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These seminars are specialized on aspects of
Plasma Physics which can be of importance for Fusion Theory.

In the applications, the emphasis is put on Tokamaks.

The first approach will be Ideal Magnetohydro-
dynamics and its applications. This will be done in the first

three seminars.

The fourth and fifth lectures will be on Dissi-

pative MHD.
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IDEAL MAGNETOHYDRODYNAMICS I

GENERALITIES

A gas is an assembly of atoms. If the atoms are
fully ionized, it is called a plasma.:

The "fluid” or "continuum" approximation ié very
useful for gases. We treat the plasma as:a "fluid", able to
interact with £he electromagnetic field.

‘The "particle” aspect of the plasma will not be
treated here .and the mathematical derivation of the fluid equa-
tions from "first principles” (Liouville equation) is one of

the subjects of statistical mechanics (see books of Spitzer(l)

and Balescu(%{lﬁ
A plasma can carry charges and currents. A charge

separation over a distance of thé_order ¢ﬁ»the Debye‘l) length

(\/52&- ) €93 esu is quickly restored in a time
ghiner .
WP”' = (‘?Tl "\'ez)'“i .

® ™

If one ignores high frequency and short range
phenomena, it is plausible to assume quasineutiality which is
obviously compatible with electrical currents. |

. We are going to assume for these currents a
perfect conductivity which.leads to zero elégtric field in the
system of the fluid. We assume also non-relativistic motion.

While motion of matter is governed by Newton's
law, we assume " pre Maxwell's" equations fdr thé electromagnetic
field. which is compatible with the assumption of non-relativistic
motion.

These aésumptionszlead_tQ_the_following system

of partial differential eqﬁations written in cgs esu units:




MHD EQUATIONS

(1) ¢ Ux8 - R Y é.g_
(2) v+E = -8
39 0z Ep = E+vx@

4y V.3 = o

wheréﬁj'is the electrical current in the fluid and v the local

velocity of the fluld EdﬁééiQheutralityﬁimplies that 7 o

The Chahgéﬁiﬁ § in”£hé”cé§é:of'éﬁ:ideél fluid with

(3)

scalar pressure is given by Navier Stokes equations:

(55 P[22_+2--V':] = g'xg . Vp

where the pressure F’ is governed by an adiabatic law :(Heat
conductivity neglected): |
P
(6) P . (Z.) ' along the motion
and the mass den51ty }’ behaves in such 'a way that the continuity

equation is’ satisfied-

n WP L Vepr
The system of equations (1) to (7) is Galilei
invariant which is due to the non-relativistic approximation in -

the motion and in Maxwell's equations.




| In the’case of astr0physicaI plasmas, a gravita-
tional force should be added to equation (5) which is the
expression of Newton's law for a fluid (see a Book(3) on Hydro-
dynamics ct_gasﬁynamics),_,Eggéf%gp4(&)_13_Satisfied at any time

if it is satisfied initially.

EQUILIBRIUM IN CYLINDRICAL GEOMETRY(4)

We assume a static plasma as well as ‘a time-inde-

pendent field. The eguations (1) to (7). reduce to:

®  jx8 =T
0 CUxg = 41
110} V.fé = O

If we consider a system of cylindrical coordinates
v,0, 2 and if the components of 3 are ©,, B B , equatlon

(J.O) becomes:

A266) L0, 28
Yiav Y 20 z

X
u
0

If th'eré is a symmetry with réspect to & and Z it follows that
fBr_ . and this constant must be zero because of the |
fir\lteness of B at Ttz 0 which leads to Bf = .

Using Br zo0 and the symmetry in ® and Z,

equation (9) leads to



- L - |
do=0 s 4R 4 = -8, uby - .;.2.(*39)

v ct v

.

Inserting this in équation (8) we obtain:

(11) -C 28 8o D (vB) - 2P
S T (B = ﬁ(""))‘ zE

- Equation (11) contains 2"’free'" fuﬁctib_ns, ‘for exam-
ple: p{r) and 3 () or é (¢) and 59&) .
This freedom allows us to distinguish between types

of equilibria:

e pinch
o | Let é --o which leads to 89 =0 then
% lc-h 'M'(Bt =
example: Sea F’;g, &
| —¥
O e pw) e FToag
| Z pinch ‘ -’6,
= 0

Bzf-"o_




Screw Pinch and Tokamak

None of 89 ’ Ea ’3a R é’ is'_zé'ro. This leads to

g

helical magnetic and current lines

The helicity of the magnetic lines is expressed

in the "rotational transform"” or in its inverse, the so-called

"safety factoxr".

Let v be the radius of the plasma cylinder, L

its length, then let us define the'"safety‘factoxﬁ_q_as:

(12) q= ° 6.
:_ ]:‘";
Q= 20 _for the ] pinch
q = o for the ¢ pinch
4= o{) for the Tokamak

Another quantity which usefully characterizes

the egquilibrium is the

ﬁ; - kinetic pressure

Magnetic pressure

It can be defined in several ways

‘=
P = "'E{L";)“" wues '-_____._P(r:o) Biw Gongs
(13) c* Bor B

- gn




5 bis

or - __—.—n———‘fp 'ar . :
- f gz/mrdv_ : :

i

For the '9':.'ana 2 pinch B ~ 0(4)
For the Tokamak

. -2 A .
F = -E{- q (!.-) rather small.

Force-Free Fields
. These are fields having the property
(14} 4 = A8
Exercise
'(a) What is the shape of Force-Free Fields having
A=ct , in cylindrical symmetry?
 (b) Computelthé:Q(r).

Exercise o _
(a) What is the shape of 99 and Q‘l and P if 3;"""*’7
and -n 7 ‘
% o
(b) Compute the q(r).




TORQCIDAL EQUILIBRIUM

From equation (8) JXG -'V " it is easy to
obtain B VP-—o and 4 VP o . This means that the pressure
is constant along the magnetlc llnes and the current lines. .

The magnetic lines are given by

é}. = é—sa = ‘3\-3‘- | o ln cartesi-an.
3. 8y B

coordinates.'

A magnetic line can be .either closed or not
closed. If it is not closed it may filliup a toroidal "magnetic
surface' or it may fill up a volume depending upon the non-linear
dependence of B?l. P 3) B upon X,y,z. (This problem is similar
to the problem of the motion of planets if more than 2 bodies are

involved) .

Good confinement can be reached if most of the magnetic lines

fill up a nested set of toroidal magnetic surfaces.
To be sure  of that is, . o
in general? a very

difficult problem of non-linear -

mappings (see KAM Theory for example

(5)

1n HCP/T2865-01 by Treve
Fortunately this problem is much easier for axi-
symmetric equilibria. Let us try to make it clear.
Let us consider the meridional and the toroidal
components of the magnetic fiedd and denote them by E%wmr. and

%-hv . Again let ¢ , Y ,z be the'_' _cyl‘indrical_ coor_dj__.nates_.-__



The divergenee of Gﬁw is zero because of 'the
bymmetry in the @ coordinate , so that
%i-or = Q'f T(rz) o :
with T an arbitrary function of \'_ and z. 1 Tae b , B i
a vacuum field, _ |
If we Qant | 3_;,.\, to lie on the surfaces \[’-_-. ct.

and be divergence free, it will be of the form

Bm\r = g".‘.'. x ¥

r
mev & oo 7 - an r
Jie = & VnBuge = £ 1.4 M ep 4 W) ev
- 40 lrh KT _ |

Inserting j and,g_into_equation (8) we obtain:

- £ %(% -,;:?-f + 19—-*)?‘? - & (ev.VT%V\P)gf =

4 O X ah \ % v
A
1L TIUT + Vp
uh 2

From the toroidal component we obtain T= T(‘P) and from B“q,‘ VP'-’ o

P = PL\.}') « These two functions are arbitrary in \f’ .

From the meridional component we obtain

cafdy, 2y _aw] _ _cap _ TaTe
"T\"[ar"r'az‘ Y or - I\'s v oay



This is a non-linear elliptic equation already
known in hydrodyhamics (Incompressible flows). It can be shown

(see Courant, Hilbert) that if pCV) and T(¥) are specified

(6)

there is a solution which under certain conditions is unique.

Exercise

(a) In the case of Tz g+ Y

ay

There is a polynomial solution of 4thidé§fee :

in ¥ and 2 . Find it!
_ (b) Plot the V%nzg ¢§+; surfaces.




IDEAL’MAGNETQHYDRODYNAMICS'II

'WHY'STABILITY?

It is unfortunately not enough to have an equ;li— _
brium. There are:many_exgmples in current_life to demons££étéf' 
this. You would no£ buil& a chair reﬁqs;ﬁg on oné point despite
the fact that there is an Ry |
equilibrium.. The reason
is £hé£ it is unstable.

If you let the
chailr rotate iiké.am£6p; i£”ﬁéfinw.

be dynamically stabilized but you

would probably not like to sit down
on such a chair.

A plasma, even in the MHD model, has a continuum
of degrees of freedom, so its stability will be, of course,
much more difficult to study'than points or solids in mechanics.
Perhaps wé can learn from previous stability studies in hydro-
dynamics and gas dynamics.

The simplest example in that field is the Rayleigh-
Taylor instability(7). If a heavy liquid is on top of a lighter
one, it would tend to go down to the shate "light on top". The
- potential energy in the first state is higher that in the end

state. If we consider two thin layers of different mass densities

we can compute the potential energy for the 2 states.

STATE 1 E, = £3h4 + 'ngh,,.




10.

STATE 2 E: = fﬁ\"" + }?'ghz

£ h,>h, and p >pz it follows E"P > E:

The secqnd_state "light on top"” has a lower
potential enexgy.

State 1 could be maintained; however, if auxiliary
constraints (like a separating meﬁbrane) are introduced.

The fact that we assumed in Lecture I that‘the
plasma is_perfectly conducting is certainly a constraint which
is not exactly verified. As we shall see, precisely this

constraint makes stabilization in the ideal case possible.

MHD STABILITY (MATH.THEORY)

| A study of thé nénflinear or full problem of
stability is practiéally hot accessible to analysis. Only linear
stability can be investigated with rather great generality. A
necessary and sufficient condition .in the form of an “energy |

principle” can only be deduced for staﬁic-équilibria.

Let us perturb the MHD equations around a static

eq'uilibrium (U,=z0) so that
B 8o 8 an

R LRI

L AN SR

1 4

P =7
]

we obtain the following ¢et of equations:
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(1} P, “o= 4 "@4 + 54 “'%.". - Vh

(2) - ¢=? = -g;'vFL' +» Bf%'ﬁ-g:

3 i&{ = -V%E"z = V%(l_’." *go)
LY cz .

(4) 4, = Z UG

- Exercise
Derive these equations from the MHD equaticns of

lecture'I.

From equations (1) to (4) it is possible to obtain
one vector equation in U

Take the time derivative of eq.(l) and then eli-
, 4 . p from equations (2), (3) and (4). This
L I L . . .

»
L)

minate 6"

léads to:

b = £ [P T @] % Be 4 fox et

£ &
" o
-V (¥ 9y -2 TR)
or

- F(¥)

AT E
H

{6) '?
o
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It can be proved that _Fﬁ&) is a stmetric(S)
operator. This proof can be done in an elegant way using the. .
Lagrangean (see Newcomb () IAFA Salzburg Conf. 1961) properties.

(10} .

There is also a general theorem by Vainberg _tVariationall-

Methods for the study of Non-linear Operators, Holden Day,

San Francisco, Cal. 1964) saying "essentially" ‘that if .

A a); + F) = o can be derived from a Lagran-
gian Fﬂ;) is symmetric and vice-versa.

Exercise (very difficult)

Prove directly that F@ﬁo is symmetriCy under
the bouﬂgar_y conditions .. N, . V3=ze ”_:at a perfectly conducting
wall. : - - |

Symmetry means: (@JFi) = (2) F"l) for all

)

73 €4  with J.

(F3) = ©-F(3)ar

Vv

NECESSARY AND SUFFICIENT CONDITION FOR STABILITY

- (a) statement: If for any.i“_qf__L
Sw = (s, F(z)) <o

the system is exponentially_pnstable.

(b) Statement: If for all £ in L

| Sw' 3 (}:F@) 7“ __

the system is stable.
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PRCOF OF (b) OR "SUFFICIENCY"

"Multipl}?- equation (6) by 5 " scalarly and in-

tegrate:

(7) i &ﬁ}iptﬂ) ‘+. j.(E:J'Fﬁ£O)
Sz " T 2 7 K
(tc obtain this equation use has been made of the symmetry of

F(%)

(8) or (.!’i-ff,‘.ﬁ) + (l:’;“ F{t’;)) = 1E
s (g ) o e g€l

the two terms on the left-hand side of eq.(8) are positive and
their sum has to be'anositive constant. Neither of them can

increase indefinitely. The system is stable.

PROOF OF (a) OR "NEcEssrrTy" (11

Multiply equation (6) by Vi scalarly and inte-

grate over the volume:

© (%, 5%) | (_, Pl 1))

and assume that (!_):, ) F(‘;’i)) & 0 for some Vi = U

' Eq. (9) can also be written as




14,

where use has been made of eq.(8).

Let Y = (_t{q}glf.’.) ~and use the Schwarz inequa-

-

lity: -
%_ = (%) = I (%,8%)

from which it follows that

(190) 4 2 4
) 1 7 2

Hc

_zE.

|

Eq. (6) being of second order in time we can

choose = Y, = ®y  So that eq. (8) at tzo (Gi=uy, *-.-.”-7-‘:"-'.‘:-’:'0)
gives 0(2 Io +(1);'-° , F(g.o)) =0zE with o real.

Now equation (10) leads to:

?

So I> Idie*P[%ﬂ = I, 2t

LB R ls

1 1,

©

P

>1 = I .1
I 0

H-‘H

which proves exponential instability with t_h_e_-rate &

PHYSICAL INTERPRETATION

The quantity SW ‘f (§ R F(!_)) - can be inter_p_:_:_eted‘ :
as the variétion of potential energy indugédfby'the virtual |
displacement i . In fact (}J F(f)) is the variation of
the potential part of the -Lagrané‘ean to 2.nd order. If this |
variation is positive for all f_ in La it means that there

‘ 2 |
is no displacement $ &) for all functions i(f) el which
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is able to make the potent.ial elnéz;gy smaller. This is similar
to the situation "light on top" for the Rayleigh-Taylor stability
problem. R : B
| | If there is. é.ny ‘tfiai 'functi.on:' 3{!) able to
make (3, F(S_)) <o the system may decrease its potential energy
following. this path. Tt is similar to the situation "heavy on

top L] .

QUALITATIVE STABILIZING AND DESTAB‘ILIZIN‘G TERMS
Using eq.(5) we find

¥ j{‘f?.(vji)t - E-VP‘.)V-SE aT

(12)

If we consider fprce—freeffields , then

PO%VP.,z-j“—.: P ~ and 2° = MBo
only the first integral survives, the first in-
tegrand being statilizing and the second one destabilizing.
If it is possible to make V¥ w(%x @_o) small, then -
the second term may overcome the first ohe. So one should try
to prevent V%(‘i_xﬂ_'o) 'f:rém :becoming too small. It turns out
that the "shear” (defined as %E/q ') tends to increase
Vx(iﬁ @_,) " in magnitude (over the radius of the plasma).
B If :”;f;” is small Jo.l.  depends upon the sign
of VP;' ,'and: the sign of SW will be a combination of the

Sigh' of VPO‘ and some derivatives 'of §o (which are related -




16.

t¢ the curvature ’_by thé__Ser;:_e_t-fx;e_p_gt for_mui_a ) __%__ . V( %‘ =" %—)
It turns out that.if _Fz decreases tq thé:outsfgg_the.curvatﬁ;e
has to be concave toward the plagm;.‘

This could also be
visualized roughly bylsayiﬁélth§#¥  t; ;_:_. F:__ 
the centrifugal force.élays the N

role of gravity and the stable

- situation is "light on top of heavy".

These are two main types of instabilities, the
first one is called "kink " and the second "flute"” (it is more
local). Of course the full problem of evaluating the energy
principle is much more difficult and real instabilities are

(13)

always a combination of the two main types .

EXTERNAL MCDES

Until now we have assumed 9,.3 =0 at the
boundary of the plasma. If there is an interface between plasma

(14) and new modes (some

and vacuum, the plasma boundary can move
very dangerous like "external kinks") may occur., They can be
reduced by "shear” and by reducing o

MATHEMATICAL ADVANTAGES OF THE "ENERGY PRINCIPLE"

The remarkable thihg is that it is possible to
decide about stability without having to solve the eguations
with time dependence. If for any test function you find a negative
SV& you know it is unstable. If on the contrary the curvature
is good everywhere like in the "cusp" it is possible to prove

that SW >0 for all '§_



Iﬁ,mosﬁlreai casés.a test function
study is not enbﬁgh (fdfhekaméié”ifléhé wghté td
‘know the ultimate B value in the Tok:amak) and
alternate methods like eigenmode anélysié.dr.

initial value prc’:b'Iem.s may become competitive.

They 'need,' however, an important numerical effort. '

17.
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" IDEAL’ MAGNETOHYDRODYNAMICS III

- NECESSITY OF EVALUATING TOROIDAL EFFECTS

There are many reasons to consider MHD in toroidal

geometry. The principal reason is topological (gualitative).

The torus is finite and has an internal and external part. This
makes confinement by the own field impossible as we shall see

(in contrast to the cylindrical case). The stability may also’
be qualitatively different: (a) because the magnetic lines

have a favorable curvature on the inner side (at 1arge_§'values)
and an unfavorable curvature on the outerside; (b) because the
wavé length along the torus is now limited by the dimensions of
the system. Precisely this leads under specific conditions to
the Kruskal-Shafranov limit.

The second reason not to neglect toroidal geometry,
is guantitative. The £rend is for compact (more economical) -
Tokamaks. A typical example is the JET experiment which has an
aspect ratio of = 2.5 and by no means
could be approximated by a cylinder.

Unfortunately, even in”
the axisymmetric case (2~diﬁensional),
the mathematical problems are'going !
to be very tough. The numerical schemes
will have to be sophisticated and the
programming and computing effort will be

rather large.
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Impossibility of Axisymmetric Confinement by the own field +

" a torcidal external field or the need for a vertical field

To prove this, we are going to usea procedure
similar to the virial theorem in mechanics. Consider first the

r ¢omponent of j x B =VQ which is:.

.

From i‘ = S; Vxé , we have
&

so eg. {1) becomes

o [ 2Be)e, - B 2080 - (5) 2
2z ras z r v 4t/ v
Multiply eq.{2) by .f" L A%
Z2
and integrate over ¥ |
and £ in the rectangle (zz -21 ’ T,.\C.).
¥, % . 2, . Y
: 3 LN ’ -y
E lév d-z.v-"'[a_(}-' é. - -'-?—E"] - < (r‘g;]o\zz
4N ?2 T or #n
r
v 2 ' . z, 1 z‘. N
. _
-2\ vivda p
%

From \VR

ive
Y

o we have ')_Ez - -1 'g_b-@‘,)
| ?2 ¥ r
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Integrating the first integrand by parts with .

regpect to Z and the 2™ yith respect to ¥ , we obtain
Vo 2, Va T2 2, . Y,
| 2 b
j derrfo,8) ¢ faliz ca,200) - 2 s o 6] +
Y, 4 ' "
Y s S 24

Vo 22 N : . 61. vt .Tz ,2a
+ {dv |d2 v B, = - (E‘-\) | dv (d\z re

-

finally we have
¥, Tq

.3.‘-' 22 22 2 42 2z Y2
fm{s,ez]z‘ * %ﬁe@,]ﬁ dz . ;__ .Az [‘-t @z]r

! 4

A 2'
2,29
Y Y2 T

. "'[ AVJz ‘.'.'_Bz = "(-?E Ia\v dz ¥ p
S

2 - vz
If 8? and Bz are fields_dug to the plasma only -
the first 3 integrals will vanish for _2'2 -» + 20 ,. Z, > - P ud
¥, - 99, Y, >0 and we remain with a contradiction + = -.

A simple physical picture of that result is that

currents diametrically opposite (inacircular wire) repel each other,

s0 a vertical external field is needed 47

which increases the own field on the
outer side, unless the'wiEelcan be main-

tained by elastic forces.

shift of Magnetic Axis

Let us first prove that the magnetic surfaces

cannot be concentric around the axis in a finite region.
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Putting a solution of the type q’-'- (V'-\f) +2 in the equlll-
brium equation we have | _ '__ |

AN v ¥ v o

which cannot be fulfilled unless \r-;- j(r) . Contradiction!'!
| The next step is to assume circles for magnetic
gurfaces but shifted to the out31de with respect to each cther.
In that case a formula can be given for the shift (approximate)

(4)

which was flrst derived by Shafranov (see Galvao
(15))

lectures, or
Merc1er-s book
In general the equilibrium will have to be calcu-

lated.

Safety Factor and ﬁ

| In the first lecture g has been defined as a func-
tion of ¥ . The natural extension is to introduce a q(#ﬁ by
d'(Tbh]iggl
d (Pek. Fnv)

taking

q =

which in the case of a rational surface can be shown (Mercier's
book) to be equal to % , N being the number of turns of .
the magn. line  around the symmetry axis and m the number of
turns of the magn. line around the magnetic axis . Q-(?O-
cannot be calculated analytically in general. The same is

true for ﬁ whose extension is more straightforward .




J‘Pav ' 22.
= ; . \moues

. av

& f 8

B =

The nonlinear equation in ¥ obtained in the -
first lecture (sometimes called Grad—shafranovl_is meaningful
1f the boundary VV = ct- is glven.l In;real situations3the Bdun4f

darj is not glven and attention should be payed to that problem(IG).

© MHD 'St'a_bilji’ty‘ in the" 'I'orus

(L7) wgidh generalizes Suydam's

| Métcief‘é'critéficn
crlteficﬁ_to'toroidal'geOmetfy is a“very'sucCéeful°applicatich'6f:
the "Energy Principle”. The fact that no eigenmodes are necessary
allows orie to conceritrate on classes of test functions which may
be easily handled mathematically and may seem dangefoué”fcrdihtui;
tive reasons.
“Mércier considered test‘diSPIacementS';' localiZedd'

in the nelghbourlng of a rational magnetic surface w1th QCY)

: z\é

and haV1ng a weak dependence along the magnetlc field. He
succeeded in finding the minimum of W within this class explicitly
so that if the equilibxz'.i'um is kﬁowxi“ it can be decided whether

&W is 90 ,or ¢o within this defined class of pé’ktufbations“.

The detailed calculations are in the literature(l7}

(see for
example his book or/and the reference therein). ' The result is

rather complicated:

2

4-‘-'4-]33 [ @as {42 (e V! '.:‘\:.
1 g d | @tds|eRfe) vi - ol lyo
Tl ) R -

@Merc*er(l ))

on every surface for stability

(in Gauss rationalized)
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If the cyllndrlcal 11mit is taken in a proper

way one obtalns the Suydam crlterlon

(Suydam(ls)) _{_(i—) + = .-E-i- Z O ; (in Gauss
7/ T v @

&

o

; |
rationalized) |
: |

The notations are also explained in the book.
o . Let us make some remarks about the criterial. Ih
the tor01dal case we recognize the positive shear term (40 (.;)?
and the curvature term \ér,_.-. They do not show up in the
same simple form as in the cylinder (Suydam) but they still
play an important role for the stabilization.

It can be shown that Suydam cannot be satisfied
near the axis if jz:}.‘ o, Peo - Mercier's criterion can
' -be satisfied in the torus if q is large enough on:axis{ls?.
For circular surfaces near axis the answer for stability is q>4g
For more sophisticated applications (elgngated Cross sections.,.)

(19)

see his book and Kuppers, Tasso :(z.”fﬁr_hNaturforschung,

270, 23, 1978

"Ballooning” Displacements.

~ The diSplacements c0n51dered in Mercier's criterlcn
' _(gometimes cailed “flute" perturbatlons) are weably dependent
on the coordinate along the field llne. But in the-torus the
curvature of the lines has both signs and the "flutes" do net
need to be the worst case.

Perturbetions'émphasizing the bad curvature along
the lines'(calied."balldbnings"i are very important in the torus.

Their mathematical treatment being more complicated, their study
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has been ;ather,late (B,J.Taylor‘zo), C,Mergierﬁzl) at Inns-

bruck TIAEA Conf. and CorreafRestrepo(zz) Z. fﬁr Naturforschung,
all in 1978). |

. Even the "balloonings" may not be the worst among
the internal modes but a cemplete study of the modes necessitates
(the "balloonings” is localized in the neighbouring of.ratioﬁal
surfaces) a minimization of SVU;inwall:lfigpace of functions.
To do this analytically seems out of the guestion at present. .

Soc we are naturally led to use numerical techniques..

Numerical Codes

To evaluate the energy principle it is necessary
to. know. the equilibrium. The first study'of_SNV'fqr_extended
modes and a plasma vacuum interface has been done for a polynomial

equilibrium (see exerxcise 1$t

(23)

lecture) . This study {Kappers,:'

Pfirsch , Tasso , Madison IAEA Conf. 1971) has been carried.

out using a symbolic computation system named "Reduce". It was

gquite suitable for the polynomial equilibrium. This code has

been refined subsequently by Kerner, Tasso(24)

(25)

(ToKyo IAEA Conf.
1974) and Kerner (Nucl.Fusion 16, 643, 1976). The fact
that the code was symbolic allowed very high precision to be
obtained (m=14,n=13 has even be detected). ¢

The fact that it couid handle only the polynomial
equilibrium was a handicap but it furnished a basic test for
purely numerical codes which were able to consider more general
equilibria.

These codes have been developed in Lausanne and

(26) (27) Berchtes-

(28)

Princeton (see Berger et al. and Johnson et al.
gaden IAEA Conf. 1976 and a review article by Grimm et al.

in Methods in Cdmput. Physics, Fusion (1976).
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These codes are still in a development and refine-
ment phase. Recently Kerner was able to reproduce the analytical
marginal curve fdund'by Bﬁéséé'éE”al;” f6r“Ehe'internalr"kihk":
modes. _

' Bbth"équiliﬁriuﬁ and stability codes are very
sophisticated and it may not be the right place to describe
them. ThOSeVth'afe'interested could read the literature.

The 'problem of 2-dimensional ideal MHD stability
has nct been touchéd here but a nice working code for surface
currents has been writtén by Rebhan and Salat(®?) (Nucl.Fusion,
1976} and an extended review of the MHD stability of Tbkamaks
has been published by J.Wesson ) fNucl.Fusion. 1978).

Finally let me mention that 3-d codes are under

(29)

study by Garabedian et al, at Courant Inst. (New York) and’

by”Schiﬁter(BOJTet al. (Garching).”'They“have'already'delivered
some results for stellarators but results concerning  the

Tckamak have not yet been reported. =
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DISSIPATIVE MAGNETOHYDRODYNAMICS PART I

The assumption of perfect conductivity is not
exactly verified in a plasma but we know that the plasma resis¥' 

tivity (see Spitzer(l)

, Interscience Publishers, 1962) behaves
like 1‘?”‘ and that, for.a_tempgrature of 1 keV, the resistiyity
of a hydrogen plasma has app;qximately theﬁyalue_of_the resis-
tiviﬁy of copper. At thermonuclear temperaturgs,the:conductivitys
will be 1 or 2 orders of magnitudes larger than in copper. It
is then reasonable to believe that, for fast.motién, the reéctioh
of the plasma will be approkimated by the one of a perfect conduc-
tor.

| For sldw motions, things will be different not
only quantitatively but a;so qualitatively because of the lack of a
constraint imposing flux conservation during the motion of the
plasma. This has been mentioned  already in previocus 1ectureé but
let us méke it more gquantitative following Spitzer's book(l)n

Consider;a surface element following the motion of the fluid

and compute the change of flux through it.

3‘? - IL%%"‘L‘ o+ !@.-exa_\_

due to change in g due to motion of
- contour
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Using Maxwell's equation and Stokes theorem it

can also be written as:

¢ . - f[aswxe - [[us. Ixexar
ar A = _ ST

. ' In the ideal case E &+ ¥xB z0 so that the
Flux through a surface during the motion is invariant. If the
plasma is resistive, Ohm's law in the fluid Systém is g': OZJ

and in the laboratory system is =

-

m  E+rvx8 =my
so that

j,l_l’f?.sz - fgﬂ Vr 7728 - a5
5

The flux through a surface element during the

motion will not be an invariant any more.

Equilibrium in the Resistive Case AR A
Integrate eguation (1) -~ ’ \_j Q
L o PN
aleng a poloidal contour B - N ' . Vi
 .ani§'4g + j{'gfx:@»-ée = 1[27) -éf .
< c C C
[ ]
If G=-o the first integral

vanishes by Stokes theorem because no
flux changé takes place in equilibrium through'é meridional cross

section so that the equilibrium cannot be static unless f? 20
| _ Zo

{

Integrate now equation (1) along a toroidal

contour, we have, because the equilibrium is compatible with a




linear change in time of the transformer flux
_SE‘AE' = 2fv By, o ob
It follows that

‘_...

We see from equation (2) that a statlc plasma

is not compatlble w1th the equlllbrlum in the torus for 1deal

'MHD (see flrst 1ecture) because J = -v 4t e when é _-":‘ o
: ov, J.\\f "Pol

Tnls means that in a torus there w1ll always be a flow and 1n

general a net outward flow for diamagnetic plasmas (see

(31), Review of Plasma Physics, Translatlon from

Shafranov
Rusvian) Thls flow should not be too strong SO that an 1deal
MHD equllibrlum should still be reasonable in the presence of

(32)

resistivity. This may be eritical for PCT equilibria (Flux

Conserving Torus, Oak Ridge)
Remarks

{a) In the straight case the toroidaiﬁf' dependence is absent
so that static cases are poss:.ble if j Pt 2 0 and
'ZJ = Ez = ct.
(b} M has been taken as a function of the magnetio_surface be~
cause the resistivity is a function of temperature and the
magnetic surfaces are rOughly isothermal because of the high'

thermal conductivity along the magnetic lines. -
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RESISTIVE TNSTABILITIES

The non—conservation_of flux leads to a freedom

whose influence on stability has been pointed out already by

(33)

Dungey (Cosmic Electrodynamics, Cambrldge Univ Press. 1958).

In 1963, Furth, Killeen and Rosenblath (34) pu-

blished a well known paper (see alsc B Coppi(35)):in Physics

of Fluids, where they investigated the stability of a reslstlve

(36)

plnch hav1ng plane symmetry In 1969 Barston (Phys. of

Flulds) publlshed an “Energy Prin01ple" - llke approach to the

same problem. 'In 1975 an 1977 two papers (see Tasso(37 38)

Plasma Phys ) .onh 2- dlm. and hellcal re51st1ve instabllitles regs~

h(36)

pectlvely extended Barston 8 approac of the planar pinch

to reallstlc geometrles.'

(37)

Paper is going to be the main line of approach

£ the next section.

TWO~-DIMENSIONAL RESISTIVE INSTABILITIES

Let us limit ourself to the straight case because
it can be taken static with the hope that under favorable circuns-
tances it_will be a good approximation to the torus.

The egquilibrium is given by
jo = £, 3,(‘1’)
Eo = "zt*) 3 u) = ot
(3) q
S Bou: ez ® “r + ez @20

T & T - - af
o ) o \4 Y = | :I;T




30.

which is the Grad-Shafranov equation in the straight case.
Let us study now the stability with respect to

small perturbations around'fhe_equilibrium-by lineariZing:the

time depéndeht‘equations and aSsumingfincbmpréssib1E'motiOn

(4) g{ + V9, -é';@o - 4oxG =0

(5) | V@_ z 0

(6) | é, v £ VxIA b 713:0 - $x8, zo
D ge VA

(8) 7,2 - 191,

wn v d

The last equation (8) results from the assumption
that the resistivity is a property of the fluid and will bé
transported by the fluid according to &% _ o

This is only pértially trég-because the very
high heat conductivity will smear out the temperature and .
resistivity along the lines and surfaces unless the linesﬁdofﬁ
not form surfaces (closed magnetic lines). |

Restriction to 2=-dim. perturbations leads to . .

f-22x9u , "I_\;\-'.-é;a. A

This allows, by elimination in (4) to (8), tQ,,

obtain 2 partial differential equations in the scalars A and U.
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(See Tasso'37), Plasma Physics, 1975 for the details of the

caleculations) .

©\ l:( .;. B (g V)z go‘_'_? "A
(o A .égjz 1— A
| 2, [
(9) S |
.-q439‘§€<7Q;¥j229.<7 ' .SJ;é.‘?\ (l{\
= 0
vi‘.:’o N - T A | \ A |
. _Use has been made of the equilibrium equatiqns
(3) éléd‘_' :

It can ‘be proved (see previous. reference) that,

'1f equation (9) is written as
(10) _N? * 3 a-Q?

N, M and Q aré $ymmetric and that H)c which means (‘f M'f) >0

for ?’GI_ o

Nec, and Suf. Condition for Stability

For equation (10) it can be. proved that the

_necessary and sufficient condition for stability(36) is (see

Barston, PhYs.Fluids, 19€9)
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) Swz (7.97) > o

" Proof

(a) Multiply eq: (10} by $ scalarly and inte- .

grate over the volume of the plasma

a 4(5) ﬁ-(m -(?,H?)

If (?r Q?) > 2] | for ? el}

(? N;) (; Q ;) " can grow so that the system
is ctable B SR o *u".-;s,_t-i

h (b)Y If for some ? -l?'o , (Z,Q?o) < 0

let Ua integrate equation (12) with reépect to time assuminq

';;=o and ?(*-) ?.,_

o (3.99) =(7.9%) -(3.3) - [(ErD ¥

From. eq (13) it follows that (; &3) remains
negative and the last intégral will dlverge because (? H?) >o

and is at least finite in average.

With a little more effort (see Barston (36) ,1869)°

it is possible to prove exponential 1nstablllty.
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APPLICATIONS

From egs.{ll) and (9) we obtain

(14) - §W = jdT (-_‘%-f-r.-‘-’) (9_; x_V‘f'--V“)z.:

2 far (- §) & e

< “'r \wAl’

The so-called "ripplingtmdde"cm"39ém1bb-demonStra—
ted easily by making Ago and emphasizing U on the piaces _

where ATO .. {current density increasing ~outward) .

Atr

. ”If the cuprent density decreases to the outside
éz_.-" <0

the "rippling"” is stable but "magnetic” pertur-—
ay ‘ _ 3
bations can increase if 8W can be made negative by them:

QVU can be minimized with respect to U to

giVe iﬁf;f SR T F i : | _
Sw = 5; f.n' Al f«l‘r 3';,![. (R &)
2 X
= & ‘_‘. A"+ fdr “;’ (£- %)
; §‘-‘3 A
with A ': "'"“""‘"—'_" ..

The minimization with respect to A 1eads to an

Euler-Lagrange equation of the Schroedinger type
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(1%)

zA + (A A) (“0) _k A

| .‘+'_',

where A is the Lagrange factof-dué*to the normalization”bfV?
A. If A>0 it is unstable.

' The solution of (15) is the solution of an eigen-
value problem in 2 dimenstofis’ which ééﬁnot*bé”dbhe; in general,
analytically. A numerical application which' has been made by -

Jensen and MeClain
results for the étability of "doublet".
It turns out that putting a boundary
FIG.l

shaped like in Figi‘l is more favorable
than in Fig. 2 in which case the
plasma may divide in two droplets (Fig.3).

A very interesting appli- FIG.2
cation which has not been made yet is to
apply the code to anuw\: 2 island” in a
Tokamak whose helicity has a long pitch
so that the 2-d approximation would hold,

FIG.3

‘ WAz ;sqaw\d"

This may be a way to answer with precision how
large the island will be. The island would grow at the beginning
and will cease to grow if the criterion (11l) or (15) were barely

verified.
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why an island exists at all is due to helical

n(34),(39)

"tearing modes which will be investigated in the

linear.phase in the next lecture.. -

'Exercise. R ST St
,Minimize.S\Vt from equation (14) for a plasma
having cylindrical symmetry and circular. cross section and

prove that if. the current density decays outward it is stable.
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DISSIPATIVE MAGNETOHYDRODYNAMICS PART TI

In the prev1ous 1ecture we 00n51dered 2= dlmen51ona1
perturbations which makes sense for sheped cross-=sections of the |
plasma. _For-a Cchular#orossfSection and a current density
decaying outwards, the 2-diﬁ.{§eftutbations are stable (see

th lecture) .

exercise at end of 4

" On ‘the other hand we krow already from ideal
MHD that Eihkéliﬁe‘pértufhatioﬁé; having more or less the same =
helicity as the magnetic.lines, are rather dangerous. Suppose.
now that the kinks are stabilizéd by ghéar fof'a ?bell" - shaped
current denéity distribution, so we would like to know what
will happen to such perturbations if‘resistivity is taken into
account. R | |

Let us consider helical tésistive perturbations

in a plasma cylinder Wiﬁha a. ciroular Crossm
section. We are going to derive an "energy principle" (see
Tasso(38),_Plasma Physics, 1977) for these helical perturba—'
tions ahd then apply it to a physically important class of test

functions the "tearing modes" and the "rippling” modes

Derlvation of the "Energy Principle

_ To study these perturbations it 1s convenient
.to'represent'the equilibrium and ‘the perturbations in helical

symnetry, although the’ equilibrium has 4 cylindrical geometry

. For that purpose let us introduce a coordinate (see MerCier(4l)
1960) . R |
(¥, 9,2 being the usual cylindrical coordinates) and the

vector
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wéz & vhgg

=

wm® 4 vt

- It can easily be shown that = -

_ -  2hw
2>  Qu=z=eo ,  Vrw =z KIahae B 'y

Now, in a similar way to the axisymmetric case,

using -4 =0

we can write down the solution of ¥:-B =zo

(2) R = _j(f,u) "o U V_F(Y,u)

: ; . : : : .+ .
{4) j = E:.L _E.‘:_“..A——-— + (W‘t"'\’\ Vt) LF TS
- aft w4 het _
& Vf ®* U
YA 2F 2'F
. 1
h = o | —— — a——
e LF Y Y(M"w‘h 7") TR oW

If we, now, write down the equilibrium equation

Jx% = VP , we would obtain the Grad-shafranov equation for

helical equilibria_(see_Mercier(4l) 1960) . But we wish to restrict

to cylindrical symmetry, otherwise the stability problem could

become very tough. In that case the magnetic field at equilibrium

is



5y Bez LOv ¥ uxVRM

_For the. stability analysis we linearize as usual.

the time dependent system of equations to obtain. .
{ o - B T 4 57 - % - 4 xg, = o
i6) Ch Y xRl - fox8y = o

{7) ‘1-5 =z ©

-

[}

(8) - (%._4 + q&("s __,o) + V%(”Z,)ﬁ + "L‘éo) = o

L

o
{10} 021 T - E'V%

Equations (7) and (9) can be solved respectively .

using Eq. (3)

L

an Bz 4luhw + ux T Fea)
(2 o= gleehy ¢ uxVelmp

As one can alreédy see, heliqal_éerturbatiqns
are more diffiéﬁlt_tosanalysé.becapse Qé'areggbihg-to obtain 4
equations for the 4 quantities f,F,g,G instead of 2 equations
in the 2-dim. case. Another difficulty is that the system of 4
equations do not have the symmetry properties tequiredito
derive an "energj'priﬁéipie“. o P | .

At this level, we have to make the ap_pro'ximation
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of the thin cylinder 'f' ~ %_Q 4 i <% 4"' "Whi-c’:h is -ﬁ'sually assumed
in the lite:ature. In tha:-case it is possible to obtain a
system of 2 partial differential equations in F and G which can
be reduced to the form

NZ + M3 4 Q3
with N, M, Q syi.n;letrid.'aﬁd ' ﬂy'é &W E(;;Q?) | is given

in this case(38) by

Vo

(13)  Sw = f( daa)(u:&e« v@,)(u, vF, va) ar
+2f( Do) (urer VG)F dT - 9—\ fn.r: T
s

where only the lowest order in N¥a £  should be kept. This

1eads to

sw_ (iR A(S) i -2 [,
2 " LT

+ 9? [\rd‘f £ + 9_:' &ur
and making the ansatz
" F= E{v) e: | 6 C”(') &

we obtain using the complex conjugates

=

(1) §w

o C JF:GVIAV‘- ZI)L_FGVJTM

) o -
4_23 tﬂ!‘i;, . Ci- [ dv E?QL
“h | wmr wh | 7
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‘
For a certain value of ~ V= Ve, Fo may vanish which means
that _6_0 is parallel +to W and the pitch of the perturbation is

the same as that of the magnetic line at the point f: Ve o

"Tearing" M‘ode'(‘34-) (39)
If we look for o
the extrema of the first 2 in- T

[
tegrals with respect to & we ‘
find /:\

1 G = -E , raky
F) |

Inserting (@ from equation (15) into equation

(14) we obtain -~

-t .
g,\...” - C.?' cav 't ct ° i g
3 wmt 4N vt
o
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| e
| | o &1
(16) )o e +c4) ‘|: + c"— Y F(r-z) =
o ¢t

The jump in the logarithmic derivative of ¥

L] . " - .
usually called O in the literature on the "tearing" mode.

-
i

"It remains to minimize expression (16) with respect
to E(Y‘) ; that is to find the shape of ?(T) which makes &W
as small as possible. This has been done numerically recently.
by Glasser, Furth and Rutherford(42) in Phys Rev.Lett. 38, 234
(1977), for several current dlstrlbutlons ‘J Gd . It turns out
that the value of é .near V'="Z is very important, e.specially'_
for ¥YX Y. . This cah be understood from expression (16) be-
cause at V& F -9 © . So a small charge in the current
;den51ty shape in that area may be stablllzlng or destabilizing
despite the fact that q[v') does ot change appreciably .

This fact seems to
explain the results found on : *F}_
Pulsator by Karger et ai;‘43? | |
{IAZA Conf. Tokyo, 1974).
shape of 30(*‘) similar to the

one plotted here was stable to

all "tearing" modes according tq'
(42) |

Glasser et al.
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In the case of an unstable shape the functlons i
~— A

and G can be obtalned from ¥ ana G and are plotted below:

B, ﬂ ; .,:,;- . S gvﬂ;JF

Ve

Y
-

P K EELE AP,

doifhdk
The fact that 37\[change‘ sign at Y = v‘c
means that a topological change in the magnetic surfaces occurs,

which is gualitatively drawn in the next figures.

In fact a helical .
tube having the cross section.of | évﬂg .. < - .
an island cerntered on a rational  Lines T .'.--T'.“-'"'"
value of q (for ex. q=s2 ) :
could be formed in‘the uhstable
case. | _ | , |

If this island T a—

remains small in size compared to _
the radlus of the plasma it may

be harmless for the gross proper--

ties of the plasma. But the size
may increase in some circunstances,

as computed for example by Waddell(44) et al. {See Theor. and

Comp. Plasma Phys., Trieste 1977) Recently Carrera et al(45)

and Biskamp and Welter(46) (Workshop on Dlsruptlons, Garchlng

1979) considered numerically the interaé¢tion of 2_unstable modes
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of leferent helicities which may lead to a ramimuzatuxxof
magnetlc lines espec1ally 1n the torus.'
These last resﬁlts are rather preliminary because

the mcdels used up to now are possibly too simple.

"Rippling mode"

This mode is essentially electrostatic and can

be seen easily as a test function-ln expression (14) by choosing
e [

F rwo0 and by emphasizing G on the negative values of

"J F . The magnetic "tééifiﬁg""component of this mode could

also lead to island formatlon but probably of smaller size,

especially because the smearingtout of res;st1V1ty due to the-

high heat conductivity aioﬁ§ thé megnetic lines. .
Nevertheless its'effect may‘be important on the

anomalous heat conductivity acrose the plasma (but this could

also be produced by'drift-Waves)f

Toroidal Effects on Resistive Modes

In theé previous lecture we already mentioned that
the equilibrlum on the resistlve time scale is going to have a
fiow which makes its study mathematically more dlfflcult

It is also very difficult to make & nlce foxn
(47)

mulatlon of the stability problem. Glasser, Green, Johnson

(Phys. of Fluids 18, 875 (1975)) haVe made a very comple

analysis involving several scalings whlch seems to show a favora-

le influence of toroidal geometry

Tcro*dal force- free field stablllty

(48)

(See Tasso in Theor. and Comp. Phys., Trieste

1977)




44.

-

For the case of 5 - )‘@ with ‘N = ¢k and .
4(48) (49)

——

for a good conducting sﬁrroundingswall_it may be prove

that if

Sw, = fdr UxA TnAy - feh- N Aq-TrA,

"
is positive for all 54 el and Mx A: = 0 at the boundary

then the plasma is stable against MHD + Resistive Modig and

this is an exact result.
| " This means that A has to be small enough or
that the current along the magnetic field has to be Sméll"
éhdugﬁ; . | | . |
| Bussac Furth and Rosenbluth‘®®) reported a similar
result at the Innsbruck Conf. (IAEA, 1978) using Taylor's(sl)--
invariant (Phys. Rev. ﬁéttL-gg; 1139, 1974). On this basis

they proposed the configuration "Spheromak”.

Final Remarks

It is difficult to believe that resistive MHD
alone is able to describe quantitatively (and even qualitatively)
the experiment. My'feeling is that much more work should be
done with more refined models.

Some lectures using a two—fiuid plasma model
will be given later by I.L.Caldas which cover essentially the

(54) (55)

subject of his thesis which is a detailed investigation

" n
of the two-fluid Energy Principle found in ref. (56).

' Exercise
Derive equations (11) and (12) out of eg. (7)

and (9).
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Exercise

Derive- expression (13) and (14) using a publication
(38).

in Plasma Physics (by Tasso 19, 177, 1977).
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