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ABSTRACT

Tt is shown that results on mass generation in the
Gross~-Neveu model that were apparently in conflict lead to the
same physics, being therefore equivalent. This is done byusing .

renormalization group techniques.

* FAPESP pre-doctoral fellow.



1. INTRODUCTION

In a recent paper (Ref.l), we have analysed the
results of D.J.Gross - A.Neveu(Z)and of H.D.T. Abarbanelra)‘
conCefning the spontaneocus maés géneration in the Gross-Neveu
model(a). These results are apparently in conflict, as they
Varrivé not only at different mass~gap equations, but at Callan-

(4)hich differ in the number of zeros,

-Symanzik A-functions

a property that, normally, is physically meaningful. In ref.l

wé were abie to show, by using very simple and efficient techniques;:

that the results coincided up to a reﬁormalization. It remained, |

therefore} tq‘be shown that either the fact that,thé_B—fuhctions

have a different numbér of zeros implied,here, no physical

consequences,or else that some anomaly put us 6ut of the range'of

Symanzik's theoreﬁ(s), invoked‘to perform one of the renormalizations.
In this work we conclude our analysis by showing

that the first altérnafive is true. We do that by introducing a

(5).that contains both the

two-parameter class of renormalizations
renormalizations used in ref.l and by showing that it is not to be.-i
expected that the B-functions be simply related: in fact, the extra
zefo oflone of them carries no physical méaning. It is also shown
that the Green functions, expressed in terms of the generated mass,
aré completely equivalent.

In section 2 we briefly review the relevant results of

ref.l . In section 3 we discuss the equivalence of Green functions,

and, in section 4, the relationship between the g~functions.



2. THE METHOD

The Gross-Neveu model is described by the lagrangian

where go is a dimensionless (in 2 dimensions) coupling constant.
We use the imaginary metric and Dirac spinors which are, in fact ,
a multiplet of N flelds, each with two components. For fermion

Green functlons one can also use the equlvalent 1agrang1an(2)

. 3 "P;r,g\\’o ; .

2.2
To study 5ponténeous'breakdown of symmetries it is convenient to

add to (2.2) a driving term which breaks the symmetry, and ,

51multaneously, to shift the ¢ field by a constant. v ,getting
L=-ZFraY - z,(G. v)+z AP -s)ver 2

" where the renormalization constants are defined by the following

relations with the unrenormalized fields and.coupling constants:
_ .
=£°Y

4
z
G,-v, = Z,o, (=)

~n-2

= Z'Z, Nafk ;

Here W is a parametef_with the dimension of mass and n. is £he
continuous dimension in the sense of dimensional regularizatioh ‘7).
We will loock for solutions with spontaneoulsy broken symmetries

by examining the possibility_of'having a nonvanishing vacuum

'expedtation_value of o when ¢ is_put'equal to zero after the i




computations are performeq. This means we must put the sum of all
tadpoles with a o-leg edual to zero, £hus getting an equation for
v; if this eﬁuation has nonvanishihg solutions for ¢=0 , then we

have spontaneoﬁs breakdown of symmetry (3). The calculation will
be done in the limit N +» which, in our method, means including

contributions up to oneloop in the tadpole equatlon.

The Feynman rules are (see Fig.1l)
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Fig. 1

where we introduced

and 3 =Z, -1.

Fig. 2, is
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Flg. 2

Performing the 1ntegratlon, one has, for v;£0 » the equatlon

2

A T(1-2) 0
1 %@ Ten ()i
_ . M

2.6

As soon as z_ is determined by some renormalization prescription,
' (2.6) will give a as a function of the coupling constant X .
This is the mass-gap eguation.

To determine z we impose the condition

' z ;
— 2 2 a%) , - _ :
Ilc.(h=t&)+ — 3¢ =0
where I . is the two-point proper vertex of the o -field (see Fig.3);
The remaining renormalization constants are)up to this order, equal

to unity.

Fig. 3

Now,

’ITa.(’af) = -m- nta-m A |(1- )de P 3 2.8

| _;u * }1-]
If we put this into eq.(2.7f,'getting
. 2 ! : ’ | ' ﬁ
%w - _.Ji_ ni1-ny T(1-3) | dc — A VEE S 2.9
4t o [TT-("'JC)i'-%;] |

~and then put (2.9) into (2;6), Abarbanel's mass-gap equation(sy

obtains:

\,4+4 @ fn J-""*“%' -1 _ 2 210
- P‘ Qe S W :
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If, instead, We.put a=0 in (2.8) (or in (2.9)) and then compute

(2.6), we get Gross-Neveu's mass-gap equation(z) :
' = gl exp (-2n/2%)

That the second procedurewis.correct is-shoﬁn by
tSYmanZik‘S. theorem(s). | R
| Sb; two different renormallzatlons give two dlfferent
‘mass-gap equatlons. This suggests that they are, 1n some sense ,
"equivalent. However,_lf the B—functlons corre5pond1ng to each
renormalizatioa are computed, it is seen that Abarbanel's one

has a zero at A%= g , which is absent in the Gross-Neveu's B .

3. GREEN FUNCTIONS

The most direct way to show the equivalence of both
renormalization procedures is to analyse the Green functions .

We con51der here the four—p01nt fermion function

LA .
C} (fdafz,Psqu) depicted in Fig. 4 .

Fig. 4

The shaded bubble , in the diagrams stand for Ug , the

full ¢ propagator in the limit M ., We have

(4
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where

| 2 - 2
w=-(pmpd 5 = lpmPa)
. We must now compute Dg in both renormalizations. In terms of

~ the renormalized self-energy ' Tﬂr(l:) one has

o 1 | v
Delk) = — - - 3.2°

In the first renormalization”'

f“.(l&)'- ia2m f :B_wf'_ a  '.. _‘_ o ' . .
mee =ik (3 -] s
where-

B = fredm b oo

| 1+ a2 + 1 . - 3.4

so that

D (B) = ——

s (zm’t. 1- - [ )..3( )] o 3.5
 Therefore -

C}) .
q (Fn?stngq) 2:" { 7

az

If we now use the mass-gap equation corresponding to this

'-_renormaliZation, that is, eq. (2.10),'t0 eliminate A , we get

W | _ T _._ RS
Gé(f’f:_?f’z'a Paa.f’q).:_ z':“'{ 41 t+ - ! } 3.7 -

3L B(E)
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In the Second'(symmetric) renormalization one has

2 U A SN
TAR) = —i2w] {%-% _“3(-‘{,})}; o 3.8

and hence,

: ‘zﬁi 1 o)l
G (F”?z,‘?_;:f’q) -N \ '|'B( ) ﬁn(’:]-t.(u 5)} .3.9.,

' Using now eq. (2.11) to eliminate A , we end tp'e#actly with the
_ :expressioﬁ given by eq. (3;7) . Other Green functiohs_are treated

analogously.
4, THE QUESTION OF THE B-FUNCTIONS

| It remalns to be explalned how is 1t p0551b1e that

equlvalent theories exhlblt B-functions w1th a dlfferent number
of zeros. To do that we 1ntroduce a two—parameter class of |
renormalizations which contains both Gross-Neveu's and Abmﬁﬁnevs.
See'ref. (6) for the same renormalization, performed in a somewhat
uncoﬁmmﬂﬂonal way . |

o - The basic renormallzatlon condition is glven by eq.(2.7).
Let us.compute IIO.(%:  with the Feynman rules of the smnmﬂzlc_
theory, that is, by putting, in (2. 4), a—O . We complete our

renormalization prescrlption by imposing thelgeneralized condition

auly L (k= 8) =



where
F)
- 1’+4-“%
M- N _ -
2 2| e4=z -4 | 4.2
&

M being a new parameter with the dimension of mass.
By computlng 2z in thls way and 1nsert1ng the result in eq. (2. 6),

we obtain the maSSwgap equatlon, already exhlblted by Muta(s)

-J.H Y -’&: -1

m‘ - CLoeme o
e b= -”“ﬁz‘-f--"f- s
SR LR A I R

P..

If, in (4.1) and (4.2), one_puts M=0 , the results of
Gross-Neveu are obtained. If, at £he same places, M is pﬁ£ equal
to a, Abarbanel's results are obtained.

| To understand ﬂuaba51c dlfference between the two
renermaiizatlons, cen51der the follow1ng renormallzatlon.group'

transformation:

< I
| 1}
n

i~

i
®
K<

The change in the coupling constant with t is given

by.

dly = AW g5 248 45
opn M
that is
1 AW IE L A M _ g A A
€ cap st Toam ot P oE T T oW

and, as we would like that




The relevant quantities, which are the fixed points of X , are
just the zeros of the so defined B-function.
By using the mass-— qap equatlon it lS easy to compute

B, as defined by (4.5). It is given by
F»(M = - —_— . : _ 4.6

The g-function of Gross-Neveu is closely related (in fact, equall)
to thlS one. For, though M—O ' ‘the renormallzatlon group transform—
atlons can still be con51dered as belng given by (4.4), Fi |
vanishing for any value of t . So, B descrlbes the variation of

l under the same type of scallng, and must be the same function ,.
Wthh is 1ndeed the case.

Consider, however, the partlcular choice of the
renormallzatlon parameters that glves Abarbanel's results. Thls
means keeping u free, and putting M=a . The situation is, nOW-;
¢ompletely different. As a 1is an invariant of the renorﬁelizatioﬁ '
group(g), the renormalization group transformations.cannot any

more be taken as a special case of (4.4). In fact, they must be

selected from the much larger scale transformations

- e | | |
== F EEREER - | 4.7

=M

Zl ~FI



- =

by fixihg T to be zero. In this case there are two independent

B-functions, one of which coincides with Abarbanel's. If we write |

d AR, M) = f dt & (e ds E 4.8
then
3 2 .
A yoe 4 B
- - -E 2= = — ) : -
Ce="20 T Tawg & e

which is Abarbanel’s. It has a second. zero aﬁ:A2=ﬁﬂfnear which

e ). The second B is -

' c ol 4.10
It should be cleaf'by:now‘that the'B Qf Gross-Neveu and the one of |
Abarbanel are coﬁceptually different entities, and that no simple.
relation between the_twd, or among their zeros, exists.

Finally, we will now show'that, insofar as the transformation

of a Green function under a change in renormalization can be
entirely expressed'in terms of masses, the particular form of a
8 function plays .no role at all. We start by remarking that, in

this modél'and approximation,

A= L—m:“ o | 4.11':‘

T

- where



a1

Therefore, if ho is a nonvanishing zero of g , it is also a zero

of y. Now, the transformation formula for a vertex under a

scaling of the momenta igf10)s

Y
n (n) :
e )(etFi’ A, p) o= e:cl:vl:(z—n)t-njda; %)] T\ (Pl,hlt),],g) £.13
_ A

which, by the use of (4.11), can be written as.

T,(r’n\[et?“-l‘}") _ e(z-'n.){:.(-i_) T‘ (PHMH P‘

In the Gross-Neveu model, it is known that the Green
functions can be written in terms of the mass as the sole parameter.
Hence,

r (ePigljf"') = T (eP 10') . : 4.15 .

pt , -
Now, (Pl‘ ALY, fL) is a Green function renormalized at

u, with a different value of the coupling constant. In terms of the

mass-gap egquations, one keeps 1 fixed and chahges the value of A .

This means a different mass, a . Hence, equation (4.14) becomes
: (2-n)t "
i, t . Alt (m) - '
T (e Pi ,‘Cl.) = € (—T) T (Pt ,G.) 4.16

Now, in our case,

T'm(F;,a) = iE'oF1+ a ',



)2 L C o : R

so that, from (4.16), one has

e’c;_U\.P +a = (-)%J) (ty.p+a) a7

and, for p=0 oy

. ] _l__j

4.18
Putting (4.18) into (.4.-17) one ge.t's.
—_— 8 e L 419

Hence, equation (4;16) can be written

Fa.: a) = (a TI (P..’a)   5 : B .':4.-_'20 :

that is, no vestige ofﬁSremained, and in no point of the derivation
the existence or not of a second zero of § played any role.
We are deeply indebted to J.A.Swieca, V.Kurak and

M.0.C.Gomes for many suggestions and'continUed interest.
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FIGURE CAPTIONS

Feynman rules for the Gross—-Neveu model.
The tadpole equation. -
.Thetjself—energy.-

The 4—poin£ Gréeﬁ'functidﬁ;
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