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ABSTRACT

' Starting from the 0(3) inStahton:and meron solution of -
the NLS-model, which are also (topologically trivial) solutions
of the CP% model, we calculate the effect of fluctuations in -

the CP” case, which has some interesting'featufes."

ocT/79.



I- INTRODUCTION

1 (1)

models discovered by Eichenherr
(2)

The,CPn— and studied

by Luscher et al has many interesting properties. Besides
assymptotic freedom, the model presents instanton solutions for

all n(z), and is 1/N expandable(Z); which makes of it a good
laboratory to mimicry the formidable Yang Mills problem. Recently,
the instanton gas was calculafed in this moael(3) providing

some insights in its structure. It remains to study the role of
other solutions the equations of motion, which are no longer of
instanton type. 1In particular, all the solutions of the O(n) non-

linear o model are also solutions of the C:I?n—l

model. In this
paper we treat the most simple case of the first instanton
solufion of the NLS—model, Which is:a solution of zero topological
charge of the cp? model, and show that the meron solution of the ML.S model is a
highly unstable one in the CP? . case, and so should not be taken.
into account.

We find that the perturbation around such classical confi-~
gurations produces negative eigenvalues, which are reminiscent of
the instability, and has some interesting consequences in one of
the cases, about which we speculate.

The paper is divided as follows: in section II we develop
the perturbation around the classical solution, proving that one
part of the partition function is the same as the one from NLS~
model and there is a remaining part caracteristic of this model;
in section III we calculate the new amplitude, showing that there
is a problem associated with a negative eigenvalue of thé quadratic
form making aparent the instability of the solution (which has

zero topological charge). In section III we give arguments to

show that the effect of the negative eigenvalue is to produce a




‘renormalization of the o&gﬂing constant in the n-point functions,'
In section V we calculate the guantum correction. In section VI
we treat the (NLS-meron) solution, and show that it is a highly

unstable one. Séction VII is a brief discussion of the results.
IT~ PERTURBATION AROUND THE 0O(3) INSTANTON CLASSICAL CONFIGURATION

2

The CP“ model has a lagrangian of the form

OED:L(:):; 2 + (19#2)2) o o mma

If we put
= (1§l g+ wIE 11,2

where Qg (X =1,2,3) is the 0(3) instanton 301ution(4) and
qq'(“==L2.5) some small complex fluctuation,_we'can write II.1l

as follQWS
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. We used the equations of motlon of g and dlscarded the

._terms in 74

L Now, ertlng

of order hlgher than two

the lagranglan spllts 1nto
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Our aim is to calculate ‘the ratlo of the tran51tlon ampll—i

tude in the presence of the real conflguratlon

T (o ¢

to the vacuum transition amplitude.
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Tl is the same amplitude already calculated by Jevicki(s) some
time ago for the NLS-model. So we only need to treat the.

émplitude Té.
III- ABOUT THE AMPLITUDE T,
_ Sz[ﬂl is given by
= 1 42 ¥  .' 2y i R
> ““_. ) B
where

e s[4 e 2] 5y

- 4_Op g« I g
(% Qh o )2 . ' | III.2

We must now solve the eigenvalue problem associated with

the above operator. Aiming at this we rewrite the parameters

that appear in m?2 in a more convenient way. We use the following

coordinates
2 2
'g__ Xy 4 X, -4 _ .
2 2 | | - IIl.3a
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This set corfesponds £6 those used in ref.(4) with R=1
and providesaaCOmpactifiCation:of BZ. 'Nﬁte élso that iﬁ this
system the.eigenvalués;turn.out fo:be discrete.

Thé_dléssical'SOlution q now reads |

- IIT.4

(T e T )

It turns out to be more convenient to rewrite our equations

in terms of complex fields and write ¢ as

= ( o L J-fz eix . .L z 'e-gg' L B .. "1III.5
? ' . f . | o

In this coordinates
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~we define also =



(1) J-g";L(f*ﬂ)eidiL(i*‘)éid) o

Our ansatz to solve the eigenvalue equation is
nﬁt'=-erx z:+' - o III.8

This ansatzlgenerates terms proportional to q., in this
eigenvalue equation and we have no solution. However in virtue
of the constraint n.g=0 in II.6 the eigenvalue equation for the

2

operator m“ can be generalized to

| mﬂiﬁ 1 - €N+ O 9« B s

We do not need to case about the g, term, so that we can
go straithforwardly to the equation obeyed by E:t so that using

ITI.9 and III.8 we get
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This can be ShOWh'to bé sdlved by; o o |
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o that U PRCANTY | 1
and Eﬁ : J (4‘*‘) 6 Loy 02, - o I;;,ls
We see immediatly a negative'eigenva;uef for_j=l.
1V- THE NEGATIVE EIGENVALUE

If we continue the expansibn of the lagrangian as a. func-

tion of‘q to fourth.order, we find:
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Aé the 7} part of the Pafﬁition function is convergent,
we do not.need_to wo:ry ébout terms in which'71 appears.u We see
that the_qnly'term.iﬁ whicﬁ qz;éﬁuﬂﬁ. alone is,'(jh %ﬁ'ﬁz)z o
which is obviously a favourablé;term in_the'qzrfun¢tional inté—
gration.  The'c0ntribution-of_£he_negative mode wil;_be soﬁe-tﬁing*

like

©  3iad o 2 (g-4)
Sd‘a o %-% - 4 d?. e’ CoIv.2
2 ¢ oo |

there 9+ &(f).

We must now face with this kind of integral, and see the
contributions in the limit g+0, namely vanishing quartic term,
to the physical objects of the theory.

Now, the integral in IV.2 can be calculated; defining

p JH AR ~ 1.3a

we have, by direct calculation that:
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Using the saddle point mefhod ,we see that the first term in

IV.3 is reproduced by the two non-trivial saddle points in
inv%'The saddlg'point.ét;Zfo, Qhen integrated by the imaginary
axis gives a contribuﬁidnfd%% which is not of the desired form,

in such a way tha£ we suspect that the phySics_is-not”give by the
unstable.point, sd far as7wé do.hdt éonSidefféffeqts relaﬁed to
the instabilities of the:mo&ei; 'In.an n-point function of the :"'
field, the typical contribution will be of the form:

il e SR
(dé‘) _[9 e’ ?.? K. =(VE§ifj§x_(1+ a;(JEZ?'))

H jeg(j oy

in such a way that it implements a renormalization of the coupling

constant £ equal to 4£L .
3

This mode is responsible for a renormalization, which is

non-analitical in the coupling constant, because g~f; such feature
is caracteristic of non-renormalizable interactions(s);'Causing-*
some surprise, because this theory is renormalizable, so that we
simply interpret it as a consequence of our inability:to_treat

this unstable solution.

V- THE QUANTUM CORRECTION

Taking into account the small oscillation problem of section



';11“..

ITI, and the discussion of section IV we now calculate the ratio

of the transition amplltude

[Q[ﬂ]g(%q)wp—i—(ﬂﬂ#’l) o v

and _ 2 2 2 2 2
O\rx,(x)::_}___(afhgr)o‘«x_-( a) dx

to the ordinary vacuum transition amplitude

S@[Yt] §(v.rL) e”‘P’(YU“‘?’YL) V.2
for ¥=(0,0,1) which represents the classical vacuum and
: (e t g
™, = (2 g‘\b q_) V.3
and

We obviously obtain a product of the ratio for ﬂ}

111, as shown in section II (see eqg. II.6). The amplitude Tl

(5)

is given by

.- PR 2 _ 2
T-=i (4 J d————-—-—*;j" P -3(\;3) () -
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V.4

For the zero modes problem we refer the reader to referen-

ce 5 section III.

We go straigthforwardly_fo the evaluation of

the contribution of the non-zero modes, which from Gaussian in-

tegration are:

i
T-| T €.

£,20

so we must calculate

N Z§L5
\Lb % 4=3
here
" eﬁ = 3(3+J.)— 6
E;); 3(}+1)_
53 = 2 (23 +J.)-

LE

é , a | V.6

The expression V.G has ultraviolet divergences which will

be cancelled by a renormalization procedure.

Therefore we re-

gularize employing Pauli-Villars regulators with alternating

metric(G)
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so that we get
Q«N (L)’“gz —.2.?:, eg_.[A (%)_ A (12,)'] -.‘_ R V.9 5
g W:Lth - B o

My A | | - |
A"(o.) = Z _ 5 D'm (5 Q,+ L) . - V.10

5:1{&

It is easily seen that
M 2 2 ' _
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For A°(a) we have
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A-ay A+0, : Az
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Using the above formulas into V.9 we have

Q’W(““E )M% . ‘2{(/{1(%)‘ Am(é)) - (Aw)(g)_ Am(’/z)} :_
"R{é+29wﬂ+i(%'s)t“s o '-:V.IS

52

We made the above calculation using a regulator with

space dependent mass given by

Wieys 40

V.14
(i + rz)z .

and there is an additional contribution coming from a finite
renormalization effect in relation to a standard fixed mass re-

gulator ﬂo,'given by:

-AA - dzx( ) ﬂmf“’" = 44 2N _ 4 V.15
2|L e -
and also, instead of the zero modes contribution, we have the
correponding modes for the regulator fields, which contributes
with a factor F

We have then

| - euz+zuﬁ+i( ) s
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Now for the total contribution, including zero modes

Factors, we have the expression

-2 2
e :
(5] )

] wp 2 Qn.ﬂs A - 2 (8— )
3 ; _ '

V.17

VI- PERTURBATION' AROUND THE 0(3) MERON CLASSICAL CONEIG_URATION

Now we turn to the meron scolution

Xi xz S .. S
- . )
Qf— o ) ﬁ’-_' ) | VI.l..

The'eigenvalue problem can be put again into the form:
’?m‘(l‘*?)}l«-*z r&%dgrxc—}pylp.: ?—ér{x VI.2

The elements in VI.2 can be immediatly written down as :
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alq = 5‘;\"0((54&13(.,—0830(}0)
N R o
azg = con & (—51:71,0( , Q,Bjo()o)
r
P T e . VI3
2 2 .
9. 9 . L, 9
ar? r o dr r?2 J«x?
and obviously: X, g_rbem o

Xz:.' C Sen o
- With the ansat?'-

-qﬁ = (_&m & ;;cé & ,o) 2 o . ' - VI.4

we can trivially derive the equation:

_-.322 + 2.2 - &

re Vi.b.
— Lo of
or , for X = \lr e Z
2
.a___x_._ + FERE ._X_. = - E‘X
ar_z Z' I.Z - VI.6
This system has already been discussed_by_Landau(7), which

prooved that it has no bounded value ﬁor the'energy e (i.e. gr=»)
in such a way that the solution (VI.l)is highly unstable, and

there is no meaning in perturbing around it.
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VII- DISCUSSION

The appearance of unstable modes (negative eigenvalues)
must be a géneral fact of solutions with zero topological charge.
However, some of this solutions, having a_small number of unstable
modes can contribute to the physics. 2 more detailed discussion
of this problem is unfortunately beyond the scope of this article.
We find it worth to mention that unstable states (such as the
positronium) must contribute to the'thermbdynamics of a gas of

photons.

1

In view of the relations between CP™ © models in 2 dimen-

sions and Yang-Mills theory in 4 dimensions we suspect that
similar events occur when dealing with classical solutions of .

the non-abelian gauge theories having trivial topology.
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