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1. Recently Frolov, Grib and Mostepanenko(l)

studied the
spontaneous breakdown of the global gauge symmetry of the

*
A($ ¢)2 theory defined on a curved space-time, precisely that of

the open Friedmann model.

In this note, based upon their work, we show that the pro-
blem of the stabiliﬁy tin the energetic sense) of the solutions
of the differential equation satisfied by the vacuum expectation
value of the bosonic field, can be completely solved, showing not
only that the solutions of Ref.{l) correspond to tbe minimum wvalue
of the energy density, but that there are no local minima or false

(2)

vacua, in the sense of Coleman . We repeat the analysis for the

closed Friedmann model, where no breakdown of symmetry occurs, and

also discuss the role of the term'g ¢*¢ present in the Jagﬂﬁgiﬂh
The open Friedmann model is described by the metric

ds2 = a2(n) [dn2 - dx2 - sinh2y(de2 + sinZs d42)] (1)

(3)

where the notation of Landau, Lifshitz is used. The bosonic

lagrangian is

L= /-3 [giki@; M—E+§¢*¢—%(¢*¢)ﬂ @
X 3xX '

giving the Euler—Lagrénge equations |
- R Ao a 5 o | |
ez} = F 400 + 5 ¢*(x) ¢2(x) =0 (3)

Use of 5patia1 homogeneity and C invariance allows one to’
write for

g(n) =<0]¢(x)]0>

the equation (tree approximation)



g a = a ra? 3
g+2‘—3-g+(a 1)g"r'

3 9 = 0 .(4)

where a dot stands for differentiation with respect to n.

Putting

g(n) = //% f(n)

a(n)

equation (4) transforms into
f-f+£3=0 - (B)
which can be solved exactly; In fact, from the first integral

. A R : :
e2- 52+ 5 =¢ N ()

one gets the-genéral solution ©

n=j (f2-§2—+c)”1/2 df N )
which, for
1+ (1+20722 5 55 0 (8)

gives
10/ Y f
{1+ @#200172) £2(n) =1 ~ a? (1+2C)1/'* N, (%)

/2 (1+20) 1/t

where sn is the Jacobian elliptic function called sine-amplitude.
This is the general solution of (5). There is, of course, another
(trivial) additive constant which was omitted, as it only redefines

the origin of n.
The energy density is given by

e (n) =<ofr0 o> - (10



{11)
It is straightforward to show that
e{n) = 3¢ (12) .
ralt

which is our most important relation. It gives e(n) directly in
terms .of C, which characterizes every solutibn. We thus see that
the solutions corresponding to the smallest value of the energy
are those corresponding to the smallest value of C allowed by
equation (8), that is C = - % . The solutions are £ = + 1, in

~ agreement with Ref.(l). We can also see-that no local_minimaeadst}

so that false vacua cannot be present.

2. The case of the closed Friedmann model is treated simi-

larly. The line element is

ds2 = a2(n) {dn? = Ax2 - sin2y (d6? + sin2g d¢2)}

(13)

and the lagrangian is the same. Instead of equation (5) one gets

E+f£+£3=0 (14)
and

. A

f2 + £2 ¢ £§ = C (15)

replaces eguation (6). The energy density now is

e(n) = 3¢ (16)

rah

From equation (15) it is clear that C 2 0. The lowest value

of £(n) is zero, and it corresponds to f=0. Hence, no spontaneous



breakdown of symmetry occurs.

3. Consider lagrangians with a different dependence on R,
e.d.,
1 *
= /-9 [élk 200 28+ p R o¥g - %'(¢*¢§] (17)
: X~ 9ax

where p is a constant number. The corresponding energy-momentum

tensor is.

a¢ 3¢ a¢* 39 o
T, . = ik ———ZPE- +vv =g ] ¥ (18)
ik - 9% Bik: 3xk %{ ik ﬂJ:] S

while the eguation for the vacuum expectatlon value is
é . ' 3, . xa?

g+23749 Gp(l 9+ 39 0 (19)

The energy density is

2 [ £2 o 12 2
e (n) =§f_[f—2+ 2(6p - 1) 12 + (1-6p)-"i‘—-+£—-6p] (20)
rat £ fa a2 2 -

where, as before, we put g = /3/%

o[+

To simplify things, let us choose an equation of state for
the matter that generates the (external) gravitational field. Let
it be

= — o (21)
where Py and ey 8re, respectively, the pressure and energy density
of the matter. In this case, R=0, and

a=a : A . (22)

and

a2 - a2 = K | | (23)




- Kbeing a constant. Using (15), which turns out to be true also

in this case, and (23), the energy density is written

e (n) =3 sc+ (1—6p)[(2 + Ry -2 /1 + X g f:l . (24)
rak a? a2 '

Now, the smallest value of C is_—l/z_and,_in this case, £

equals 1, while ff vanishes. Therefore,

a

c(n) =~ l:— 14 (1-ep) (2 + —Ii)] . 29
ral . 2 .
Einstein's equations give

8k 5, = = (a2 - a?) = = K o (26)
al Cal .
so that K > O.VIn 6rder to have spontaneous breakdown of symmetry . -

one must have e(n) < 0, that is

1 ~ 6p « — L+ (27)

2(2 + £
a2

which, by using (26), gives the following sufficient condition for

the existence of spontaneous breakdown of symmetry:
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