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I. Description of the model

A massive gquantum particle is restricted to move on ﬁhe.one-
-dimensional half-space, [o,~) with a rigid wall at x = o. Its
motion is free, except for a "sqguare" potential barrier, starting
at x = 7, with height a and width b ; for simplicity, we shall

first assume that b 1is independent of a, and we will only later

(section IV) indicate the modifications to be brought tO'the'theory

when b is allowed to go to zero as a approaches infinity. The
Hamiltonian of the system for finite a 2 o is thus Ha = Ho + ayV

where (V£) (x) (x) £(x) for all f in ‘5'= 1?2( fo,») ,dx);

=X['TT,'!T+b]
Ho is the self-adjoint operator -4, where A is the Laplacian, with
domain [see X.3. in l)] 9°={¢~€ 6‘ ¢ and ¢' absolutely continuous;
" € 6 ; and p (o) = o} . Since V is bounded, 4@0 is also [see
V.4.1 in 2)] the domain of self-adjointness of H. Note that the
spectrum of Ha is [o,co)and is absolutely continuous with respeét
to Lebesgue measure; in particular, Ha 3> o for every finite azo,.

This system is thus the simplest possible, and well-known
[e.g. Ex. III.3 in 3>] , model for the tunnel effect. The purpose
of this paper is to present a precise mathematical analysis of the
asymptotic behaviour of this system as a tends to infinity.

In the limit of infinitely larée a , the physicist's intui-
tion is that the wall decouples the inside region I = [o,n] from
the outside region III = [ m+b, =); and that the evolution is free
in both of these regions, which are then limited by rigid walls at
Xx =0, n and 7 + b. The Hilbert space of the system thus becomes
600 = SI@ 6111 with 61 = fz( (o,7],ax), _SIII =f2([n+b,°°),dx) ;
and the evolution is governed by the self-adjoint operator
H = HIGB H given by -A 1in both regiohs, with respective

domaihs l): ZDI = {@ € ﬁSII¢ and ¢' absolutely continuous; @"c&};

and ¢(o0) = o = ¢ (Tr)j and BIII = {cb € GIII:d) and ¢ absolutely
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continuous; ¢" e ﬁs L,

'

and ¢ (w+b) = o} . Note that H_ is the
Friedrichs extension [see for instance VI.2.3 in 2)] in‘S°° of
the restriction of HO to the dense domain 291 = jaof\I>E5  Where
P is the projector from 6 onto 6 -

HIII is clearly unitarily equivalent to Ho’ and therefore
has absolutely continuous spectrum. HI on the other hand has
pureiy discrete spectrum { m? | m=1,2, ...}

Whereas Ha is obviously a perturbation of HO, it is not a
small perturbation away fromVHco . Our aim is to describe how H_
is nevertheless the limit of Ha as a tends to infinity, and to
control this limit well enough to allow an understanding of the .

exponential decay which one expects on physical grounds in the

tunnel effect.

II. Operator convergence

Before addressing the problem of exponential decay we want
in this section to elucidate the sense in which H_  is the limit

of"Ha as a tends to infinity.

Theorem II.l : For every ¢ in H , a domain of essential self-

adjointness of H_ . there exists { ¢a | ae (o,w)} < .2% such

thhat, as a»e : (i) || o, = ¢ [l = O’(a_l/z)

s -1/2
(i) |18, 0, - H o || =0 (a71/3

Proof: We can deal with regions I and III.separately. Let first

o € EDIII, which we embed in ES by setting ¢(x)=0 for all

X § X =1m+b. If ¢'(X) = 0, ¢ belongs to the domain of Ha as
well, so that (i) and (ii) are trivially satisfied by by =0 for
all a € (o,»). We can therefore suppose, without loss of genera-
lity, that ¢'(X) = Ao, and that thére exists £>é for which ¢

_/

does not vanish in (X,X+&] . Let ¢ and § be two non-increasing



functions in an-w,w) with £(x) = 1 for all xgo, £(x) = o for
all xzm; &§(x) = 1 for all xs5X, ¥(x) = o for all x3X+&. We
further define, for eyvery a>o and every X in [o,x] :

-1/2 1/2 }

wa(x) = A a exp { (x-X)a

One then verifies that an approximating net {¢aiae.(o,w)} , in

the sense of the theorem, is obtained by setting ¢a(x) equal to:

-a a”1/? exp(—X al/z)E(x) + v, (x) for xe I ={o,n])
v (x) for x€II =[ m,n+b]
A a'l/z ;(X) + d}(X) for xe€eIlIl = (_Tf+br°°)‘-

ar
Hence & '€ £ . A similar argument could be made for region I.

We however find it more instructive to construct explicitly one

approximating net { ¢;m)|a<e(o,w)} for each eigenvector ¢(m) 
(m=1,2, ...) of HI. We chose ¢(m)(x) = sin mx , and embed ¢(m)
in‘s by setting ¢(m)(x) = o for all xzm. For each m fixed,

we define m_ . with m_~m as a»e, by ma-l tan(maﬂ) = —a_l/Z, We

(m) 1/2

= a
a

and m-M are both 0(a

further introduce M sin(mav). Upon noticing that (m—ma)

l/2) as a»«, one verifies that an

approximating net{ ¢;m)ia e(o,w)} , in the sense of the theorem,

is obtained for ¢(m) by setting ¢;m)(x) equal to
sin (ma‘x) for x eI
M;m) a 1/? exp {(Tr—x)al/2 } for x € IT U III.

(m) im = 1,2, } is an orthogonal basis in BI '

I

Note that {¢
consisting of eigenvectors of HI; H™ is thus essentially self-
adjoint on the linear span of these vectors. The above argument

shows that this manifold is contained in E). We can therefore

prove the assertion of the theorem with

D = span {¢(m)lm = 1,2, ... }@ Em T g.e.d.

Let now {Ua(t)lte(—w,+w)} (resp. {Uw(t);te (-w,+M)} )



be the unitary group on FS (resp Esm) generated by Ha (resp. H_) .

Corollary II.2: For every o € FSOO and every Te [o,x)

-

lim SUP . opepl! U (8D - U (t)e || =0

a-—>®

Proof: With © as in Thm.II.1l, we have [ see V.3.4 in 2)]
{ (H_ -iI)¢ | e,@} dense in F)oo. The corollary then follows

directly from Kurtz' criterion 4)

in his theory of extended ope-
rator convergence.

Hence on the Hilbert space Esw corresponding to the limit
of an infinitely high wall, the time-evolution Ua(t) converges
strongly to the limiting time-evolution U,(t), uniformily in t
on compacts. The latter result (for b independent of a ) is

not new 5’6).

As a particular case of these papers, one has
indeed, as a—+~ , that the resolvant Ra(z) of Ha converges stron-
gly on Bw to the resolvant R_(z) of H, 2 for every z € C -[o,oo)
(in conformity with Cor. II.2, by a slight modification of the
classical argument [see IX.2.5 in 2)] ). Morevoer 6), it follows
from the strong resolvant convergence that, as a»« , the semi -

group { Sa(t) = exp (-Ha t)| t e [o,w)} converges strongly on st
to the semi-group {Sw(t) = exp (-H_t)!| t e [ o,m)j . The
estimate of Thm. II.1 however is new, and is of some independent

-~

interest | see in particular sections III and IV below } .

I1I. Decay

We saw in section II that the limiting dynamics corresponds
to the hard wall condition in the Hamiltonian H . The limiting
process has drastically changed the spectrum from continuous (Ha)
to discrete (H_ ). We now tﬁrn around and think of the initial

system as the one with infinitely high walls, and then bring down
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the wall to a finite, albeit very large, height. In such a-
scenario the spectrum of the relevant Hamiltonian makes a tran-
sition from discrete to continuous, a transition we want to in-
vestigate in details. For this purpose we use the spectral
transformation (or generalized Fourier transform) of Ha [for
these notions the reader may consult 7)]

In this simple model, we can solve the Schrddinger equation

exactly and obtain the eigenfunctions { Yy Cre [ 0,%) }

a(k) sin kx xe I=(o,7]
b0 = { B exp [-£(x-m] + 8, (k) exp [E(x-m]| xeTI=(r,mb]

v(k) sin [k (x-m-b) + & ] X e III=[n+b,®),
where we have written‘k2 = ) and % = (a-kz)l/z.

The coefficients -
a,B are determined in terms of Y by the requirement that vy be |
locally in the domain 150 of Ha' i.e. wx and w; be locailly
absolutely continuous. For most of our calculations we shall

need the details of only a , the latter turning out to be:

OL(k)2 = Y(k)2 [(sin2 kn - k2 g'z 0052 km) +
| 2, -1
a { k-lﬂ_(k) sin km + g—l n, (k) cos km } ] (L)
where n, (k) = [exp(ib)texp(—&b)] /2. We choose the normalization

y(k) = (nk)'l/2.

We take the initial situation to be the one with infinitely

l/2sin nx]

high walls and begin with an eigenmode ¢n [¢n(x) = (2/m)
of HI trapped in region I. The wall is then "lowered" from

a=» to some finite, but large a . We want the asymptotic
2

behaviour, as a»~ , of the probability ;(¢n,exp [—iHat] ¢n);
that the eigenmode ¢ (now evolving under the group exp [-iHat] )

will remain in the same mode after a time t has elapsed. From
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section II, Ua(t) converges strongly to U_(t) on ‘Slﬂ from this

follows that the above probability converges (uniformly in t on

compacts) to ||¢n[]2 = 1, as a»>» , Further information on the

»

rate of this convergence is of physical interest for the descrip-

tion of the tunnel effect. We observe that

00

(¢n, exp [—iHat] ¢n) = S da exp(-ikt)}@n(X)lz ' (2)
<Q
T *
where ¢n(A) = j ax wx(x) ¢n(x) (3)

o}

is the spectral representative (or generalized Fourier transform)

of o . We have

2 7 1 -1

-1 [ (k-n) ! sin(k-n)n - (k+n) sin(k+n)r |2

|2 (4)

o (A) = (2m) a(k)

The term in square-braket is bounded in k and converges to vz as
k-n; therefore, the major contribution will come from a(k)z.
From (1) one concludes that this contribution originates from
the neighbourhoods of the zeros of the a priori larger term
(as a»«) .This leads to the resonance equation (or approximate

eigenvalue eqn.):

F(k,a) 172

0 , O<k<a where (5)

F(k,a) =[n_k)/n, (k)] tan kv + [ k/g] (6)

We observe that F is €~ in a neighbourhodd of (n,«), with

F(n,») = 0 and Fk(n,w)E (3F/03k) (n,») # 0 . From the implicit

8)

function theorem there exists a positive ag large enough

such .that for all a>a the resonance equation (5) has a unique
solution k = kn(a) [ i.e. x=x(n,a) = kn(a)2 l with A(n,») = n2.
An asymptotic expansion of i(n,a) in terms of a—l/2 can now

be derived:

-1 -1/2 _
A(n,a) = n2 - 2 n2 ™ a [ n+/n_ ] +0(a

a=w

1 (8)



We remark that, as a-»», A(n,a) approaches the n-th eigenvalue

of HI. Thus the resonance equation (5), by itself, asymptotically

1)

»

selects HI from the one-dimensional manifold spanned by the

self-adjoint extensions of the symmetric operator obtained as the
. » - I

restriction of HO (or Ha) to /@OnP 6 .

The phase-shift 6§ in the eigenfunction in region III is

1 1

tan s =k £ [ tankn + k £7F (n_ /n,) ] Flk,a) T, (9)

From this follows that the phase-shift at resonance 1is 6n=ﬂ/2.

Moreover

_ _ 2 -2
[as/ak ] (k=k_(a)) = €] k “ n (k) n_(k )F (k_,a) (10)

which is a large positive number. This is in conformity with
the conventional definition of a resonance. The amplitude at

resonance 1is

2

_ 2 -2
a(kn) = Y(kn) n

L2 [sink 7] (11)

From section 1I, recall that for every z € C - Lo,=),
(z = Ha)-—l o>(z - Hw)-l¢ for all ¢ € ESI. We thus expect [see
VIII.5.2 in 2)] to have a "spectral concentration", expressing
that the spectral measure of Ha concentrates, as a becomes

large, in some neighbourhoods of the eigenvalues n2 of HI . We

oo
now want to compute the details of this concentration, i.e. 1in
physical terms, the asymptotic line shape as a»x

Let us denote by { Ea(x): A e [o,m)} the spectral family of
Ha' Since Ha is spectrally absolutely continuous, there exist

positive, integrable functions fa(n,x) such that for every

real ¢ and 4 :

d
(6,0 By (Lcyddroy = S dx f_(n,3) (12)

C




The next theorem states the asymptotic properties of;fa(n,.) as

a—)a)

Theorem III.l: Let X(n,a) and { fa(n,.)i a € [o,w{}be defined as

above, and let

- « -1 .

Fn,a) =2 1 F amya>? [a - An,a) ] n_k_(a)?® (13
Then fa(n,k) = | ¢n(k)l 2 [see (4)} ', and the functions ga(n,.)}
defined on (-», +x) by:

g, (n,h) = '(n,a)ffn,A(n,a) +h ['(n,a)) (14)

converge as a-»», pointwise and in lfl -norm to g(.) with

gm) =[r @ +n3H ] 7t

Proof: The first assertion follows directly from (12). Upon

using (6), we rewrite (1) as

Ot(k)z/\((k)z:[sec2 k’lT][ k% £72 n_"2 -2x £t ni n:ZF
-4
-2 2 2 =2 2
+(ak “nf+ nyn_)F ] 1)
since F{(\(n,a), a) =0 and F is a c” function in a neighborhood

of (n,»), we have the Taylor expansion :

F(k,a) = [A-x(n,a)] F, (x(n,a),a) + 2™ [ a-a(n,a) ] 2 F,,(xsa)

- 207t F (k_(a),a) Tm,ah+ 27 F (La) Tmade® (16
where we defined h by
A = A(n,a) +h I(n,a) (17)

From (13), (15) and (16), we see that :

2

Finya)a(o? = 2172 [ 1-28(n,a)b + b2 + 0(r(n,a)) ] 7Y (8



) ~1/2
where A(n,a) [ n+/n_] a k (a). (19)

Since for any fixed real h, we can find a?»o large enough so that
A = A(n,a) + I'(n,a)h>0 we have, for such h, that

I'(n,a) fa(ﬁ,x(n,a) + F(n,a)h) approches g(h) as a tends to infi-
nity, pointwise in h. On the other hand, upon setting ga(n,h)=0

for h<- A(n,a)/ T'(n,a), we have:

4o o
dh g_(n,h) = dx f_(n,)) =1 for all a>o.
- 0
Since the fl'-norm of g 1is also 1, we have 2) that ga(n,J
converges to gf(.) in .Zl'-norm. g.e.d.

The theorem has two corollaries, both of which can be ob-

tained as in 9).
Corollary I1II1I1.2 : For any hl<h2 real
lim (¢, ,E, [ 2(n,a) +r(n,ah), x(n,a) +r(n,ah, | o))

By
= J ah [n(1+h?) ] 72

hy

This result gives the explicit form of the spectral concentration:
for large a , the resonance approaches a Lorentzian, centered

around X (n,a), and of width T (n,a) given by (13).

Corollary III.3 : For any Tt 2 O

lim a-»w (d)n’ exp [ -1i { Ha" A(n,a)} F(n,a)-lT} ¢n) = exp (_t) ’

and the convergence is uniform in Ogr<e .



-10-
2
Consequently, the probability |(¢n, exp [ —iHa F(n,a)—lr] ¢n)]
behaves asymptotically as eép(-ZT) when a-»« . Upon reintroducing.
the unscaled time t = F(n,a)-lT , we thus find that, for large
(t) ¢_)| behaves as exp [ -2 I'(n,a)t ] . 1In
other words, as we "lower" the barrier from infinite height to
a finite, but large one, we can interpret [ 2 T(n,a) ] -1 as
the half-1life of the eigenmode ¢n. This confirms the usual
relation between the half-line width of a resonance and the half-
life time of its decay. The above calculation indeed shows in a
precise manner how the scaling in energy is inversely related to
the scaling in time. The rescaled time 1 is of the order of
1“(n,a)-l , L.e. a exp(al/zb), which is very large; hence the
decay of the eigenmodes indeed takes place very slowly; equiva-
lently the resonances are very sharp, with a very small line-
width.

At this point it is worth mentioning that since al/zr(n,a)
+0 as a-w , there is no contradiction between Thm II.1l and
Thm III.1 (or Cors.III.2 and 3), thus bypassing the objection
raised by Davies [ compare indeed these results with conditions
(2) and (4=7) in 2] .

A computation, similar to that carried above, can be made
for the off-diagonal elements of exp [ -iHaT/F(n,a)] in fSI’
indicating that the eigenmode n not only decays, but actually

leaks out of region I.
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IV. Generalization of the model

The generalization consists in allowing b»0o as a»» , i.e.
1/2

more precisely : b = 0(a”) with v<0. If 0>v> -1/2 (or a b

as a»wo), the construction and the proof of Theorem II.l1 remain

essentially unchanged. 1In this case however, the concept of ex-

4)

tended operator convergence
6)

takes full force and goes beyond

the case studied in _gnzﬂ'la'l/z

+ 0(a™%) while T'(n,a)= 8n

Also (AX) (n,a):= A(n,a)ﬁ—n2 =

3 ﬂ—l a-l 1/2

exp(-2 a b) , showing that

the half-width still is exponentially small compared to the shift,

If v=-1/2 (i.e. a1/2b+s>o), (M)(n,a)=-2n2 w’l a-l/2 coth B
+ 0(a™ty ana I'(n,a)= 2nd 71 571 cosec26 . If however =-1/2 >
v> - 1 (i.e. ab=A+» as a»»), the resonance equation (5.6) has
no solution, and it should be modified to read:
G(k,a) = at’2 F(k,a) = o (20)

This modified resonance equation has a unique solution A(n,a) in

2 -1 ,-1
gl

the neighbourhood of n2, and we have (A)) (n,a)=x -2n A ,

while T (n,a)-= 2n3 n-l A-2 . In all these cases, one has spectral
concentration and decay in the sense of section III. Moreover,
upon using the estimates of section III, one proves again that
exp(—iHat)f converges strongly to exp(—iHIt)f as a»» , for

all £ in R '. Finally, if vg -1 (i.e. ab ~finite, possibly
zero, limit), none of the considerations of section III applies,
and even the modified resonance equation (20) fails to have a
solution near n2; in fact, in the extreme case where b = 0(a ),
Ha [resp.Ua(t)] clearly converges strongly to HO [resp.Uo(t)] :

the wall has become completely transparent.
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V. Conclusions

The model is non-pertubative by nature, Yet it is simple
enough to be exactly solvablé, and to allow a precise control
of its asymptotic beahviour as a approaches infinity. It is
moreover sophisticated enough to exhibit a host of interesting
features, both physical and mathematical, which we briefly review
on the basis of our analysis.

First of all, the model exhibits exponential decay, although
all the Hamiltonians occuring in the problem are uniformly bounded
below, namely by zero. This should be contrasted with the situation
encountered in non-equilibrium statistical mechanics, where the
presence of an infinite bath at finite temperature allows the
yenerator of the time-evolution to have Lebesgue spectrum,covering
the whole real line [for general arguments to this effect, as

10,11) ]

well as for models, see for instance The exponential

decay found in the present model emphasizes the role of the re-

scaling in time, which allows to bypass the usual no-go theorems

10)

[ e.g. 7.3.3 in by the mechanism described in section III.

This mechanism appears to be quite different from that occuring

in the van Hove limit of statistical mechanics 10’12).

We might remark here that the exact asymptotic life-time and
width found in this model coincide with the value found in the

WKB approximation [ see for instance 3)] ; a similar feature has

13)

been noticed also in This coincidence with the exact result,

found by an unperturbative approach, seems to have a status similar

to that of the Born approximation in the master equation theory

[ see e.dg. lz)]

The decay found in the present model can be related to the

phenomenon known in physics as "weak quantization” ['see for ins-

14)

tance p.251 in 4, or pp. 403-408 in *>’ ] . The physical
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picture is given a firm mathematical basis in this model; we
indeed saw that the point spectrum, encountered when the inside
region I is decoupled from the outside by an infinitely high
hard wall, only persi;ts, as the wall is lowered, in the form

of Lorentzian resonances : the higher the wall, the sharper the
resonances; still for any finite height of the wall, the spectrum
- of the Hamiltonian remains absolutely continuous with respect to
Lebesgue measure. This phenomena is also known in the mathema -

tical literature [e.g. 2)]

as "spectral concentration". It
should be however noticed that, for b = O(av) with 02z2v>-1/2, the
spectral concentration found in the present model is much stronger
than the usual concentration of polynomial type 9)’16).

Whereas the presént model describes very well the qualitative
features of the tunhel effect, its one-dimensional character.
should be removed for a realistic theory of a-decay. On the
other hand, the model as it stands, presents some instructive
analogy with the laser, its finite high wall playing the rolé of
a semi-transparent mirror. Some of the qualitative asymptotic‘

7)

features of the model are also found L , upon using the techni?
ques of S-matrix theory, when the semi-transparent mirror is
mimicked by a "é-function potential of strength A"; in the latﬁer
case, the limit of large A plays the role of our limit of large
a. Incidentally, the form=sum HO+ Aéﬂ can be obtained as the
form-limit, when a+® , of H with b = Aa_l(A#o). When ab-o, one
finds Ho back. A true theory of the laser would however require
two modifications of the present model. Firstly, the Maxwell
equation, rather than the Schr&dinger equation for a massive
particle, should be taken as the starting point; secondly, a
second-quantization, rather than first—quanﬁization, formalism

should be used. Nevertheless, it seems likely that the pheno-

menon of "weak quantization", or "spectral concentration", would
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persist in such a complete theory, and that it could provide a

useful basis for its discussion.

»
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