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ABSTRACT

A condltlon for the eXLStence of a perlodlc TDHF'trajec-

'tory of perlod T is derlved It takes a form very 51mllar to the

statlc H F. equatlon and shows that aSSOClated to a perlodlc.

trajectory there is a statlc 51ngle partlcle hamlltonlan Wthh is a

compllcated functlonal of the tlme dependent den31ty matrlx An'

expllc1t expan31on for thls functlonal_ls derlved. We show that
many propertles of the statlc H.F. rést poihts are shafed‘by'

perlodlc solutlons.
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There is one striking difference between the meaning off'tf-

the word self-consistency when applied to the static Hartree-Fockfa?J

(HF) equations or to their time dependent counterparts. In the

static case, the HF equations determine special points in the

space of all Slater determinants (or density matrices). These aréKZ;i”

the rest points of the dynamical TDHF equations, and they are

obtained, numerically, by a well known self consistent iteration

scheme. This scheme, roughly speaking, starts with a density that L

is assumed to be close to the rest point. The HF hamiltonian for
this density is calculated and diagonalized providing new eigen-

functions._ A new denSity:is constructed and the SCheme is'repea%ed

untll self con31stency, meanlng that the 1nput and output den31t1e&;_f

{c01nc'de, 1s achleved By contrast TDHF equatlons are evolutlon

.equatlons Wthh for __Z 1n1t1al den51ty prov1de a seguence of
densities (that we call a trajectory). Self consistency here
means that the hamlltonlan that propagates the solution at a glven
time depends on the den51ty at that time.

The question then arises naturally as to whether special
trajectories exist in the spade_of determinants. Rest points would

be particular cases of such special trajectories.

Periodic solutions are known to play a prominent role in the

1)

study of hamiltonian systems with many degrees of freedom ’'. 1In

particular they allow the'studyfdf semiclassical properties of its

2)

bound states™’, Recently an extenéibn of periodic orbit theory has

also been successfully applied in field theory3}

4)

As the TDHF eguations have been shown to be hamiltonian ',
it is natural to investigate its periodic solutions. These would
be the candidates for the description of Iarge amplitude collective
motion within the TDHF approximation;‘TmE;the special trajectories
that we referred to above are the periodic. ones 52 The importance
of periodic TDHF solutions has been recently_stressed by several |

authors6'7)
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The purpose of thlS letter is to point out a condltlon for

: the ex1stence of perlodlc solutlons to the TDHF equatlons f ThlS.“_J: -

.condltlon takes a form very s1mllar to the statlc case and puts the?s.-

1mportant problem of the numerlcal search for perlodlc solutlonsf
“on. the same (albelt more compllcated) level as- the search for‘f“

.statlc Hartree—Fock rest points.

‘Consider the equatlons.for the TDHF single particle~wave]5':

functions .

Here h((:) 15 the usual HF hamlltonlan

"'\/\() t N Tfipv

where t is the kinetic energy and v is the antisymﬁetrized'twoFbody7r

1nteract10n. Git) is the den51ty matrlx through whlch h(f>)

becomes tlme dependent Eq. (l) can be rewrltten as .

W)-—ﬁ%l'“*’w>‘:o'j w o

ey

U\(e) - L’bt U&) > U(o)'g 1 i ‘_.(3)._:.:,

where U(t) is the singlé_partiéle evolution-operator.. Self

‘ COhsistency is imposed with the'requirement that3

pw © - U® (J“’) O ‘:(4; -

This requirement makestq.(S) noﬁ linear;k To av01d problems Wlth

infinite matrices we Wlll consider Eq (1) or (3) in a 51ngle e

particle ba31s of: large (but flnlte) dlmen51on N ) ThlS ba51s'

w1ll be in general a truncated set of elgenfunctlons of some. 51ngle'f-

partlcle operator. In partlcular, as is common in current TDHF

o - 8. 9y
calculations '9% 1t could be a set of p051t10n elgenfunctlons on a-



. 4.
discrete mesh, In this truncated basis all matrices have finite

dimension and (3) becomes a system of first order ordinary diffe-

rential equations. ult) is unitary while h and Ei_are hermitian.
Assumé that a periodic solution for the density matrix exists with
a period T |

P(t+T) = P(JC) | ale T

(5)

Then h is also a T-periodic matrix and for given (D(t), Eq. (3)
becomes a linear differential system with periodic coefficients
‘and U(t) its fundamental matrix of solutions. Many theorems
and properties i are known for such systemslo)

theorem states that the fundamental matrix of Eq.(3) canibe.decom—'

‘posed as CNE

where V(t) is unitary and T-periodic and where M is a constant

matrix which is easily shown to be hermitian. The initial condition

on U(t) implies V(0)=1 and therefore from the periodicity of V we

deduce
A MT
i) = e

(7

10)

U(T) ie the linear "mapping at a period" or monodromy matrix for

Eq. (3).
With U(t)  decomposed as in Eqg.(6) the self consistency

requirement (4) takes the form

ply =Vt) e h0 e vt

(8)

In general, f) as calculated in Eq.(8) will not be T-periodic

. In particular Floquet'




becaﬁse M will mix in other frequencies incommensurable withiT. ‘e '. j
This_Will not happen if the following condition is satisfied
Hew] -0
This is the sought for condition for the existence of a T--
periodic solution to the TDHF equationsL Before seeing how it "
can be used, we give an explicit expression for M. To this purpose -
we use ‘the. contlnuous analogue of the Baker Hausdorff formulall)

or phase-expan51on of the single- partlcle evolutlon operator. CIf

U(t)~1s written as

o _ L.I)_(t) ”.'._:__:..:,.: L
U( ) = S

then.&)it) has the expansion:
t ot .t

_O_Uc) htt _"“-é-f.olk (b ] -

o LT@ o L (_ll)

Higher terms in eq.(11l) only involve multiple_commutators?of h(t)
at different times_and have been given explicitly in ref.(11).
Compariéon of (lO)_and:(7)-gives_the.explicit expansion:of M
_ T : . Ty | o
Moo L) | wydt - o \dt \de Thie) W&+ -
1) QA \ i .
= S S N i S (12)
To the authorfs knowledge this formula for the computation -
of the logarithm of'the:monodromy- matrix has not been reported
before in the literature. Mis a static single particle hamilto—
~nian which is a complicated funtional of a T—perlodlc den51ty It

: w111 be denoted as. b«i;?T(i‘] » In pr1nc1p1e, it can be evaluated
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for any T-periodic trajectory and Eq.(9) selects the particular

one which is also a solution of Eq.(3). Thus eq. (9) and (12)
constitute the extension of the time-independent self-consistency -
problem of static HF to periodic time dependent solutions. In

fact, for time independent HF solutions, when the periedic trajectory
contracts to a rest point, the functionallﬂ[?] reduces to h(e)

and condition (9) becomes the usual HF equation for the density
matrix}

Eq.(9) can also be interpreted as an equation that selects
the initial condition f)(o) so that it lies on a T-periodic
trajectory. This is due to the fact that the equation for the
density matrix (see Eq.l6 below) is of first order in time and

_ therefore the trajectory (D(t) is a unique function of'the_initial
density and the tiﬁe. Then the functional Ni[?(tf} , when computed.
along a solution to Eq. (16)with initial condition P 0 ), becomes
a function of G)(O) after all the time integrations have been _
performed. Thus Eqg. (9)becomes [ (P(Of) Q&q = 0 which is formally
very similar to the static equation, Notice however that the
function M(fX00 is very complicated so that the problem is highly
non linear. An effective solution can only be achieved by succe~

sgive iterations.

Just as in the time independent caSe,.Eq.(9) is best ex-
ploited in the basis which simultaneocusly diagonalizes M and . E)(O)

In this basis Eg.(1) and (4) take the form

[\\(p) - i%]\pm\7'-'~ °{m \LP'"> | o (13)

E EACERSACY

(14}

ptﬂ_
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where C(M are the eigenvalues of M and ﬁocc indicates the occu-
pation pattern specified by the diagonal P(O)} The boundary con-
dition for Eq.(13) is - | . o

g, (t+ﬂ> 190>

(15)

Eg. (13) with (15) have been recently considered in the context of
a functional integral approach6). There the eigenvalues 0(n have
been shown to play a role in the semiclassical gquantization of a
TDHF periodic trajectory.

The eigenvalues ognare the stability angles, or characte-
 ristic exponents of Eg.(3). They are defined modulo 2U/T and,
because M is hermitian, they are always real - They are associated
to the periodic trajectory as a Whole and not to a particular p01nt
on it. They are therefore the natural extension of the concept
of single particle energies to a situation where a large

amplitude collective oscillation is present. The determination of

the Dgnis probably best done through an iterative solution of Eq.

(13) with periodic the boundary conditions (15). This is an intri-

cate numerical problem and valuable physical insight into it can be.
obtained through a study of the static hamiltonian M in the x-repre-
sentation (range, depth, diffuseness, non-locality, etc). The
expansion (12) provides a basis for such a study.

Eq.(13) is an eigenvalue problem which, because of (14) has
to be solved by an iteration scheme entirely analogous to the time
independent one. Thus, one guesses an initial T-periodic density

(o)
Y

dependent density is obtained. Just as in the static HF scheme, no

&]and solves iteratively Eq.(13) until a self consistent time

guarantee exists that the procedure will converge, or that for a

given period T, a self consistent T-periodic trajectory exists at
o)

all. However, if it does and if the initial guess (tlS suffi-

ciently close to it, we can expect this procedure to work.
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It is important at this @oint to remark that the time
evolution éf'the single particles is not unique. Any time
dependent transformation that Ieaveé the density matrix invariaﬁt
(namely linear combinations of occupied or unoccupied orbitals) will
yield very‘different s.?.w.f. while leading to' the same trajectory

Eﬂﬁ) . Eq.(l) selects a particular combination but it is not’
invariant under such a transformation. Thus the matrix M, toghether
its eigenvalues, depends on with s.p. evolution equation we choose
to solve and is not uniquely associated with a periodic trajectory
as specified by E%b)q Again, this arbitrariness in the definition
of the single particle hamiltonian is also present in the familiar
static case. |

Althrough the ﬁQn were called stability angles, it should
be clear that they are not related to the stability properties of
the periodic orbit. This is already apparent for rest points, |
whose stability is related to RPAVfrequencies and not to single’
parﬁicle energies. The detailed stability analysis of periodic
trajectories is outside the scope of this work and will be reported
elsewhere. We can however give a brief argument showing that |
qﬁantities-similar to RPA frequencies will be associated to a

~trajectory and will determine its stability properties.

Consider the TDHF equation for the density matrix

l{) = U\m *?] | e ._ B | (16) -

If a T-periodic solution (J(t) is known we look for nearby solutions

ﬁ)%ﬁ\.= ?tﬁ]‘FSE&). After‘linearizing,-the resulting-equétioh

for. %‘)Lt) is

dsp-[he sl + Lo p]
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This is a linear equation with periodic coefficients for

wat>. Again Floguet's theorem can be applied and solutions can
be looked for in the form é? = (SPM&)U,LP(n'wﬂt)where : SP,-,, (‘t) is

T-periodic and Q)M are constants. - The equations for'N:SF% are -

e, - D P)%a lwsge] = ~wbpe o

and they have to be solved w1th perlodlc boundary condltlons.
8(%@*1‘) = Seh (t) - (19)

Eg.(18) generalizes the R.P.A. equation for a pefiodiC'SOIﬁtion-'z
and reduces to the familiar form in the static limit. Notice
that k% are a characteristic of ‘the whole periodic tfajebtory and
can be quite different from local R.P.A. frequencies. In contrast
to (1), the evolution of Bp(t) is governed by a non hermitiaﬁ
‘matrix and therefore it can occur that some of the frequencies
become imaginary. In that case the periodic solution is unstable-.
Several guestions need further investigation. First and
foremost is the convergence of expansion (12) in same small parameter
so that the static field can be effectively computed. Next are the
numerical problems involved in the ite;ative solution of Eq.(13).
The latter have been addressed to briefly in ref.(6). From this
investigation it seems that what for rest points was an algebraic
diagonalization problem, for periodic trajectories becomes the
computation of the monodromy matrix of a system of differential
equations with periodic coefficients. Although numerical methods

10)

exist for this computation , they would have to be adapted to

the TDHF problem.
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In-cbhclusion we have shown that associated with a
periodic solution to the TDHF equations we have two sets of
‘constant numbers which géneralize the notions of singie particlé r
energies and R?A frequencies and which reduce to the usual’
guantities when the periodic trajectory reduces to a rest point.
The periodic trajectory itself is determined by a self consistent
condition inﬁolving a static field whiegh also generalizes'the HF

equation .

Discussions with G.G.Dussel and the hospitality of the
Departamento de Fisica Matemadtica do Instituto de Fisica - U.S5.P. -
are gratefully aknowledged. Partial financial support for this work

was provided by CNPq-Brazil and CONICETeArgentina{“J'




BN

11.

REFERENCES

1) E.T.Whittaker; Analytical Dynamics, Dover Publications, N.Y.
(1944) . _

2) M.C.Gutzwiller; Jour. of Math._Phys;lg, 343 (1971)

W.H.Miller; Journ. Chem. Phys. 63, 996 (1975).

3) R.F.Dashen, B.Hasslacher, A.Neveu; Phys.Rev. D10, 4114 (1974).

4) A.K.Kerman, S.E.Koonin; Ann.Phys. (N.Y.) 100, 332 (1976).

5) If we look at the TDHF equations as the equations of a
dynamical system, special (in many ways) trajectories are rest
points, periodic trajectories and limit cycles. Rest points
are the familiar HF solutions and limit cycles cannot exist
due to the hamiltonian nature of the TDHF equations. It
remains therefore to investigate periodic solutions.

6) S.Levit, J.W.Negele, Z.Paltiel; M.I.T. preprint CTP-781 (May
1979) . To be published in Phys.Rev. C. |

7) J.J.Griffin, P.C.Lichtner, M.Dworzecka; University of Maryland
Preprint 79-102.

8) H.Flocard, S.E.Koonin, M.S.Weiss; Phys.Rev. Cl7, 1682 (1978}.

9) K.T.R.Davies, V.Maruhn-Rezwani, S.E.Koonin, J.W.Negele; Phys.
Rev. Lett. 41, 632 (1978),.

10) V.A.vakubovich, V.M.Starzhinskii; Linear Differential Equa-
tions with Periodic Coefficients, Halsted Press, John Wiley
& Sons, N.Y. 1975.

11)

I.Bialynicki~Biyxula, B.Mielnik, J.Plebansky; Ann.Phys. (N.Y.)
51, 187 (1969).



