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Abstract. Kapitza pendulum is a rigid pendulum in a gravitational field 
whose pivot point vibrates, up and down, in a vertical direction. Many 
papers have been published on this subject. We only present a rough 
description of this pendulum motion to undergraduate students of Physics. 
Our main intention is to suggest a simple explanation for the phenomenon 
of dynamic stabilization of the inverted pendulum whose pivot is forced to 
oscillate along the vertical.                                                                                
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(I)Introduction.                                                                                     
 In Figure (I.1) is shown a Kapitza pendulum[1] a rigid planar 
pendulum of length ℓ with a point mass M, where all mass of the pendulum 
is assumed to be concentrated, which the pivot point  vibrates in a vertical 
direction. A motor rotates a crank with a high speed moving the lever arm, 
up and down, with the rigid pendulum attached to a pivot.[1,2] 

                                               

Figure (I.1). Drawing of a Kapitza pendulum; a motor rotates a crank at high speed, 
the crank vibrates a lever arm up and down, which the pendulum is attached to with a 
pivot.[1] 
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 This kind of pendulum was first described by A. Stephenson in 
1908[3] and a vast list of papers have been published on the subject.[2,3]  Up 
to 1950 there was no faithful explanation for the counterintuitive and 
unusual phenomenon that was observed for this pendulum. Pyotr Kapitza in 
1951[1] was the first to present a satisfactory explanation. As in our 
"Laboratorio de Demonstrações" (Lab. Demo.) the experiments are 
performed to undergraduate students of Physics and we present a simple 
mathematical approach to estimate the Kapitza oscillations.(see also Tiago 
dissertation[4]) In Section 1 is shown the equation of motion for simple 
pendulum oscillations.[5,6] In Section 2  is deduced the equation of motion 
for the Kapitza pendulum. A simple physical explanation is suggested in 
this paper for the phenomenon of dynamic stabilization of the inverted 
pendulum whose pivot is forced to oscillate along the vertical. The 
commonly known criterion of stability is obtained on the basis of the 
developed approach, and this criterion is verified by numerical simulations                         
.  

 (1)Simple Pendulum.                                                                             
 As well known from basic Physics course[5,6](Fig.(1.1)) the  

 

                                

 Figure (1.1). Simple pendulum in a gravitational field g. 
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the angular equation of motion for φ(t), with lentgh ℓ and mass M, in a 
uniform gravitational field g, is given by 

                               d2φ/dt2 = - (Mgℓ/I)sinφ = - (g/ℓ) sin(φ)               (1.1) ,                            

where I = Mℓ2 is the moment of inertia of the pendulum. The weight torque 
τ = - Mg x f forces the pendulum to swing harmonically around φ = 0..[5,6] 

Note that when there is no mechanical energy dissipation, that would given 
by -2γ(dγ/dt), the pendulum would swing eternally. 

 

(2)Kapiza Pendulum.                                                                                            
 In this case the origin O where is fixed rigid pendulum (Figure 
(2.1)) moves with an acceleration a = a(t) k along the z-axis.  

 

                                                 Figure (2.1) 

 In this way, to describe the pendulum motion it is necessary to take 
into account a non-inertial frame[7] of reference with origin at the point O. 
In this new frame, pendulum equations of motion will also depend of the 
"pseudo" force of inertia Finertia = - Ma.  If the pivot is forced to execute an 
harmonic oscillation with frequency ω ("pivot frequency") along the 
vertical axis z, that is, z(t) = A cos(ωt) we have                              
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                              Finertia = -  M(d2z/dt2) k  =  MAω2cos(ωt) k           (2.1).        

 Finertia is responsible by a torque which contrary to the torque created 
by weight force  - Mgk. So, it will be become submitted to two torques, 
one due to the gravitational force - Mgk and another due to the non-inertial 
force Finertia. So, taking into account these torques we have, instead of 
Eq.(1.1), the following equation for φ(t),[2] 

            d2φ/dt2 = - 2γ(dφ/dt)  - (g/ℓ) sinφ  + (Aω2/ℓ)cos(ωt) sinφ        (2.2). 

Where now we are also introducing  the effect of the dissipative force          
- 2γ(dφ/dt) due the interaction of the pendulum with the air.[2] This  
damping effect can be estimated by the factor Q = ωo/2γ.                                         
 When the "inertial" amplitude Γ = Aω2/ℓ is much smaller than the 
frequency ωo = (g/ℓ)1/2, that is, when  ωo >> Γ we would have the non-
dissipative pendular motion.[5,6]                                                                                                     
 It is important to note that, in the general case, the equation of 
motion φ(t) can be obtained only by numerical integration of Eq.(2.2). 

(2.a) Vertical Dynamic Stabilization.                                                                  
  When  Γ >> ωo , integrating numerically Eq.(2.2) and with 
convenient initial conditions we get a "vertical dynamic stabilization" of 
the pendulum shown in Fig.(2a).[2] In this particular case it oscillates 

vertically between 152o and 208o.   

  

Figure (2a) Vertical dynamic stabilization. φ(t) obtained by numerical integration 
of Eq.(2.2) taking the initial deflection φ(o) = 200o, (dφ/dt)(o) = 0, ω =16 ωo

 , A = 0.20ℓ 
and quality factor Q = 5.0 (dissipative effect);  z(t) = A cos(ωt);  T = 2π/ω.        

 From  Fig.(2a) we verify that the pendulum oscillates is in a inverted 
position, that is, when 180o + Δ > φ > 180o - Δ , where Δ ~ 30o . The 
inertial torque, given by the second term of Eq.(2.1), tends to decrease the 
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amplitude of angular oscillation Δ .The weight torque  tends to increase Δ. 
The oscillation occur in the  interval 208o - 152o. The mean value of the 
inertial torque with respect to the z-axis is not zero. The value of the 
gravitational torque is zero.                                                                   
 When the rod is slightly deviated from the vertical, it executes 
relatively slow oscillations about the vertical line on the background of 
rapid oscillations of the pivot point O. According to Kapitza: "our eyes 
cannot  follow the fast small movements caused by vibrations of the pivot, 
so the behavior of the pendulum in the inverted position seems perplexing 
and astonishing..."                                                                                    
 In next Figure (2b), when the pendulum is oscillating between 260o 
and 100o, are shown the oscillations of the pendulum around the circle of 
radius ℓ, perpendicularly to the plane (z,x).[2] 

Figure (2b). Pendulum oscillations in the circle with radius ℓ in plane (z,x).  

(2.b) Bottom Oscillating Position.                                                      
 Depending on adequate initial conditions we can have also 
oscillations at the bottom z-axis, that is, with the pendulum  oscillating 
hanging down below the pivot O. For instance, with a numerical integration 
of the exact Eq.(2.2) are shown in Figure (2c) bottom oscillations between 
23o and -23o around the z-axis.[2]                                                       

    

Figure (2c). Vertical bottom oscillations between 23o and -23o 
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  Any tiny deviation from the vertical increases in amplitude with 
time and chaotic effects can be realized.[1] 

 

(3) Experimental set up.                                                                                               
 In our laboratory we set up a very simple kapitza pendulum. It 
consists of two pieces of plastic straws connected by an axis made of thin 
cooper wire.  The pendulum has a length of about 8 cm and can oscillate 
freely. The other straw is attached to the center of a speaker, using adhesive 
tapes. Furthermore, this straw passes through a hole in an acrylic plate, so 
that the straw oscillates preferentially in the vertical direction.                             
 Figure (3a) shows the assembly with the speaker.   

  

Figure (3a). The speaker and the pendulum.  

 

 The set is connected to an audio generator with amplifier. When a 
sinusoidal signal above 50 Hz and speaker oscillation amplitude of 
approximately 5 mm, the pendulum balances with the center of mass above 
the support axis, as shown in the Figure (3b). 
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Figure (3b). Pendulum balancing vertically with the center of mass above the support axis. 
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