﬁé are dlagonal

.b) Dipole oscillations

The generator states are in this case chosen as |

Aux b
%> = e - 3\0> (Vvi.l1.6)

where;-§3 is the z-component'of.the relative momentum between

protons and neutrons, which for self-conjugate nuclei: is

Ay Dy »
P- L(% -P)

'_:] ’ (VI.1.7) .

a A a -
A G i
] o d

In this case the operator which is canonical to P is immediately

given as

A
S

A A :
Q Ra- 'R' o _. . (v1.1.8)

Thus the dipole oscillations can be described by the states [o>
which are standard O.P.F., as is done in reference 5, or by the

generator states |oB>

loc,[vo-;e Ce 10>  (VL.L.9)
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which aﬁe a standard T.C.P.F..

For the popular choice which consists in taking for the
reference {fiducial) state - [o> a double closed shell Slater
determinant of harmonic oscillator wave functions, oné immediately

sees that it is the vacuum of the boson operator

N ~ A . |
b - Ry b) (VI.1.10)
- —_ W o | _
gl e

where

AmwWo

" This facf'Shows.that-the'T.C;P{F,-(V;l.9) is.localiy redundant in -
"fhe gsense of reference 8 and as discussed in section V, impliés
the factorization of the reference state lo> . The consequénce
of ail £his is that the collective subspaces associated with each
of the families of generator states are identical. Furthermore
one can find a representation in the collective subspace in which

-~ -~

Q3 or P3 are diagonal.
Although the discussion had up to this point only a
kinematical character, one can treat the dynamics, following the
.ideas of section IV.3. Once one has a representation in the GCM
collective subspace one can construct £he GCM collective.hmMJﬁxﬁan

and find its spectrum. This actually has been done for mmxgohaul)

and dipole oScillations(lz).

¢) Sum rules

In the case of sum rules the important guestion is to
investigate under what conditions the sum rule is exhausted in
the GCM ceollective subspace.

For ease of presentation consider the positive sum
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rules my and ‘my which are given by

e

1__ <\V \T_ A [ H A.\] ' o (VI.1l.11)

Fék'

| _ . S .
" SR N2 (VI.1.12)
Mz 2 i <‘Po\ ‘_ A,‘_\'\,\- \'_:\)tu)‘l\\ﬁ\\‘h\’(‘.3>
These sum rules will be exhaustedfin the GCM-collective‘subspace,

(5)

provided one has

e LY VLA L e, R A

— i
1-3:

ARSIV R

(VI.1.13)

| : S A A T 50
oy :_.1_, LA L g ARWRRIVE ALY, b
ﬁﬂ 1.14)

*_<y“H[A tataxa‘yn}q“b>

)

It can be easily shown that for —m; it_isaéufficient that

A

ES;A}:O S w1

.~ and for m.

3 _bne mﬁsf'havé”in addition to (VI.1.15) also

L3, [ Aﬂ

Acecording to reference 5 (equatlon C. 3) one has

n-l:‘.O :
..Es?,é]=0

where Ez and é are the square radius and guadrupole moment
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respectively

! al .
ﬁz’: nl)

Niy» o Ni»

. . 1 .
Q- (7‘“1 LY -2 2 )

]

2

Assuming a local two~body interaction (except for possible spin

and isospin exchange terms) onE'has(13'l4)'

LR Wz L7, “:--'_X_i D
(h, 1= LT, al- -4 °a

whlch gives

L 1 ' ﬂ o
Y‘S"L)[_C.\Ja]‘l*:o

thus showing that my and my are completely exhausted in the

o 2
respective collective subspaces Sl- and S, -

VI.2 - SCATTERING: "CLUSTER" STATES AND THE PROPER DEFINITION OF
CHANNEL STATES ' o

From a rather formal point of“view, one may quite
generally associate a possible.continuguslpart of the.spect:um;of
the collective hamiltonian 8fS for a finite system to scattering
processes that survived the truncation of the original Hilbert
space by means of the projector S . 1In order to discuss the

possible significance of this scattering, however, it is essential

to have at least an adequate understanding of the allowed
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asymptotically free states or channels. We shall see below how -
the procedures we discuss for the construction'of_collectiVe spaces
can be naturally brought o bear on this matter. The main point
is that properly defined channels must sustain a twofold Galllean
invariance, namely, invariance under translatlons ‘and boosts of
‘the overall center of mass and asymptotic invariance ‘under changes
of relative distance and (asymptotic) relative momentum._ In .
current applications of the GCM to scattering problems these
conditions are met by requiring adequate factorization prOperties

(15). Many of thie developed

of the many-body qenerator states
techniques, however, are based directly on the'consideration of
the GCM equation,. rather than a Schrodlnqer equation based cn a
suitably constructed collectlve Hamlltonlan{l6 17).' The use of -
Peierls-Yoccoz collective spaces is sufficient to construct a
collective Hamiltonian when the factorization propertles of the
generator states are adeqguate. More general cases'can in principle
also be handled, however, through the consideration of Peierls—
Thouless type collective spaces.

A more delicate problem in the GCM treatment of
scattering problems concerns the nature of the interactions allowed
after truncation of the many-body phase space, in relation_to the -
dynamical behavior of the unrestricted system. . This cannot in..
_general be decided in terms of the simple arguments developed here.

We will for deflnlteness develop the discussion around
the con51deratlon of many-body states which are written as the
(suitably antisymmetrized) product of localized cluster states
displaced relatively to each other.  States of this kind are
extensively used to study the structure of light nuclei, for

1nstance(18)

, in addition to their obuious'appeal for GCM treat-
ments’ of collision problems involving the systems suposedly well

represented by the considered clusters. In order to keep the -
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resulting collective dyn#mics as simple as possible, we restrict
ourselves moreéver to the case of cluster pairs ohly.' Using the
notation Ei (i=1,2) for *the clusfer positions (to be taken as

generator coordinates), and the collective symbols X, ' for the
set of particle coordinates in each cluster, we thus consider

states of the type

L - - -' ' 2y
@(X.Id,‘»} xz."‘z.)::A’ L ‘-PI (X,‘);:) Lg_(-?(z_"z)]

Due to the overall Galilean invariance. of the total hamiltonian

-~

H it is useful to introduce mean p051t10n and relatlve generator

coordinates A and 3 def:.ned as

o

A OL‘ T M : and = = L :'- “-a(l :

Ml‘ and Mz' ' being the masses of the two clusters. Now

Q(Y‘\ xl.il ' é(’s Xl' A ‘() A"“qti“A*m )l!(; A-Mn{)

MMy
wich can also be written in terms of t_he _cluster momentum _'
operators Pi ‘as
- A
A\ A :
-dm- wy ). L ).i’, |
@CK‘»‘ Ack) /4'(. Marte ‘-PU\..")C ", Qgfvi.2.n)

4

_ -LA PA‘_ SR PLPU\. o)gp(x:,o}—l

where total and relative momenta have been introduced as

. D |
B.AE gl B M
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Since A.P is a symmetric operator; the corresponding exponential
can be taken out of the antisymmetrizer brackets.
C .
The generator states (VI.2.1) have thus quite generally

very simple overlap properties with respect to the mean position

generator coordinate A. In fact their form alone guarantees

that the overlap kernel will be a function of the difference

A-A" only. The dependence of the overlap kernel on d and o |

is however more complicated. This come about'due to the effects
of the antisymmetrizatioﬁ, and is related to Pauli blocking

effects at finite cluster separations. For asymptotiﬁally large
values §f _|§| and o'l . in fact, only direct (as opposed to.

exchange) terms survive, and the overlap kernel retains a depend-

- -y B
ence on o — o only. We may thus write

CRARD RLA DY Nl Ro A ET) - N f

where Nexen 18 a short-range kernel (i.e., vanishing in the

asymptotic region). The effects of this short-range kernel are
of course of fundamental importance for the description of ‘the

: _scatteriﬁg, although, by its essential short;range character, thef
do not influence the asymptotic structure of the channels. Since
we focus oh this iétter pfoperfy, we éfé.justified in ﬁegieéting

Noxcnh here. Once the asymptotic nature of the channels is

established, exchange effects can always be handled, in principle,

using tools which have been repeatedly discussed in the litera-

(19)

ture , or by just considering sﬁitable'enefgy—dependent non-

local effective pdteﬁtials as done in the Resonating Group'Methéd”

or in earlier applications of the GCM to scattering problems(ls).

We concern ourselves thus with the simpler set of

generator states

_P-x.fa"’_"' I

@ngx,x; }A”;?):'.e
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Noting that they are azPeierlszoccoz'family with respect both to
mean position and to relative poSitién of the two clustérs,.it is
immediately clear that.they will generate a subspace with the two
required types of Galilean invariance only in the special case
where the cluster product factorizes into a Center of Mass ﬁxxﬁion_'
times a function of the separation between the centers of mass of
the two clusters and a single “intrinsiéf wave function for the
two clusters. This double factorization has:actually been ramﬁxed
in practical calculations done so far with the GCM(lS'lG'lB);

| To deal with less well behaved cluster product states . 
- one can fix the desired propertiés bf fhe éoliéeti#e_éubspacé-by -
| ehléréing the generatd::féﬁily QQ éé to'inéludé bcoéted states

 like

. e 4
. . . . .
@ U‘.}Z e?{?) -~ e e e | e 1 '-?‘u”c) ‘Qluz,ﬂ) (VI.2;2)_

where now é is the center of mass position operator canonically
conjugate do P and a similar relation holds between a and the
relative momentum 5 . Again the overlap of these non-anti-
symmetrized states differs from the full overlap kernel by short-
range exchange terms only.

One can now in a straithforward way apply the TCPF
procedure given in section II.2 to the states (VI.2.2) to obtain

the orthonormal basis for the collective space

<x Y;\“ﬂzhm)‘: Wam W ix,0) ‘QIL;&,G) 2 o). (VI.2.3)

l
AP

with the doubly Peierls-Thouless projector-'ﬁ given here as



A PT > i?;? '“2?'
— ‘- . K. ey
o (g farad e EN PR BR)
Rt - il _‘2"-— “ ‘
- L > = =
BEA S LAP [ BQ
x € e e e

The_function ¢n(§,§) is chosen as an eigenfunction of the

reduced kernel

Ay = - s : .-'\, “. \EQ
GEORIEB>= <) Le e e 104

with eigenvalue An (cf. egqs. (II.1l1l) and (II.12)); We seé thus
that by means of Peierls-Thouless projections we obtain ih general
several (asymptotically) orthogonal channels labeled by the index |
n , from a single cluster product;- They correspond £o subspaces
of the collective space.having the broper decoupling of different
orthogonal, intrinsic states associated with the ¢n . Whenever |
ﬁhe special factorization properties stated above apply, only one.
of the eigenvalues ln will fail to vanish; and one fecovers the
subspace that can in this case be also obtained from the OPF and
Peierls—Yoccbé préjections.. The factorization e.g. of the overall
center of mass dependence of the cluster product, oﬁ fhe oﬁhef
hand, implies the factorization'of the B,B' dependénce of the
reduced kernel. .In this case the extra genefatdr coordinaté B
does not enlarge the collective subspace and different channels
¢n become associated with the coordinate E only. | .
We see in conclusion that the collective hamiltonians
obtained from the GCM can be used directly to discuss scattering
situations, subject to the usual warnings concerning the
significance of the retained collective degrees of freedom. The

advantage in their use, rather than the use of procedures based
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directly on the consideration of the correspondihg Griffin-Hill-

) " Wheeler equations(IS)

hinges probably on the asymptotic information
being expressed immediétely in familiar language and on the
avoidance of the unpleasant kinematically generated instabilities
usually present in direct solutions of the GHW equation. It is
probably also worth stressing that the consideration of vector.
generator coordinates leads to a rotation-invariant collective
subspace. The angular momentum analysis of the collective
scattering problem can thus be obtained with familiar partial-

wave decomposition techniques applied to. the dynamical problem.

“defined by the collective hamiltonian.
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VII - CONCLUDING REMARKS

The application of the GCM to the dyhamics'of a quantum
many-body system amounts to consider the truncated problem that
one obtains by restricting the system to a cOmpleté subspace of
the many-body Hilbert space. Iﬁ the preceding sections we
discussed properties of the subsvaces éssociated with a class of
generator states of freguent usage, namely generator states
obtained by applying generalized translations (and boosts) to a
given reference state. The use of such a family in fact implies
a decision, which has a strong dynamical'content; in favor of some
collective dynamical variable (and its canonically conjugate pair)
as the relevant one. A clear and trivial example is the use of
the total momentum (and the center-of-mass position) to describe
translations. 2 less trivial and well exploited casé is the use

of dilatation operators to generate nuclear shape vibrations(s’ll).

(1,2) we examine in detail

Using tools developed earlier
the properties of the subspaces generated by one (eqg. (II.1)) and
two conjugate parameter (eq, (II.7)) families of generator states.
It may be noted that the construction of these families involves
only the one-parameter unitary groups having the chosen collective-
dynamical variables as generators. . This guarantees that the
extention of the discussion to cases in which these groups exist
while the corresponding generators are rather awkward objects
(such as rotations) is in principle straightforward. In fact, it
merely involves the consideration of a Weyl system instead of‘the.
canonical pair of Generators. |

Orthonormal bases in the GCM collective subspaces can
be constructed naturally in terms of Peieris~YoCcoz and Peierls-
Thouless projectiohs of the reference state, respectively in'the

case of the one~ and two-parameter families. 1In the latter case,
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we show that the GCM collective subspace is always an eigenspace
of each of the canonical generators (i.e., they both commute with
the projection onto the GCM collective subgpace). The same is

in general not true for the space constructed from the one-parameter

family, which ié:hlgénamﬂ.an.eigenspace of one of'the“generatorsf__
only. We also show explicitely, however, that the two types of
GCM collective subspace actually do coincide when the reference
state involved in the construction of the family of generator |
states has special factorization properties. The two-parameter
family becomes in this case “redundant“(s’g), a fact which can be
exploited e.g. in terms of the existence of well-behaved "continuous
representations” in the sense of ref. 7 (see also ref. 17).

The truncated dynamics is ruled by the GCM collective
Hamiltonian which is defined as the restriction of the many-bddy
Hamiltonian to the GCM collective subspace. When £he GCM colhaﬁjxe.
subspacé is not an eigenspac? of the two members of the chosen
canonical pair of collective generators, we show that the GCM
collective Hamiltonian contains spurious (i.e., kinematically
generated) couplings btween the corresponding collective variables

and other , "intrinsic" variables. This effect is responsible
e.g. for the incorrect translational mass that one in general
obtains by means of Peierls-Yoccoz projections. The use of GCM
collective subspace generated from two conjugate parameter
families completely avoids this difficult.

We believe that a through explicitation of these results.
considerably improves the qualitative understanding that one has
of the content of existing GCM calculations such as those of ref.
5. Also the definition of appropriate asymptotic states in current

GCM descriptions of scattering situations(ls'ls)

is considerably
enlightned by them. In fact, in both cases the use of families

of generator states of the kind considered here is widespread..



.48,

- ACKNOWLEDGEMENTS

The authors wish to thank Prof. M. Baranger for

suggestions and illuminating discussions at an early stage of

the work. A grant from FAPESP which made possible the stay of

Prof. M. Baranger at IFUSP is also gratefully acknowledged.




.49,
APPENDIX A

The eigenfunctions and eigenvaltes of*the,semi-positive

definite hermitian kernel

(ap NIC'E) = <apl 6> e
P ._;__(5.% "LL*-’-“‘)-a . la' o -. '(A..l)
2 <ol e e et e

are determined by the equation
S i RIp! ) ol how) ddp < 2T 2, () plhm) | @.2)

Inserting the ansatz

)z S0 g
(ol hm) = @ )
Yer A~

into equation (A.2) one has

/2b-a/ﬁ/bih) ﬁ*’g}')#/: » CA) ,ﬂrm) ; a3

- where

i I PRy
(-ml k) = <ol & 95 F) e 10>

(A-4i

. /x« <p-h,xl0,67R>
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| The equation {(A.3) yields

s @ k)

and An{k) independent of k .

The reduced kernel f is an hermitian, semi—positivé
definite Hilbert-Schmidt kernel. That it is hermitian is obvious.
'It is semi-positive deflnlte because it has the same elgenvalues
of the sem1~p051t1ve definite kernel N . F;nally it is of the

Hilbert Schmldt type since

A (A.5)
‘;:-M —_-_,._:.:,.

~and as A is semi-positive definite

wat A4 e
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