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ABSTRACT

Dynamical components in the heavy-ion optical potential are calculated.
Special emphasis is given to the dynamical components resulting from coupling

to inelastic channels at sub-barrier energies. The component arising from
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both Coulomb and nuclear coupling is calculated to lowest order using the
on-energy-shell approximation for the channel Green's function. A similar
approximation is used to calculate the dynamical components arising from

particle. transfer coupling.
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I. Introduction

Most investigations of heavy-ion optical potentials have concentrated

1)

on calculating the real part of the potential. Microscopic theories based
on the folding modelz) as well as macroscopic theories, e.g., the proximity

model, have been developed and exten51ve1y dlscussed in the last few years

Recently there has been an upsurge of 1nterest in calculating the imaginary
part of the optical potential based on simple physical models. This interest
stems from the general recognition of the importance of considering, explicit-
ly, the possible strong coupling of the elastic channel to several reaction
channels. Generally, the components in the optical potential arising from

the coupling to a specific channel are complex and we shall call these

dynamical components. In contrast, we shall call the real part derived from

the folding model and the imaginary part that simulates strong absorption

static . components.

In this paper we present a short review of some of the recent attempts
to calculate the dynamical components in the heavy-ion optical potential..
In view of the specidal importance of the sub-barrier coupling to low-lying
collective states in modifying the heavy-ion elastic scattering we shall
devote a major part of the present review to calculating what has become

known as the dynamic polarization poténtial. This we do in Section II where

we shall present two methods: one, the Feshbach reduction procedure, starts
with the full coupled channels equations; the other, the semiclassical in-

verse scattering procedure, is based on Feynman's path integral method. In
Section ITI we discuss the inclusion of nuclear exc1tat10n into the dynaml— :

cal polarlzatlon potentlal The dynam1ca1 component in the opt1ca1 potent1a1



arising from the coupling to a transfer channel is then discussed and derived

in Section IV. Finally, in Section V we give several concluding remarks.

II. Dynamib'Compdnehts in the'Optiéal Potential

Due to Inelastic Coupling

Recently, Love et al.s) and Balfz ef a1;4) have applied the.Féshbach.
formalisﬁ to the calculation of the absorptive Potential in the elastic.
channel for the case of Coulomb excitation. In their calculation the poteﬁ;
tial was expanded in a perturbatlon series which was carrled out to the.:
lowest non-trivial term. This implies that only the coupling to the flrst
excited state is considered, and thus multiple-step processes, such as those
taking plage in multiple Coulomb excitation, were not included iﬁ the calcu-
1afi§nf It.is, however, well-known that multiple Coulomb excitation is fre-
quently important in heavy—ion cpllisions. It is thefefore necessary to |
con51der all higher order terms in the perturbatlon serles within some manage-
able approx1mat10n. We should say at the outset that our interest in the
dynamic polarization potential, which simulates multlple.Coulomb exc;tatloﬁ.
effects_qn the elasfic channel, is not so much in obtaining fhe corfect sub-
barrier elastic cross section but rather in its possible use to.genérate.”'
distorted waves which can be then utilized to calculate amplitudes for quasi-
elastic processes involving strongly deformed nuclei.

In this section we shall presenf.two methods for calculating the Coulomb
polarization potential. The first one is based. on the Feshbach reduction

procedure referred to above. The second is a semiclassical inversion pro-

_cedure based on Feynman's path integral method.
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‘A, Feshbach's Rediction Method

In this method one starts with a set of coupled channels equations

5)

describingrmultiple Coulqmb excitation :_and e;iminates all chamnels in
favor of the‘eiestie oné. The‘resulting.effective equation describing the
system in the elastlc channel contalns an effectlve, nonlocal complex energy-
dependent orbltal angular momentum-dependent potential descr1b1ng the effect
of the e11m1nated channels on the eiastlc channel One then proceeds to _
construct tr1v1a11y-equ1va1ent local potent1als 3 From the formal po1nt
of v1ew-the_above_prescr1pt10n is easy to realize. However, for the purpose_
of obtaihiﬁg clesed_expressions.fof.the dynamic pe}atizationlﬁotentiai; one
needs‘to.resott‘to seVerei apﬁrokiﬁations iﬁ.refs; 6 ahd 7 the fesﬁbech -
reductlon method was utilized to obtaln the polarization potentlal w1th1n
the approx1mat1on of replac1ng the channel Green's functions by thelr on-
energy-shell (separable) forms. We shall not repeat the steps that lead to
the derivation of the potentiai but refer the reader to refs. 6 and 7 for
details. Here we give the final results for the Coulomb polarization poteh-

tial (CPP) calculated without nuclear excitation. Assuming a quadrupole

character for the excited states in the target nucleus we obtain for the CPP:

: . 2 :

where F( iy).is‘a.threefpomppnent vector given by
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_with Fl(kjr) being thg ;eguigr_Coulpmb:waye4fqutiqq in.channel J (whose..
orbital angular momentum is given by-f + ﬁo with I_beipg ;he:intrinsic spin
and Io,referring to the orbital angular momentum in the entrance channel,
which we take to be the ground statfﬂ The asymptotic wave number is denoted
by k. The matrices aRI 21 enter in the def1n1t10n of the coupllng matrices

C vis

1 ‘ oo _
B3 S5 L A N Tpeglkpeskpd ' (3)
where IR'Q(kI"kIJ are the usual Coulomb excitation integrals.?)- The explicit
form of aQI,QI' is

- - _ 1 1 2)
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V(2I+1) (21'+1) /{2E+1)(2£'f1) (4)
/
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A CAR

where a, is half the distance of closed approach for head-on collision in

i
. 2122e . -5 leze
I~ Z(E EI) O | -ﬁvI "1

in channel:I (with Ze being the charge of nucleus i and vy the asymptotic ..

channel I, a = kya, is the Sommerfeld parameter

velocity in channel I) and Ay is the symmetrized dimensionless quadrupole

strength parameter for the coupling I » I' which is defined by

/., /’n.—nIl <II’M[EZ)".I'\ X

q
> ay 1- 2,8

(5)
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In the limit of'é'puré quadrupole rotational band and Zéro'enéfgy loss is the
different excitation processes we have
T+1t+2
qI+I’ = (“1) q0+2 (6)
The matrix propagator Ll+i§]5§ has the following structure

[rC]5; = (185, () + & o D LHEW 154 &yp (W7

where [1+q;(£)];i is the matrix propagator associated with the.4f;channe1..
and contains all C's pertaining to I = 4.
In order to obtain closeJexpressions for'\fg(r), we invoke the usual

semiclassical approximation

Tpor Gepokp) = Tpoy(kpsky) /e 1 (B o) 7

8)

where the gI+I'vs'a£e the semiclassical ehergy loss factors ° and £I+I' is

the adiabaticity parameter defined through

n EI'“EI .

| . S
B TN Y TTE o (8)

EI is the intrinsic excitation energy of state I. With the use of the usual

recursion formulae that connect the Coulomb functions, we were able to: cast.

our potential Eq. (1) in the simple form -

... & b, ' ¢
VR’(I’) =“1(..-.—§ e 3 + ""“‘5) . (9)
: T r T

where the complex coefficients agf bﬂ and'cg depend on qI»I"€I+I"the center

of mass energy, E, and the orbital angular momentum 2. In Figs. 1 and 2 we




we exhibit these coefficients as functions of q and &, respectively. Included
in this calculation are states up to J = 16. All Gpsyr Were set equal to 1.
It is clear that the 1mag1nary part of Vg(r), determlned by Re aps Re Bg dnd

Re Cy, behaves basically like T -3 for small values of %(- 2+1/2

-—==) whereas for
large f'it goes as r'$,~_This fact seems to hold irrespectlve of the value
of q. The ¥eal part of Vﬂ(r) exhibits similar behavior. Note that the real

part vanishes identically when all reorientation matrices Cii(i) are set

equal to zero. We now consider several limiting cases and approximations

for Vg(r) which have been considered recently.4‘6) When all couplings ex-
- cept 020 are set equal to iero,_ﬁe obtain the potential of Baltz et a1.4)
I.e.,
vi2 () = ,i.Ei (F(r-nb C.,n(2)
L 21 102 T200T
_ :+ 2E 2 ' a 3 3@ +1 .
-2 —2
1 - 3 L
- ::{ arctan £ + __; 2— (%) + —’—g—‘—" (‘") ]
[} (27+1) (27+1}

Including the reorientation in the 2f to all orders we obtain the potential

of ref. 6:
N ST i - S S S
2 B 2u 77702 1+iC,(R) “20
= Re VEeor (r) +-iImV§eor'(r) {11)
V(Z}Reor

4
g (r) = {1+ 75 q2+2 ( 74 (1- arctani/z) é (121 2 )]‘1 Véz)(r)




~and

Re V(ZJReér(r) =

4 E, 2 a3 e nE
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where ng)(r) is given in Eq. (10). Other closed expressions for Vz(r) can
be worked out easily (see Ref. 7 where the excitation of the 4% was added to
reor.,

With the help of Vm(r) one may easily calculate the elastic cross section
using for example the WKB approximation. Due to the smallness of Re Vg(r)
compared to the dominant-monopole-monopole interaction, one expects that for
E < EB, the inclusion of Vm(r) results in a damping factor multiplyiﬁg the

Rutherford cross section.4’6)

20

In Fig. 3 we show such a calculation of c/cR

for the system " "Ne + Sm at E = 70 Mev using the potential Vreor.(r)

Lab 2
of Eq. (11). The overall agreement with the data of ref. 9 is good.
It should be clear that the neglect of off-shell effects is expected to

be a reasonable approximation only for the lowest order potential VEZJ(r).'

For our general potential of Eq. (1) these effects are expected to be




important and the need to find a simple way of incorporating them is clear.
7)

Attempts in this direction have been made but further work is needed.

B. The Semiclassical Inversion Method

In this subsection we present an alternative method for the evaluation

of Vm(r). In refs. 10 and 11 Vg(r) was evaluated using a semiclassical in-

version procedure based on the Alder-Winther theory of multiple Coulomb
excitation. - The basic imput into such a calculation are the amplitudes for
finding the system in the elastic channel in the outgoing and ingoing bran-
ches of the average classical trajectory. Before actually elaborating the
detéils we first give a brief account of a theory of Vg(rjlz) Based on the
Feynman path integral method which wéuld serve as a foundation for the pro;
" cedure developed in refs. 9 and 10. Recalling Feynman's expression for a

transition amplitude Koo for scattering by an optical potential V(r) + Vo(r)

ty

P () exply SEE(D)]] ao

o]

Koo(tl’to] = ft

where r(t) is a path for the relative coordinate satisfying end point
(boundary} conditions appropriate for a scattering problem and the path
integral extends over all possible paths satisfying these conditions. The

action § is given by
S{r(t)] = f 3 ut” - V(@) - v(D)]dt (13)

where Vo(r) is some already known potential (e.g., for sub-barrier energies
V,(r) is the monopole-monopole Coulomb potential)}. For V{(r) to represent.

correctly the effect on the elastic channel due to its coupling to other
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channe1§ it hust be such as tp give for K identical results as those obtained
from é‘mibfdsCOpic deécriptibn of the reaction. Now we assume that the in-
trinsic motion of the fragments as described by a Hamiltonia Ho_with eigen-
states {}i>} and energies {ei}. The time evolution operator U of the inter-

acting system obeys the usual equation

ik -g-? U= [Hof+ V(E(L),5)]U o (14)

where V(;(t),i) is a potential which represents the coupling between the
relative motion, described by ?(t) énd'the internal (intrinsic) coordinates
- {g} Equation ()g) is to be solved with the boundary condition U = 1 at

to=ty for a given path:;It). The amplitude Koo for the system to remain

12}

in the ground state at time t, is then given by

t .
1, . | _
K (Et) = L B2y exply S, F(ENI<OUE, )t ) [0> (15)
0

where the free action SO(;(t)) is given by

Y

5, (F (£)) =f G u -V e e

t
o

It is then clear that Koo[ti,to) of Eq. (15) and that of Eq. (12) are iden-
tical if we have

t
i

| 1
<o|U(¥,t1,to)|o> = exp[;E! V(r(t))dt] (17)

0

for all paths ¥(t) conmecting t_ and t;. In particular, if we are to use’

a semiclassical appréximatioh“in'thé evaluatibn of (12) and (15),.which is
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a reasonable procedure for heavy ion scattering, then Eq. (17) is still valid
with T replaced by the real classical trajectory %ﬁft} that satisfies the

classical equation of motion

| u;;cﬂ_» + TRe V(z,) + WRe V_(z;) = 0 o as

or

(19)

It
o

uty - Ko an<0|U (F

-
Tt ) |0> + VRe v (

1‘;’2)

The above relations give a prescription for calculating the classical force
resulting from the coupling between the relative and the intrinsic motions.
For simple applications of the above methods, we restrict ourselves to real
tfajectories only. The most straightforward application of Eq. (17) is for
the case where.t0 =. - and tl = +m; i;e.,_in the asymptotic region. This,
however, will give us the potential in the asymptotic region and there is
no reason to expect that the resulting potential, when inserted bagk_into

Eq. (12), will generate the amplitude Koo at any time t In order to com-

1
pare the potential derived according to the semiclassical prescription with
that of the previous subseétion;-we have to extract from K00 of Eq. (17} a .
potential which, when inserted into Eq. (12}, would generate the_same_Kog
at any time t1 (or separation between the two ions). Furthermore, we be-
lieve that suchrwave-function equivalent potentials are required to generaﬁe
the‘correct distorted waves which enter in the evaluation of DWBA amplitudes
describing quasielastic processes occurring in the collision between deformed
nuclei.

Our prescription for the calculation of the wave function equivalent

optical potential rests on several observatioms:

i
l
i
i
i
:
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a) Calculaté the avéfagenélaSSiCal trajectory ?Q(t). ‘Although this
requires the knowledge of <0|U}6> , we shall, in the following, assume that
gl(t) is given by the Rutherford trajectory which is a reasonable approxi-
mation for the energies (E < EB) aﬁd the systems (n >> 1, £ << 1) considered.

b) Evaluate the impact parameter-dependent'V(r) (implicit iﬁ our con-
siderations) at a given radial separation distance r from Eq. (17), both in
the ingoing (Vg:)(r)) and outgoing (ng)(r)j branches of the Rutherford
frajectory (see Fig. 4). '

¢) Calculate the wave-function equivalent potential from the algebraic

mean of V&T](r) and ng)(r); i.e.,
V@ =5 0@ s v o

" The justification for the prescription in (20) is given in refs. (10) and
(11) and it bééically resides in the insistance that Vg(r) as calculated
above should be the same (or at least eQuivalent to) the trivially equiva-
lent local potential derived iﬁ subsection Ila.

Clearly in order to carry out the evaluation of vV, () according to
Eq. (20), one needs to know the amplitudes'ii&t)-and a£+)(t) for finding
the sygtém'in fhe'elastic channel at time t (or separation r) on the ingoing"
and outgoing‘brahches of the Rutherford trajectory respectively (these are .-
just the amplitudes <0[570> and <0IU(+)|0>]. For pure multiple Coulomb
excitation thé'de_Boér~Winther code does supply these amplitudes and one
could, therefore, evaluate Vg(r) numerically if ngeded; However, in order
to study the properties of Vﬁ(r), we consider instead the closed expressions:
(+)
L

for af'j and a valid in the sudden limit given by Alder-WintherS) (foi

2

pure quadrupole coupling). These.amplitudes are given by:




i3

t

oo 2 27 eos Ky
(x) _ 1 ' .  AEn® oo Pylces xT(t _
ay " =g da | sinBdf exp[-i ~vﬂ— q [ at 2 % ] (21)
0 O . oo ’ rg(t)
where o, B are the Euler angles that specify the origntatgon of the target
Z.Z.e
symmetry axis, 7m the Sommerfeld parameter given by ~l%§~—-, PZ is the

Legendre polynomial of order two and xi(;) are the angles subtended by the
:farget symmetry akis.and the 1ine.connecting fhe céhfers'bf the two ﬁuclei;
i.e., cosxi(t) = cosR cosei(t) + sinf sin@i(t) cos{a - ¢i(t)), where d?t)
_apd ¢§(t) are the spherical polar_angles;that dgtgrmine the orientation of
.the line joining fhe:centers of fhe coliiding nﬁciéi..'The.times ti(r) and
t;(r) are those at which the distance between centers is r for the ingoing_
(-) and outgoing (+) branches of the trajectory, respectively., Using the
above form of the amplitudes aé')(r) andia£+](r), wé_can_now write den our
final expression for Vn(r)

) <e-iE+(r) dE;ér)> comiE () dE (1),

V(o) = - ' . do (22)

2 L : n -
2ur <e-1h (r.)> <e-1E (r)>

where < >refers to fi“ do {g sinRdR and

() (r) = Aj(r)cos8 + A (r)sin28 cosa + AZ(x)sin’B cos”o - Agr)  (23)

Here

Ai’(r) o Ag(ieo) + .A‘l’.(e':)

NORE Agtiéol_? A (6) ”
'Ag(r) =+ Ag(ieo) ;-Ag(e]

AG(8) = £ AT(x0) " A3 (6)
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where the elementary trajectory integrals Ag(e) are given by |

sin 6 sin20 3]

AJ(8(x)) = 3qp,,( MJ(,L) +1 (sind - 25— - 2= - ] - (25) |
A0 = 34, “;i /£‘ [ o, . 5_1_‘2‘ 5 e
A560) = -2 f’i;—‘?-@-] e
: R : _2 R T AR H S S P
A(O()) = 0+2(“"a) (”) [ /ﬁz +1 8ind - 8] L e (28)

In the above © is related to r through the trajectory equation
a 1, 2 ) LR
&;} = Gf) [ Gﬁ)-+1 cgse -_l]_. g (29)

Finally 60 is the asymptotic value of 8; i.e.,

Sl

tanBo = (30)

One immeéiate reéﬁlt we.obtéin is.fhé féféﬁiiéi V#(r).of Eq;ltzzjléalculated.:
to second order in gy Expanding the exponentials and using the explicit
forms of the A {8)'s, it is easy to verlfy that the resulting potential.
coincides exactly with V( )(r) of Eq {(10) of the last subsection. This

gives us more confidence in our Sem1c13551ca1 theory of Vg(r) summarized

in Eqs. (17) and (20). For large values of the coupling Qo Eq. (22)

has to be solved numerically and the results of this calculation are
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summarized in Fig. 5, where we have plotted {Eﬂs-g Vg(r) = wg(q) as a function
of 999 and have set r = rt(RJ, theﬂl-dependent classical turning point. Both
the real and imaginary parts of Wz(q) exhibit oscillatory behaviors as funéa
tions of Ggag° This behavior is clearly a consequence of multiple Coulomb
excitation effects. This behavior is not shared by the potential calculated
in subsection IIa indicating the importance of the off-shell terms whiéh were
completely neglected and which are presumably indirectly present in the semi-
classical potential. The dashed-dotted curve in Fig.. 5 is the & = 0 component
of a potential calculated directly from the asymptotic amplitude; i.e., from
a{) (r=9) (notice that a{”) (r=9 = 0).

This phase-shift equivalent potential, which we call Viﬁ(r) (AW = Alder;'
Winther)}, exhibits quite a different behavior from our semiclassical Vz(r)
of Eq. (22). In ref., 11 a detailed discussion‘bf this difference was given
in connection with a recent nuﬁerical calculationld) of Vtﬁ(r) which uses an
inverse scattering method whose imput are the asymptotic phase shifts ex-
tracted from the de Boer-Winther code. Finally, it is important to realize
that although the imaginary part of our potential Vg(r) for a given value of
2 becomes positive at several values of q, and thus violating the condition
of absorption for that particular partial wave, for other values of % the |
imaginary part at those q's referred to above is negative and it is clear
that the overall effect of Vg(r) is absorptive by construction. Notice a}sq
that the potentials shown in PFig. 5 were evaluated at the classical turningl.
point Vt(l) and their values and signs at a given q clearly change as thgn |
radial separation increases. To check this we have evaluated IM V2=0(r)
for Qgp = 7 and found that it is positive only at, and only slightly out-

side of, the classical turning point r = 2a, For larger values of r,
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Im Vo(r) is negative. This behavior also holds for other values of %. Since
Fig. 5 refers to Vgﬁr) calculated assuming & pure rotational character of the
excited states in the target, it is therefore of interest to find the Vﬂ(r)
in the case of pure vibrational states. Such a calculation was made in
ref. 15 and the surprising result was that if the assumption of a pure har-
monic quadrupole vibration is made for the excited states in the target,

then the resulting potential, calculated in the sudden limit according to

Eq. (20), is the same as ng)(r) of Eq. (10)! The fact that the potential
comes out to be pure imaginary in this case is expected since for vibrational
states Cii(i) of Eq. (1) are zero. The difference between ng)(r) and Vz(r]
of Fig. 5 must therefore be due to, among other things, the phonon-phonon
interac¢tions (dnharmonic terms) which are very important for rotational

nuclei. -

“III, The Dynamic Polarization Potential due to

Coulomb and Nuclear Couplings

In Section II we derived expressions for the Coulomb poldrization
pofentiél assuming only Coulomb coupling of the elastic channel to the diffe-
rent inéléétié.thannéls. Therefore the potential Vg(r) of Eqé. {20) and (22)
is appropriate in the description of elastic scattering at sub-barrier ener-
gies. At energies above the barrier, the nuclear coupling becomes important
and therefore 6ﬁé needs to M6dify'thé expression for Vg(r);' Besides the-
coupling the static component of the optical potential contains both the
repulsive monopﬁle—monopole'Coulomb.interéction and the attractive nuclear”
potential. We shall, in the fdlloWing; outline the derivation of an ex-

pression for Vm(r) to second order in the Coulomb-nuclear coupling using
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Feshbach's reduction methoé (for detailsrsee ref. 16)., We start from the
coupled-channels equations for the radial wave function in the elastic

channel xtgoo]go(k,r)

2 2 (2 +1) 2u g, (k)
d 2 R n n '3
— 4+ k7 - - ~n
Fzth R V] JORBIEALSLE S
' —(31)
2Py g io, (k)
_ ' m
= 5=V {r) x (k ,x) ¢ “m .
v, VEIERE R S T (2,100

where | is the reduced mass and og(kI) is the Rutherford phase shift in

channel I. We write the coupling interaction as
Vg 0,010 = 2 p FL(F) - B

where F (r) is the form factor for the inelastic transition with multi-
polarity L and a2 % contains geometrical factors. Using the methods

developed in ref. 17 we obtain for V( )(r) the follow1ng

L .
. |
\/l,fl’(r)'= -i Eﬁ‘-—g o ) I, @177, @ 0. . (33)

2mh K=-L

where K = 20-2 and we have written a202 = aK(ﬂ). The quantities TLK(R) aré:

given b&
 Rgy MOk',K)
T () = R : (34)
(807 ey §M 11172 | |
where
R o (k) = 9 far S o ' °
grg (KK = ¢ T Xg(k'oT) B () ¥y (k) (35)

°
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are the radial integrals for the form factors FL(r) between the distorted
5
waves Xﬁ?) pertaining to the static component of the optical potential Vo(r),
o
and S&N}(k) are the nuclear parts of the partial-wave L-matrix elements for

elastic scattering by Vo(r). Finally the functions fK(R,r) are given by
£ (,r) = e, (34)

where Fﬂ(kr) are the regular Coulomb wave_functions. Considering the case

of quadrupole excitation, L = 2, and using the following approximation for '

£y (%,1)
o AN oy
fz(g‘;r)”f;z(‘q'!r) - "'1 + 2 _2 ( -+ 'kr * —"2'—'2') [ (37)
AT, k"r
k +k2

where A = £ + Landx = and TLlS the average Sommerfeld parameter

2 - 2
~ We obtain after using the explicit form of aK(R) given in Eq. (3) (without

the q) and resorting to the approximation used to evaluate T()} given iﬁ'

ref. (17)
arctan g
URICEEE SNOR-- {ES(C) nz (- _*?{_2) @
. n
(N)
-is{0 B 30ty
| (38)
609 2R T 400 dS(N) L) 1, 4 2% 1
S S e AR s e B ¢
T O

() 2R _n" (N) ds* oqN)

PG sa gt Tar B w1 “%L) ;,_._

' 2 (N ds“ o (N) 2n’ |
+ 3[(5%‘” % (%) F?? sg ) sV @ 1E + 12”]21} |
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where the approximation of large-ﬁ has been used. In the above Fz(r) is
given by
dVN(r)

FZ(r) = ch} 3 7.7 2 R - (S(N) -*—'a;““ (39)

5 “142° 73

where S(C)" éC)RC and similiarly for 5( ). In Eq. (32),§(N)(ﬂ) is the
nuclear part of the elastic S-matrix element correspoﬁding ‘to the scattering
by V'(r) In the limit that the nuclear part of Vb(r) is not felt, then:
S(N)(Q) =1 and _Téfl 0, we recover the second order pure imaginary
potential V( )(r) of Eq. (10). Due to the presence of g(N), the potential:

of Eq;-(38)'is'comp1ex. Of‘cburse“iﬁ order to actually use V (r) above in-:
e.g., optical model analysis of elastic scattering, one needs to know E(N)(Q).
This can either be made through the evaluatlon of S(N)(Q) by first settlng
B(C) = 0 and then solving the 0pt1ca1 model equation or by using simple

parametrizéd forms.16)

" IV. ' The Dynamical Component Reésulting from Transfer Coupling

Turnlng to rearrangement.channels, 1t should be emﬁhaslzed that wh11e
we are well aware of the non- orthogonallty of the 1n1tlal and flnal states
in these cases, we dlsregard the contr1but10ns from nonvanlshlng overlap
integrals of the 1nterna1 wave functlons on the expectatlon that these are.
of 1esser 1mportance for heavy than for 11ght proJectlle ;8) To present
the result in the smmplest form, we con51der in addition to zere Spln nuclel,
transfers with L = 0 only. Thee the form factor for transfer into a bound

state of imaginary wave number K = (%}%Eb)l/zlh_wherejub is the reduced mass

“and Eb the binding energy of the transferred particle,;is

-KT
e

F(KJ(r) _

o T Kr (40)
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"~ Now the effective transfer coupling potential becomes

T X (K1)'_ () () () | .
VEOR ‘;Hz O N RN ORI P

(X)

whete the constants ap " are proportional to thé'product of the spectro- .
scopic factors and the zero-range overlap 1ntegra1)L is the reduced mass
in the theidest channel,-Hl'and)£ are the bound-state wave numbers of

particle C before and after. the transfer. With the same-approxlmatlons_as

in tef. 15 the final expression for;Y;TQ(r)-becomes after setting‘fa(l,r)pg_l '

’ ®) &)
) (k) )
My o g, 0 i D
) T = =1 - ’ |

where T is a scale factor arising from the non-recoil approximation and
I(K)(aPy) is the WKB apprOX1mat10n to the Coulomb radial integrals for trans-
fer w1th,§? 2 arctan€1:T7—a and E is the adiabaticity parameter defined
by 72f oll As shown in ref. 16, since I0< (3’§) falls off exponentzally
( exp[ (--)j,]) at largej, ‘the contribution to the S matrix correspondlng
to Eq (42) is locallzed 1n‘ﬂ-space Slnce the~asymptot1c form of I(K)(B‘?)
is real thé dynamlcal component (42) is predominantly absorpt1Ve

In reactlons where the 51ng1e transfer of a cluster c leads 1nto a’
chamnel that is 1dent1ca1 to the elast1c channel (elastlc transfer ET),

the effectlve coupllng potent1a1 has the form (for L = 0)

\’é’m”’ cra o @ e U

&
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which is a real exchange pofential.
Finally, we consider reactions in which the successive transfer of a
cluster ¢ leads back into the elastic channel. Then the contribution to the

effective potential corresponding to the two diagrams of Fig. 6 becomes

\/;DT) () = e DNV Cu

with %{T)(r) given by Eq. (42). The potential Y{DT)(r) exhibits clearly

even-odd staggering effects,

VY. Con¢lusion

In this paper we have derived expressions for the different dynamical
components in the heavy-ion optical potentials. For sub-barrier elastic
scattering the Coulomb polarization potential (CPP) was derived using two
different methods; the Feshbach reduction method based on the time indepen-
dent coupled channels equations, and the semiclassical inversion method
based on Feynman's path integral method. We have demonstrated that the two
methods give identical results for the CPP if calculated to second order in
the quadrupole coupling parameter. In the general case of intermediate or
strong coupling, the two methods give different results. This is partly
attributed to the neglect of off-shell effects in the Feshbach reduction
method.

We have also obtained exbressions for the dynamical components due to
Coulomb and nuclear coupling to an inelastic 2' channel. The potential
exhibits the general features connected to the Coulomb-nuclear interference

effects. The,?ndependence of the potential shows clearly the presence of
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an { -window connected to the nuclear excitation.

Finally the componént due to transfer coupling was obtained within the
on-energy-shell approximation, for fﬁe ﬂ.= 0 casé. The expression found
has a very simple r- and f{-dependence which would result in a well-defined.

{-window in the corresponding elastic §-matrix element.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

FIGURE CAPTIONS

The coefficient 2, hﬂ and c, plotted as functions of = 2 +n1/2

for several values of the quadrupole coupling parameter q. A

factor %—was taken out of the cocfficients in order to present

the result in as gencral a form as possible.

The coefficient, ag’ hg and <, plottéd as functions of the

quadrupole coupling parameter q for several values of § = T
A factor %-was taken out of the coefficients (sec caption to.

Fig. 1).

The sub-barrier elastic cross section normalized to the Rutherford

cross section, plotted vsi-the center of hnés angle Fof tﬁe,
system 2ONe + Sm. (Elab = 70 MeV). Included in the ca;cu-
lation is the coupling to the 2" state as well as the re-
orientation of the 2° to all orders in both target and pij
jectile. The data arc from Ref. 9, |

Terms contributing to the semiclassical optical notentlal
(a) ingoing wave; (b) outgoing wave.

The Coulomb polarization potential vs. q plotted is

r. (2)

E( )y V L(r (1)) for 1(z L1

n) = 0.0, 1.0-and 2.0. a) the

imaginary part, b) the real part. - The dashed-dotted line is the Alder-

Winther potential (see text).

Two-step elastic transfer processes represented by the effective
potential\/ﬁnq)(r).

L+ 1/2
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