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ABSTRACT

The sufficient condition for an extremum in the classical action
¢ - integral is studied using Morse's theory. Applications to the classical
harmonic and anharmonic oscillators are made. The analogy of the calcu-

lations to the quantum mechanical problems in one dimension is stressed.
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I. Introduction

Although the development of class1cel dynam1cs requ1res ba51Cdlly the_
;neeessarylcond1t1on of extremum of the c1ass1cal action’ 1ntegral 1)-th_e
'oxtent1on to quantun dynam1cs in 1ts semlclassical approximate form.requires

”ila deta1led knowledge of the consequences of the suff1c1ent cond1t1ons 2). for

‘hfobta1n1ng such an . extremum. Worse 3) has" developed powerful. methods for

deallng with this problem. By con51der1ng the 1nf1n1te51mal variations of

fithe'classical path“that minimizes (or maxlmlzes]jthe action integral to-
Enspen3ellineerrflnite—dinensional'Hilbert.space;‘MorSe transforned the
'Z.sufflcient‘COnditlon.problem.into.a.houndary”value'problem;* The resemblance
.'tovquantun!mechanics.becomes:quite apparent when.one:diSCusSes specific
:.;problems We found the appllcatlon of Morse's theory to the usual and .

h'famlllar problems encountered in advanced undergraduate c13551cal mechanlcs

..‘_:COUTSGS‘qute useful and 1ntr1gu1ng calculat1ons. On the other hand the

. assumed fam1l1ar1ty of 1uuiergraduates taklng such courses wrth inter--

'hmed1atetquantum mechanlcs‘makes such calculatlons*w1th1n;thelr:grasp;“;ln;
nthis'papérlwe‘shall discuss:the‘sufflcient-condition for an.ektrenun in the

ﬂl.c13551cal actlon 1ntegra1 using s1mple bounddry value problem language.}d-‘
‘The usual dlSCUSSlOﬂ of the suff1c1ent condition using geometrlcal con51d—

‘ﬁ_eratlon can be found in Ref' 4,

In Sect1on II we glVe a. brlef 1ntroductzon to Morse' s theory and dls~ R

'ri Cuss . the general case of eystems w1th n- degree of freedom " In Sectlon III

”1"we apply the method to the harmon1c osc1llator as well as’ to the symmetr1c

o and‘asymmetrlc anharmon1c'osc1llator;_and show the analogy to ‘one-dimension-

al quantumlmechanicallproblems.f In Section_IV we present the.resultsdof,



]

. numerical calculations for the three systems considered. Finally, in

Section V we present some discussions of our work and end the section with

several conclusions,

I1. Sufficient and Necessary Conditions for Extremum

in the Classical Action Integral (Hamilton Function)

The starting point of analytical mechanics is Hamilton's principal

expressed by
G‘I(tl’tz) =0

where - - ' E | .f .' o ‘ f ". | _f:  3 5(1) 
I(tl,tz) = J d.t_i((l(t)aél(t)st)
t .

andJQ is the Lagrangian function pertaining to a general classical system -

with n degrees of freedom. We shall assume no constraints so that the

generalized coordinates {q(t)} = 4,54, «-. g are linearly independent.

-~ We consider conservative systems only.

The symbol § stands for_the variation.of the classical path {qcl(tj}
which leaves the'endpoints'unchanged. The reéultant-éqhafion for {q_, (t)}
are the Lagrange equations of mofion. The above condition on I constitutes
a necessary condition for extremum, In order to investigate the suffi-

cient condition, one has to investigate the second variation of I
0 | (2)
where the first inequality stands for a minimum, the second for a maximum,

and the equality sign stands for aninflection point in I(ti’tz)‘




Realizing‘the variation § by considering the change q; -+ qi(t) * ni(t)

one can write Eq. (2) as follaws

Tt
2 2 ; 2 . L
2 3 . 3 *
8“1 = § J [ ' ] M, + 2[ 5 ] n.N.
. 5 t, { aqiaqj {qCI}_ i) ququ {qCI} i'j
2 _ "- . _ o Z _
i [a? 3'] i j] de o (3)
%957 4q |
t2
= %—[ 22 4 20
51

with ni(tl) = ni(tz) = 0, In Eq. {(3) the quantities in round brackets are

evaluated at Eh which solves Lagrange's equation of motion.

= qcli
* The quantity;ﬁ!z) which is defined in Eq. (3) is called the secondary

_‘Lagrangian, By performing partial iﬁtegration of the second and third term

in Eq. (3) we cast Eq. (3) in the following form:

t

2
§%1 = 7 f n; (t) Aij nj(t) dt
ij t1
where _ _ : - N €
d d - d '
-and -

, .

Pij = (5'3‘53"]

. %%y {qci}




The form of. 6 I in Eq (4) is quite convenient as one is expre551ng 621 ‘as’ .

. a sum of matrix’ element ‘involving the vectors {n } and the operator A
Def1n1ng,a~soalar product. ‘
> : S 2 o o
'(n-l,nj) = f dt n,(t) Ny, o N 3}
S S L ;
: o1 :
”'.Twe:are then deaiing'with variatiops-{ni}gthat;spen,an n—dimentiohal'linear_

: vector: [Hllbert) space. ‘

We seek to dlagonallze the operator A. Thls is done e3511y by expand—

'e;elng n in an orthonormal ba51s in the Hllbert space | |

n(t) = Za u' (t)

-._with' .

©2 n . ﬁﬁ L o '

J' u (tyu (t)dt =8, (6)
‘ . nn _ .

ty . o _ R -

Then .

821 = T oA 'aﬁen'

=
i

nn' —.(uﬁr Aun‘)'..' Lo iri'.' S (7)' .
_ t2 n: _ . .. S

) f wi() Aol de

i 13 tl_ _ 1-‘ . RS A

N

R basis {u (t)} whlch d1agona11zes {A } is‘given_by'the;solﬂtionoofJ

”:Morse s boundary value problem

Ao =a e (8)




. It is clear that {Aﬁ} are all real since_ﬁ‘is a self-conjugate (A'= AT

 operator

For systems with one degree of freedomEq. (10) is analogous to the one- -

6
'Qwithlui(ﬁi};=:ui(£2) =0, (i =1 yivs B) then_’.-
B B R Y O I
: . n ' ‘ o ‘ : : :

+

3)

.;.'thation-tgj is an;importaﬁt'fesult-as,it_shows_that the con- .

 _ditions iHZEQ- (2) can be recast into conditions on the eigenvalues {Xn};
 'In'the,ca5e-£hat_a11 {An}'> 0, one would have an. absolute minimum in the

. dction:

It is interesting to note that in. cases where Pij)iS3indepEndent

'of[tiﬁé:and Qij = 0, Eq. (8) can be written as

2

o d® | n;, . _ ,.0 o
u(t)) = ut,) =0

. : . : . : pl
.dimensional quantum mechanical problem of a particle of "mass' m = 55
confined in the'Spacéd't, - t. by two infinite barriers. at “"distances"

1 2

"t and t, and subject to a potential R(t). The time t plays the role of

1

- distance.  The '"quantized energy” of the particle is given-by_hn}“

| - II1. The Harmonic and Anharmonic Oscillator =

in One Dimension

In the case of the one-dimensional harmonic oscillator~whose.Lagrangian:

~is given by

an




1 2. 1., 2 '
£ - > mQ- 5 kq : (11}

where m is the mass and k 15 the strength constants respectively, Eq. (10)

takes the simple form

d2 2 n An n
—3 - i) - ft) = — u (1) {12)
o - m .
dt
n - .n -
u (tl) u (t2) = 0
o m
Thus the "potential" R(t) = -uﬁm is attraétive and constant, The solution

of Lg. (12) is well-known and can be found in most quantum mechapics text

bocks. Taking ty = 0, we héve

A 2 . - ' '

n_[nmw 2 - - :

_n'{__[t] _wO ) (13)
2

n=1, 2,

The solutions un(t) take the form:

It is clear from Egs. (9) and (13} that the action integral for the simple

harmonic oscillator is minimum for time intervals tz_that satisfy the

inequality:

. ol

where T is the period T = —— .

Cu? () =//z: sin(yt . _ | (14)
| Y

(15) .



For t, larger than_% there would be several eigenvalues Ay whose contri-

bution to 6°I is negative. The number, v, of such negative eigenvalues

is called the index of.thé classical path qcl(t).z) For a given value of

t2, Vv is given by

v = : | - (16)

~Considering now the case of the anharmonic oscillator whose Lagrangian 5

we write as:

1 2 1 ' |
=5mq - 5kq" + =gq (17)

‘where s > 2.and @ could be positive or negative.

-In this case Eq.'(IO) becomes

d? 2 5-2 n N |
- - Eno - o{s=-1) Gey (ti] u (t} = An u (t) {18)
dt _ o
with
n,. _ N _ .
u (tl—O) =0 =u (t2)
- One sees that now the "potential' R(t) = -mim + oam(s-l)qsu2 (t) is an

explicit function of time and has to be constructed from the knowledge of

the solution, q_,{t), of the equation of motion:
cl 4

r .2 ' o
d 2 s-1
(Ezg + wo)]qcl(t) = o q . (t) : . Flg)

. -with the appropriate initial conditions, e.g.,

a.,0) = A 4y (0) = 0



It is 1mportant to note that in the case of the anharmonlc oscillator
'the elgenvalues Ay deﬁénd on the 1n1t1a1 condltlons | Thls fact is to be
contrasted w1th our results for the harmonlc OSC111ator Eq (iS)QI_ Short
of obtaining an exact analytical solution for qcl(t) and thus for.R(t) in
the case of the anharmonic osciliétor, we.resort to pértUrbafion_treatment.
We follow thelrénormalization techniqués described by Marion5 through
‘which one can get rid of"uﬁﬁaﬂfed nbﬁperiodic terms in the.éélution. We find
for the renormalized frequencylof the AHO to second order in a:

5-2

mz N mZ s w2 i A (s-1)!
0 4] - 25-2 R ; g'|_‘
G-
24 | g3 [(s~ij']2\ P
+ o T75-4 32 (,.__:;33)
2957 %% | £23  s-1-f,, (Solef s*L-
X 1 : ; : . ' (20)
[(s-1)7-1] '
W2y 2 ol 0Lz (s- 1)AZs Y -1 (s-2)! 1
. T 2954 2 | s-1.. s-1.. .s-3.. s-1 2
LGS &dgh -t
5-3 -
- Z, ~ “s= 3+f
g2 &hEth
X ' (5"2)’ 2_ |, s = odd

= Edrethy ¢y
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It is easy to show that with-the above renormalized frequencies the

resulting solution of the AHO is a sum of periodic terms. To first order

in o we obtain:

s-1 |
q(t) = Acoswt - « z af_cosfmt_ , s=even §
' | £=3 o '
. '5_1' ( 1)' ' (2.]_) ‘
Cq(t) = Acosuit + 0 Sy ———STtt
' - 2T T Eillgrgill v
202t
s-1
-a ) agcosfut , s =odd
f=2 BRI :
where the coefficient ap is given by -
" AS? 1 (s-1)!
£ 252 mz(fz-l) s=1-f, .5-1+f,
D EFH e,

Given the above solution one may then construct the potential R(t) to the

desired order. To second order in o we obtain:

R(t) = -k + mbt(s—l),«\s"z((:ostm:.js_2
s-1
- muz(s-l)(s-ZJ AS"E;((:oscut)s-3 Z afcosfmt : s = even
=3 . .
O s 48=2. g2 | (22)
R(t) = -k + ma(s-1) A “(coswt)
25-4 .
+ma2(s-1)(s—2) ————e (coswt)sfz. (=)t
2571,2

reSm1ly,q2
IE)

2 -3 3 stl
-ma (s~1)(s-2)A - (coswt)s“ fzz afcosfwt s 5 = opdd
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.'~,;It should be clear that s1nce ‘the frequency W whlch appears in R(t) is the

_'renormallzed frequency the above expression 1mp1101t1y contalns terms hlgher

‘5'than.seCOnd order in a. The_dependence of R{t). on the_lnltlal-condltlons,

1}é7,-A ;"qd is quite apparent in Eq..(22).

In obtalnlng an appr0x1mate solutlon, u” (t), of Eq (18), we use the
' usual non-degenerate"perturbatlon_theory Expandlng u (t) 'in terms of the '

~ §0 sblutibﬁs of Eq. '(14) and grouping terms of different orders in o, we'

' S5- 2 m

o (uH, y o
o 0*%0 “Ho' m o
- un(t) _= Ho(t) + 0‘(5 1) E HO HO . HO(t)"O(O" ) ]
T . .. mEn A AT s :
- ’ PR S o
. m n
I D L
A Ay rals-D g ag (t?L“Ho) v @
. ( n m )(u G- 2 n 3
IR IR B uHO’qHO Uno) Mo+ 90 Mo
+a’(s-1" ) N
men - A
+ O (S 1) (S 2) (uHo) qHO ) + O(CL ) F

f[WherequO(t):is'the:classicalisolufibntof?the;simplégharmonic osci1iator's -

equation of motion. -
' Equations (23) are the ones that we shali use to obtain numerical re-
sultslfor‘the_asymmetrical_(s‘= 2) and:symmetrical (s =4) anharmohic; L

‘oscillators. - -
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In the following we consider anharmonic oscillators whose deviations

from the harmonic oscillator are given by %ﬂ q3 and %E q4 respectively.

Moreover, we assume for the strength o and B the following form:

3w2
0

o= —

qu

(24)

.4w2
s}

2
o]

c'q
with ¢ and ¢' varied to stremgthen or weaken the anharmonic terms.
In Fig. 1 we present the numerical results of our work based on the -
perturbative result Bq.'(zsz, Thé number of terms included in the az term:

of Eq. (23) is 4. As can be seen, with the values ¢ = %5 and ¢t = 22

taken as representing small perturbation and taking t, = 0.5 THO

the quantity "25’ which represents the spectrum of the "Hamiltonian'-
m
o ,2

5 + R(t) becomes negative at n=1 only in the case of

like operator =
dt

the symmetrical anharmonic oscillator. It should be clear, however, that

for larger value of anharmonic terms (in which case a more exact diagon-

alization procedure is required to get An) the An of the asymmetrical

anharmonic oscillator would also become negative at some permissible

integer n. Moreover, changing the value of the time interval, t_, would

2
also change the result. As we have seen from Eq. (13) the An of the

harmonic oscillator becomes negative at several n's in the case t, > T/2,

2
Finally, since the initial conditions do become relevant in determining.
An for the anharmonic oscillator, it is obvious that our results would

be altered through changes in the initial velocity and/or initial position

of the systen,




‘,;'5 .
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IV. - Discussions and Conclusions

We have shown ‘in thls paper how a s1mple and 1nterest1ng way to

*f5dlscuss the suff1c1ent condltlon of extremum in the c13551ca1 actlon

1ntegral c¢an be deve]oped using 1 Viorse s theory " The analogy w1th one-

dlmen51onal quantum mechanlcal problems becomes qu1te apparent for thc

":several eaSes_worked-Out:here.'-Thlsnthen‘leads.to methods of.calculatlon:
.WhLLh are quite familiar and easy to use. In theHCase ofkthe.one—dimen—
e ‘glonal harmon1c and anharmonlc osc1llators welhave seen that the 1n1t1al
f_fcendittonsharetrelevanteonly to_the‘latter case;’andﬁthese 1n1t1a1 values;-

'of'qsahd‘ihdo‘haVe,a role-in determining'the part of the spectrum, Xﬂ,,.»

which gtves a negatlve contrlbutlon to 6 I. This is an’ 1nterest1ng p01nt

1nsofar as: determlnlng the 1ndex of ‘the c1a551cal trajectory,f';'ls concerned
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_ FIGURE CAPTIONS

)

'Eig;‘i,, . The spectrum of the Hamiltonian-like operator - ;Ei + R(t)

dt

for the three cases indicated. ‘The details of the calculation _".

~are given in the text.
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