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Abstract. This paper was written to graduate and postgraduate students of 

Physics. First is performed a brief analysis about Planetary Motion in 

Classical Mechanics and in General Relativity. After we analyzed the 

Relativistic and Non Relativistic Restricted 3-body self-gravitating 

systems. Finally, are seen brief comments about chaos and stability of the 

Solar System.                                                                                                
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(1)Motion in a Central Field in Classical Mechanics.                                                                                 

 First are presented main aspects of a planet motion submitted to an 

attractive central field following Landau & Lifchitz.
[1]

                                                                                                          

 When a body with mass m moves in a central attractive potential 

field U(r) it will be submitted to a force F(r) = - [dU(r)/dr]ro. Its angular 

momentum L = r x p is conserved, where p = mv. As the vectors L and r 

are perpendiculars, during all time, its trajectory r(t) remains in the plane 

(r,p), perpendicular to L.                                                                                                

 In polar coordinates r and θ the Lagrange function Ł(r,φ) is written
[1]

                                                                                                                    

        Ł = (m/2)[r*
2
 + r

2
θ*

2
] - U(r)                           (1.1), 

where r*= dr/dt  and θ* = dθ/dt. As this function does not depend explicitly 

of  θ, it is a cyclic coordinate, that is,  

                                         d{∂Ł/∂θ*}/dt =  ∂Ł∂θ =  0                         (1.2), 

showing that the generalized impulse pθ = ∂Ł/∂θ = constant. That is, the 

angular momentum Lθ :                                                                                                       

   Lθ = pθ = mr
2
θ* = mr

2 
(dθ/dt) =  constant.                      (1.3).                                      

Since the motion is always in a plane perpendicular to L we can write 

                                        Lz = mr
2
(dθ/dt) = L = constant                      (1.4). 
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and its energy E = constant would be given by 

             E = (m/2){r*
2
 +r

2
θ*

2
) +U(r) = mr*

2
/2 + L

2
θ*

2
/(2mr

2
) +U(r)    (1.5).                      

From Eq.(1.5) we get, since r* = dr/dt and mdθ = (L/r
2
)dt ,                                                   

                        t =  ∫dr/{(2/m)[E-U(r)]- (L
2
/m

2
r
2
)}1/2

 + constant           (1.6),      

and                                                                                                                          

      θ = ∫(Ldr/r
2
)/{(2/m)[E-U(r)]- (L

2
/m

2
r
2
)}1/2

 + constant   (1.7). 

  Equations (1.6) and (1.7) give the general solution of the problem. 

The first one (1.6) gives r = r(t) and the second (1.7), gives θ = θ(r).                                        

 It is important to note that from Eq.(1.4) that dθ/dt never change of 

signal: or it is clockwise or counter clockwise In this way
[1] 

the body motion 

can be finite or infinite. If it comes from  infinite it goes to infinite (as will 

be analyzed latter). It can also be limited, moving between rmin and rmax. Its 

trajectory will be inside a ring limited by circles with rmin and rmax (Fig. 1).                                         

                               

Figure 1.Body trajectory between points rmin and rmax and angle Δφ.
[1] 

 At  rmin and rmax
 
 the radial velocity dr/dt = r* = 0 but the angular 

velocity is always θ* = dθ/dt  ≠ 0, because L = mr
2
(dθ/dt) is constant. 

 When r goes from rmax and rmim and, after again to rmax, the vector 

radius is displaced by an angle ∆φ ≡ Δθ = given by (Figure 1), 

                        Δθ = 2 ∫(Mdr/r
2
) /{(2/m)[E-U(r)]- M

2
/r

2}1/2
              (1.8) 

 To have a closed trajectory it is necessary and sufficient that               

Δθ = 2π(m/n) where m and n are integer numbers. This means that after n 
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repetitions of this period of time the vector radius, been performed m 

complete turns, will be back to its initial value. In this way the trajectory 

becomes closed. There are only two kinds of central fields that obey this 

condition: when U(r) ~1/r and U(r) ~ r
2
. In other cases the trajectories of  

finite movements are not closed. They pass infinite times by rmin and rmax 

(Figure 1) and after an infinite time they fill completely the ring area 

between these distances.                                                                                               

 As a last comment, we must note
[1]

 that a particle can "fall" to the 

center when U(r) ~ - 1/r
β  

only if β > 2. 

(1.a)Planetary Motion: Kepler Problem.                                                                                                 

 In what follows will be analyzed a planetary system (for instance, 

Sun and planets). In this case the central field is U(r) = - α/r , where α = 

constant = GMm, where M = solar mass and m = planet mass This analysis 

will be done following Landau & Lifchitz
[1]

, Goldstein
[2]

 and Symon.
[3]

                                       

 According to Goldstein,
[2]

 taking into account that energy E = 

constant (Eq.1.5), that the angular momentum L = m r
2
θ*

 
= m r

2
(dθ/dt) = 

constant and defining u = 1/r we verify that                                                  

                                            d
2
u/dθ

2
 + u = mα/L

 
                                (1.9) 

 Putting y(t) = 1/r - mα/L
2
, from Eq.(1.9) we get 

                                             d
2
y/dt

2 
 +  y = 0                                       (2.0), 

which has the immediate solution 

                                           y(t) = b cos(θ - θo)                                     (2.1) 

where b and θo are constants of integration, that is,  

                                 1/r = (mα/L
2
){1 + ε cos(θ - θo) }....................      (2.2), 

where ε = b[L
2
/mα], where b is a constant to be determined as a function of      

E = T - U = constant and L = m r
2
(dθ/dt) = angular momentum = constant.                                                           

 In this way, one we can show that
[2]                                                                          

                           

                              θ = θo  - ∫du/{2mE/L
2
 - 2αmu/L

2
 - u

2
},                     (2.3). 

Integrating Eq.(2.3),
[2]

 

                          θ - θo= - arc cos{(uL
2
/mα -1)/(1+ 2EL

2
/mα

2
)
1/2

}          (2.4). 
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Thus, as u =1/r we get 

                   1/r  = (mα/L
2
){1 + (1+ 2EL

2
/mα

2
)
1/2

 cos(θ - θo) }             (2.5), 

where the constant θo can now be identified as one of the turning angles of 

the orbit (see Fig.1). 

(1.b)General Equation of a Conic.                                                                                 

 The general equation of a conic with one focus at the origin is 
[2] 

                                    1/r = C {1 + ε cos(θ - θo)}                                   (2.6), 

where C is a constant and ε is the eccentricity of the conic section. By 

comparison with Eq.(2.5) we verify that                                                                                        

                              C = mα/L
2
     and     ε = (1+ 2EL

2
/mα

2
)

1/2
                 (2.7). 

The orbit nature depends on E and ε, according to the following scheme, 

                                ε > 1 ,  E > 0        →   hyperbola 

                                ε = 1 ,  E = 0        →   parabola 

                                ε < 1 ,  E < 0        →   ellipse 

                          ε = 0 ,  E = -mα
2
/2L

2
  →   circle, 

 Figures and details of these orbits are shown, for instance, by 

Landau
[1],

 Goldstein
[2]

 and Symon.
[3]

 

Hyperbola.                                                                                                                           

 In this case E > 0 and the motion is infinity. The body comes from 

infinity and goes to infinity. It contours the center of the potential which is 

the focus of the trajectory.  

Parabola.                                                                                                                      

 In this case  E = 0 and the motion is also infinity. The body comes 

from infinity and goes to infinite. It contours the center of the potential 

which is in the focus of the parabola. 

Ellipse.                                                                                                                   

 In the case of a planet moving around the Sun the energy E is given 

by E = T-U(r) = mr
2
(dθ/dt)

2
 - α/r < 0.

[1] 
That is, it is in a bound state and its 
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energy passes by a minimum value Emin = -α
2
m/2L

2
.
[1] 

In these conditions 

its trajectory is an ellipse and Eq.(2.6) can be written as
[1]

 

                                           p/r  = 1 + ε cos(θ)                                        (2.8), 

where p = L
2
/mα and ε ={1+2EL

2
/mα

2
}

1/2
. It corresponds to an ellipse with  

focus at the origin of coordinates (where is the Sun) and θo= 0 (Fig. (2.1)). 

                           

Figure(2). Elliptic orbit with the Sun at the origin of coordinates(x,y). 

 The large a and small b axis of the ellipse are given, respectively, by 

a = p/(1- ε
2
) = α /(2│E│) and b = p/(1- ε

2
)
1/2

 = L /(2m│E│)
1/2

.The ellipse.                                              

area is given by S = πab and the period by T = 2πα
3/2

(m/α)
1/2

.                                                                                                              

  Elliptic orbits give good descriptions of the planetary motions in 

Solar System. The elliptical orbits have the Sun at one focus. However, it is 

observed that as the planets describe their orbits, their major axes slowly 

rotate about the Sun. There is a shifting of the line from the Sun to the 

perihelion through an angle Δθ during each orbit. This shifting is referred 

to as the precession of the perihelion. To estimate these orbit precessions it 

is necessary to take into account the General Theory Relativity. It will be 

done in next Section 3.  

 

(3)Planetary Motion in General Relativity.                                            

 Let us study now the planetary motion within the General 

Relativity context.
[l,4-6]

 We begin showing three different approaches that 

can be used to study the planetary motion: Geodesic Equations and 

Lagrange Equations. and Restricted 3-Body Approach. 
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(3.1)Geodesics Equations.                                                                                            

 The planetary geodesics equations of motion
[4-6]

in General Relativity 

are given by                                                                                                                                

       d
2
x

α
/ds

2
 + {μ

α
ν}(dx

μ
/ds)(dx

ν
/ds) = 0                      (3.1), 

where {μ
α

ν} are the Christoffel symbols
[4-6] 

and  

ds
2
 = c

2
dτ

2
 = gμνdx

μ
dx

ν 
(3.2), 

where τ = proper time, μ,ν =1,2,3,4; x
1
 = r, x

2
= θ, x

3
 = ϕ and x

4
= x

o
 

= ct. With Eqs.(3.1) and (3.2) and solving Einstein field equations  

                                      Rμν - (1/2)gμν = (8πG/c
2
) Tμν                        (3.2a) 

where Tμν is the matter tensor
[4-6]

 for a spherical body (Sun), with 

radius R and mass M, putting И = GM/c
2
, ds

2
 is given by

[4-6]
                                  

ds
2
 = c

2
dτ

2
 = (1 - 2И/r)c

2
dt

2
- (1 - 2И/r)

-1
dr

2
- r

2
dθ

2
- r

2
sin

2
θdϕ

2 
(3.3). 

When И/r = GMc
2
/r << 1, solving the geodesic equations (3.1) we get,

[4-6]
   

instead of Eq.(2.1),                                                                                             

    d
2
u/dθ

2
 + u  - GM/A

2
- 3GMu

2
=0                     (3.4) 

where A = L/m, that is, GM/A
2 
= mα/L. In the Newtonian limit

[1]
we have 

                                           d
2
u/dθ

2
 + u = (GM/A

2
)                                 (3.5). 

  As GM/rc
2
 ~10

-8
 is very small,

[4-6] 
even for the planet Mercury, 

compared with the other ones it would be sufficient to solve Eq.(3.4) using 

the method of successive approximations. So, beginning the calculation 

with u given by the Newtonian equation (3.5) one can show putting, for 

simplicity θo = 0, that
[4-6] 

                                                                                            

                       1/r = (GMm
2
/L

2
){1 + ε cos[θ - 3(GMm/L)

2
θ]}       (3.6), 

 

which is a precessing ellipse orbit, putting A = L/m,
[4-6]

 

                        1/r = (GM/A
2
){1 + ε cos[θ  - 3(GM/A)

2
θ]}                 (3.7),  

showing  a perihelion precession
[1-3]

or perihelion shift = Δ  

        Δ  = 6π (GM/A)
2
                                         (3.8). 

Note that the precession is in the direction of the motion. (Fig.(3)). 
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Figure (3). Planetary orbit with perihelion precession.
[5]

   

 The predicted angular advance of the perihelion per revolution 

would be 6π (GM/A)
2
. To Mercury, Venus and Earth they would be, 

respectively, 43´´, 8.6´´and 3.8´´and the observed values being: 43´´, 

8.4´´and 5.0´´.
[ 4-6]

  

(3.2)Lagrangian Equations.                                                       
 For a timelike geodesic (massive particle) we may use its proper time 

τ as an affine parameter to obtain the 4 geodesic equations:
[7]

 

d(∂Ł/∂ẋ
μ
)dτ - (∂Ł/∂x

μ
) = 0 (3.9), 

where x* = dx/dτ and the Lagrangian Ł(x*
σ
, x

σ
) is given by

[7] 

Ł(x*
σ
, x

σ
) = (1/2) gμν x*

μ
 x*

ν
=

 

= (1/2){c
2
(1-2m/r)t*

2
- (1-2m/r)

-1
r*

2
- r

2
(θ*

2
+sin

2
θ ϕ*

2
)}(3.10) 

where the symbol * denotes derivatives with respect to τ, of the 

coordinates x
o
 = t, x

1
= x , x

2
 = θ and x

3
= ϕ. That is, t* = dt/dτ, x* = 

dx/dτ, θ* = dθ/dτ and ϕ* = dϕ/dτ.                                                           

 Due to the spherical symmetry, there is no loss of generality in 

confining our attention to particles moving in the equatorial plane with   

θ = π/2. With this value the third term (μ = 2) of Eqs.(3.9) is satisfied, 

and the second of these, with μ =1, reduces to
[7]

 

    (1-2m/r)
-1

[d
2
r/dτ

2
] + (mc

2
/r

2
)[dt/dτ]

2
- (1-2m/r)

-2
(m/r

2
)[dr/dτ]

2
 - r[dϕ/dτ]

2
 = 0    (3.11). 

 As these are cyclic coordinates,
[2,7]

 that is, ∂Ł/∂t*= const and 

∂Ł/∂ϕ*= const and taking into account that θ = π/2 we can get two 

integration constants, k and h:
[3,7]

 h = r
2
(dθ/dt) = L

2
/m and E = orbit 

energy = c
2
(k

2
-1)/h

2
. In this way, from Eq.(3.11) we get,                                                        

                     (du/dθ)
2 
+ u

2
 = E + (2GM/h

2
)u + (2GM/c

2
)u

3
                (3.12). 
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 For very small values 2GM/c
2
 << 1 results the Newtonian limit, in 

agreement with Section 1, that is
[2]

 

                                 (du/dθ)
2 

+ u
2
 = E + (2GM/h

2
)u                         (3.13),          

giving,                                                                                                                                                

                            u = 1/r = (GM/h
2
)[1 + ε cos(θ - θo)]                (3.14),   

where ε
2
 = 1 + Eh

4
/G

2
M

2
 . When 2GM/c

2
 << 1 we get,

[4-6]
                                          

                                 1/r = (GM/A
2
){1 + ε cos[θ  - 3(GM/A)

2
θ]}         (3.15),  

in agreement with Eq.(3.7), describing the perihelion precession.                                

  In what follows  we apply the Lagrange approach to study the 

particular case of the Restricted 3-body Problem.                                                                                                                                                                                           

  In this approach
 
the 3-body problem (see Figure 4) can be greatly 

simplified assuming that:
[8,9]

                                                                        

(a) One of the three masses ("test particle", 3) is so small that its effect on 

the motion of the other two is negligible.                                                                         

(b)The two large bodies with masses m1 and m2, are moving on circular 

paths about their center mass O.                                                                                                           

(c)The 3 bodies move in a same plane.                                                                                                                

 This could be, for instance, the motion of the Moon around the Earth 

and of a spacecraft with mass m3.
[8,9]

 

                                                

Figure (4).Three gravitating bodies (1, 2 and 3) in the same plane; 1 and 2 moving circularly 

around the point O. The mass m3 is much smaller than m1 and m2. 

 The objective of the restrict 3-body problem is to calculate the 

dynamics of the test particle 3 as it moves under the gravitational influence  

of the bodies 1 and 2. The problem is farther simplified by restricting the 

motion of the two primary masses (Earth and Moon) to circular orbits 

about their center of mass.
[8,9]

 As Einstein field equations are nonlinear they 

cannot in general be solved exactly. So, this problem studied by Vanex
[9]

 

using a post-Newtonian approximation developed by Weinberg.
[8]

 The 
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equations of motion of the test particles, x, y  and t, have been obtained by 

Vanex
[9]

 using the Lagrangian formalism: 

                Ł = (gij/2)(dx
i
/dτ)(dx

j
/dτ) = (gij/2) x

i*
 x

j*
                   (4.1),                                                                                                                                                                                   

taking into account that  

                                     (d/dτ)(∂Ł/∂x
μ
*) - (∂Ł/∂x

μ
) = 0                           (4.2)  

where x
μ
 (μ = 0,1,2) are functions of the proper time τ for an observer on 

the test particles. The equations of motion x
μ
** = d

2
x

μ
/dτ

2  
and dt/dτ = t*, 

with μ = 1, 2, have been obtained as functions of the time by numerical 

integration. The 3-bodies trajectories, that were estimated by numerical 

calculations, are seen in Wanex paper.
[9] 

The chaotic nature of the 3-body 

restricted motion in General Relativity was shown by Wanex.
[9]] 

                                                            

  To guarantee that these predictions are correct they must be identical 

to the motion equations of the (restricted) 3-body problem obtained in the  

Newtonian limit (c →∞). Indeed, under this limit it was verified that they 

match exactly with the equations for the Newtonian (restricted) 3-body 

problem according, for instance, to Moulton
[10]

, and Szebehely.
[11]

                                                

   

(5) Solar System Stability and Chaos. Comments                                           

 Before to analyze the Solar System stability let us remember the 

main aspects of the Chaos theory
[12] 

that was summarized by Edward 

Lorenz as:
[12,13]

 "When the present determines the future, but the 

approximate present does not approximately determines the future".

 It is an interdisciplinary area of scientific study and branch of 

mathematics focused on underlying patterns and deterministic laws of 

dynamical systems that are highly sensitive to initial conditions. The 

butterfly effect
 
for instance, an underlying example of chaos, describes how 

a small change in one state of a deterministic nonlinear system can result in 

large differences in a later state, meaning that there is sensitive dependence 

on initial conditions. Once it was thought to have completely random states 

of disorder and irregularities. However, this theory states that within the 

apparent randomness of chaotic complex systems, there are underlying 

patterns, interconnection, constant feedback loops, repetition, self-

similarity, fractals, and self-organization. In a few words, which seems a 

contradiction, this theory is "not completely chaotic"! The deterministic 

https://en.wikipedia.org/wiki/Interdisciplinary
https://en.wikipedia.org/wiki/Scientific_method
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Deterministic_system
https://en.wikipedia.org/wiki/Scientific_law
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Initial_conditions
https://en.wikipedia.org/wiki/Butterfly_effect
https://en.wikipedia.org/wiki/Nonlinear_system
https://en.wikipedia.org/wiki/Chaotic_complex_system
https://en.wikipedia.org/wiki/Feedback_loops
https://en.wikipedia.org/wiki/Self-similarity
https://en.wikipedia.org/wiki/Self-similarity
https://en.wikipedia.org/wiki/Fractals
https://en.wikipedia.org/wiki/Self-organization
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nature of these systems does not make them predictable. This behavior is 

known as deterministic chaos, or simply chaos. The theory of nonlinear 

dynamical systems (chaos theory), which deals with deterministic systems 

that exhibit a complicated, apparently random-looking behavior, has 

formed an interdisciplinary area of research and has affected almost every 

field of science in the last 20 years. Chaotic behavior exists in many natural 

systems, including fluid flow, heartbeat irregularities, weather, climate, 

sociology, computer science,..., and Solar System.
[14]

                                                                                

 The stability of the Solar System
[14]

 is a subject of much inquiry in 

astronomy. Though the planets motion, which have been observed for a 

very long time, seen to be stable, and will be in the short term, their weak 

gravitational effects on one another can add up in unpredictable ways. For 

this reason, the Solar System is chaotic in the technical sense of the 

mathematical chaos theory.
[15] 

 Even the most precise long-term models for 

orbital motion of the Solar System are not valid over more than a few of 

millions years.
[16]

The Solar System is stable in human terms, and far 

beyond: planets will not collide with each other or be ejected from the 

system in next billion years
[17]

and the Earth´s orbit will be relatively stable.                

 Since Newton´s law of gravitation (1687), mathematicians and 

astronomers (as Pierre -Symon Laplace, Gauss, Poincaré, Komolgorov,  

V.Arnold and J. Moser) have searched for stability evidence of the 

planetary motion and this quest led to many mathematical developments 

and several successive "proofs" of the Solar System stability
.[14]

                                    

 The planets' orbits are chaotic over longer timescales, in such a way 

that the whole Solar System possesses a   Lyapunov time   in the range of    

2–230 million years.
[14]

 In all cases, this means that the position of a planet 

along its orbit ultimately becomes impossible to predict with any certainty. 

In some cases, the orbits themselves may change dramatically. Such chaos 

manifests most strongly as changes in eccentricity, with some planets orbits 

becoming significantly more - or less - elliptical.
[14]

 In calculation, the 

unknowns include asteroids, the solar quadrupole moment, mass loss from 

the Sun through radiation and solar wind, drag of solar wind on planetary 

magnetospheres, galactic tidal forces, and effects from passing stars.
[14]   

 

https://en.wikipedia.org/wiki/Lyapunov_time
https://en.wikipedia.org/wiki/Orbital_eccentricity
https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Stability_of_the_Solar_System#cite_note-7
https://en.wikipedia.org/wiki/Asteroid
https://en.wikipedia.org/wiki/Quadrupole_moment
https://en.wikipedia.org/wiki/Sun
https://en.wikipedia.org/wiki/Solar_wind
https://en.wikipedia.org/wiki/Magnetosphere
https://en.wikipedia.org/wiki/Tidal_forces
https://en.wikipedia.org/wiki/Star
https://en.wikipedia.org/wiki/Stability_of_the_Solar_System#cite_note-8
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