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ABSTRACT

“Wé show that the fluctuation croésISedtion'for the généralized-excitdn
or nested doorway model can be obtained exp11C1t1y and exactly in the limit
that doorways of successive classes have very different widths, T >>Tn+1’
and that the doorways of a glven class are overlapplng, F > D . The result
is given in terms of exper1mentally observable quantltles and exp11c1t1y
separates the compound and pre-compound cantr1but10ns.. it contains the re-

sults of previous, more specialized, models as limiting cases.
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I

A pre-cquilibrium reaction is one which by definition is more complex
‘than a 1l-step or direct reaction,butlesséomplex than one which passes through
a compound-nucleus or thermally equilibrated intermediate stage. The doorway
picture1 is the one most gencrally applied to understand such reactions, and
the exciton model? is its most thoroughly studied example. Feshbach, Kerman,
and Koonin,3 in an important recent contribution, divide pre-equilibrium re-
actions in general into multi-step-direct and multi-step-compound components,
primarily on the basis of angﬁiar'distribuﬁ£§ns;'the fdrmerlﬁé{ng forward-
peaked and the latter symmetric about 90°.

Employing this terminology, we wish to discuss here a derivation of ;he
multi~step compound component of the pre-equilibrium cross section in the
generalized exciton doorway model. It is a derivation which employs a
nested set of energy averages, and its ﬁrincipal merits are algebraic simpli-
city, a close connection to experimental data, and a division of the cross
section into additive contributions characterized by different time delays.

We are aware of four distinct derivations {including the present one)
of this multi-step compoundﬂ¢ross section, all very differént and all inter-
esting because they appear to be based on distinct:assumptionse Our purpose
in the present contribution is to provide the full details of our approach
(a condensed version of whi;h has been published elsgwhere4); and to comparé
its assumptions with those employed by othér authors. -

Stated very briefly, the approach of Agassi et al.> employs the
original exciton model, using shell-model particle-hole states as its
excitons. It'eXpands the fluctuation amplitude in a'Bprn'series,iWhiCh.iti
energy averages term-by-term, employing the ergodic theorem to replace

incident-energy averages by averages over ensembles of random matrix elements.
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The assumption of randdm.pﬁaébs fof all matrix elements (potential and S-matrix
elements) is central to all approaches as is the assumption that T >> D for
each class of doorways. One of the further key assumptions of Agassi et al.
seems to be that of a large number M of open channels, since their result
seems to be the iéédiﬁg.térm in én éXpansiOh in powers of M-l.

The.sécond épproach, by Feshbach et 31.,3 employs the Feshbach coupled-
channels formalism to obtain a formal expression for the fluctuation amplitude,
in thé:bésic <f|VGVli> form. G(E) Suppliés.the fine-structure resonance
poleg, whose residues are assumed to be modulated by doorway states; these
residue§ are thus found to have the same VGV form, with the new G(E) con-
taining the ddofway poles. Their residues in tﬁrn are modulated by“é class
of widér débfways and so have their own poles, thus developing a hierachy of
doorways, all assumed ove:lapping. These authors employ several rather special-
assumptions, such as their "chaining' hypothesis, (that doorway states of class
n couple only to those of classes n * 1) but one of their key assumptions seems
to be that tﬁe reaction entrance channel couples only to class 1 (broadest:
doorways), which never coﬁples directly to the exit channel.

The third approach is oné under development by Friedman, which dispenses
with phase informatidn from the outset, and treats the flow of probability
between the various classes of doorways as the flow of a‘classical, incom-
pressible fluid. Remarkably, this approach finds: that the geometrical series
describing any number of "round trips' between pairs of classes can be
summed to proﬁide just the Hausar—Fesﬁbach type of denominators which appear
in the other approéches{ Because there is no explicit reference to resonances
or even energy-dependence, the question of energy aygraginglnevgr_arisesﬂin”

this approach.



II. _ TUE GENERALIZED KKM APPROACH

A. Ufg and the P-matrices

The present approach is algebraically simpler than that of Agassi

et al_,5 because they begin with the assumption_thgt:the_matrix elempnps_qf”
the scattering potential are random in phase,_and so are lead to average over
products of an aébitrary number_of them iniphg Born series for the_scattering
amplitude; in contrast, we start from the:assdmption that this same random-
ness produces random phases in the residues of the resonanceroles{_which_ o
occur only quadratically in the cross section. Furthermore, the algebrg_isnf
simplified relative to that of Feshbach e;_al.s because we are able to make use
of algebraic results previously obtained by Kawai, Kerman and Mquy? (KKM) “_.

in treating fluctuation cross sections in the absence of doorways. These

- results follow directly from the fact that the S-matrix can be written

with.
£2 Eqc Bqct AR . .
TS R e i 1 - R )
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which can be achieved as indicated in Ref. 7.~ We then have
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as well as enecrgy-averaged unitarity,
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Then eliminating the matrix X between these two equations expresses Ufﬁ in

terms of the optical S-matrix, E. Although this is complicated in general,

arguments have been given8 which indicate that the E? term of (2.5) is generally

much smaller by cancellation than its first term, if the number of open channecls
. '. . . ' - fL . ) ' —

M is large. Neglecting it gives X and so 0" directly in terms of § §,

the result in the case of no channel coupling being just the Hauser-Feshbach

expression.

This algebra requires the assumptions

a) M > 1

h) I' >> D . o (2.7a)

¢) S§ << 1

The last condition represents the assumption of strong absorption out of the
direct channels; the results stated arc certainly most reliable in this limit,.
but the exact upper limit on the eigenvalues of §:§+:is not yet clear. In__ 
order to generalize these results to the casc at hand, of a ncs;gd scqucncé .' 

of doorways, we seem to require the additional conditions

dy T > T (2.7b)

n+l *-

e) <T T > = <1 ><T >
“m'n ~m”

to be explained below.



. The full argument is this: The fundamental assumption of our approach
(and of all others) is that the various resonances and fing-structure states
of the scattering system do not have a continﬁédérdistribution of widths, but
rather organize themselves clearly into a hierarchy of 'classes", corresponding
in time to the "stages" through which the reactioﬁ proceeds. If, following
Ref. 3, we call the first (in time) stage or class number 1, our 'well-
nested“ condition on.thélﬁiaths ié | - o

Iy > Ty> ... >»>T 2.8)

wvhere the resonances of width = FN”are the actual fine-structure or compound-
nucleus eigenstates of the system. The states of class n clearly contribute
pre-equilibrium flux to the reaction which appears with an average time-delay

of H/Fn.

Because of the condition of Eq. (2.8), we can define a nested sequence

of energy-averaging intefvals In by interpolating the In's between the Tn's,

Fn-l >> In > Fn. (2.9)

This pcrmits'ué to define N different optical S-matrices, E% = <§}I , by’
n

averaging the reaction excitation functions over these N intervals;

En(E} will cOntaiﬁ:the”poles describihg.thé‘fésbﬁénéés of class (n-1). E.g., '
S(E) really contains only the fine-structure resonances, of class N, but their
partial widths are modulated by thé'"deepost'dborway“'étates, of class N-1,

in such a way that an average over Iy produces an <§?I"which contains the
N
Peffective poles'" of class (N-1). These poles are themselves doorway-modulated

in such a way that <§N(E)>I has the effective poles of class (N-2), etc.
N-1 _ y S
If the contribution of the levels of class n is written as




c g () g(“2 | ,
S Jeer = i} ”fui;ré?i" - o (2.10)

we follow KKM in defining a matrix ln for each class, byz

*
2w ,1/2 m) (n)
< > .
rnDn) . Pqe _gqc' q

(%) e

=

(2.11)

As in KKM, averaging only over the smallest energy defines an optical S-matrix

which we call S, = <85>

-3
=N IN

- £y, S o ;
-S-"§N+§-N R : (2.12)
N e ,
with 5.7 given by (2.10), and, via the KKM manipulation,

st oL ' (2.13)

But, as mentioned, any doorways present must appear in Sy» and averaging over

an interval IN-l separates out those doorways of width rN«l and defines ﬁ
second optical S-matrix EN—I’ |

Sy = 3y * §§%1 ‘ (2.14)
Qith <§5%1>[N : = 0. Continuiﬁg in this way we can decombose S into con;-;
tributions fro;rall its distinct c}asses of doorways, o

§=58 + %3? : - . (2.15)

. . ) . ' £ ' ' . i
The essential feature is that since each § 7 averages to zero over its own
3 * . - B ; -
interval, <S § > will contain no cross terms, so the cross section averaged

over Il isg



N s N f
<0CC,>Il = (Sl)cc. Beer *+ < § S )cc,(s )cc, 1
_ i, % N T R
~ Tec! 1 necn'etct n‘cc!'  n'c'e Il ’
. dir £r |
= Gcc' * Ucc'>I , (2.16)

1

simply by applying the KKM argument to each class.
The connection with transmission matrices is obtained simildfly. From
unitarity and Eq. (2.12) we have

£2

]_=<SS+>=.<( +§N

& £L.+
5 8oy = <GBy ¥ Sy )Gy * Sy ) >y

£ (2.17a)

so we can definc a Satchler penetration matrix relative to averaging interval.
IN’_

o= 18

(2.17h)

it

X Tr[ ) + Xy o

which is exactly as in Ref. 7 because the resonances of class N cannot decay

downward, ﬂning the same wlth Eq. (2. 14) glvcs

+ £ fet
BEN1 = 341N Sy-1 SN0 N1 @

and subtracting this from 1 and rearranging gives

p - b= X Tr(EN_l) + x2 TOX

) 4
N1 TN T INa Xgop ~ Ryop Tr¥g ) (2.19)

employing in the last line the above mentioned approximation, for which the

condition of many open channels is necessary. . llere we have defined .




@

P = <Pn>n-1 R | (2.20)

which we shall use for general n. Physically, the extra term in (2.19)
relative to (2.17) is due to the fact that the states of :class N-1 can
decay downward as well as upwards, while those of class' N cannot.

Since the manipulation of (2.19) can be carried out for general n,

it gives Xn in terms of the transmission matrices,

En" Piel ' : '
X = . (2.21)
“n

Tr(fn Bn+1)

It is in this way that dlrect contact with exper1menta1 data is
achieved, for the P 's are in pr1n61ple obtalnable by fitting the "d1rectﬁ
part of the cross section_at_stage n (1.¢., after averaging over 1 ) Wlth
optical potentials (or coupled-channel éalculations, if the channel couple
"directly" at this stage) to extract 5 and so L -1 - gﬂIE;. This.f.
clearly requires knowing what the fundamental widths Fn are in the sequence
of Eq. (2.8), in order to be able to choouse the In intervals correctly;
presumably they are most readily accessible from an analysis of Ericson
fluctuations. In any case, inserting (2.21} into (2.16) gives the

fluctuation cross section in terms of the "optical" transmission matrices

of the problen,.

P P + (PP (PP ),
<Uf£ - <NEI (E“-Eﬂ+1)CC(-En-En+1)C'Cl -n —n+l'cct n —n+lc'c
ce' 1. 7
- cC o1 ., i
I'I‘(En_}—)-{nl)
(2.22)
(EN)CC(EN]c'c' (BN)CC'(EN)c'L Ry
Tr Py L
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Fg. (2.22)  is our central rcsuit. [ts essential feature, which
distinguishbé it from, e.g., a similar result by Agassi et al;s,.is-that
it is ahtomqticnlly separated, by the usc of ncsted energy-averages, into
contributions corresponding to different time-delays. E.g., if only the
cnerpgy average over the smillést interval IN were performed, the corres-

ponding <um>I would contain only the_Iust term of Eq.(2.21).. The others,
N

which correspond to time-delays less than ﬁ/IN. could not be distinguished

from the direct-rcaction components in 4 nedsurement whose. energy-resolution

is AE = L. Thus, usxng succcsqlvcly wider cnergy-averaging intervals
moves QULCéSSIVCIY more of the prc~compound COmponcnts from cd 1T into ofg.
The fact that <dfl> is'giVen by Eq (2 22)34 a sum of generalized'nhuser-
Feshbach terms evidently means that the well-nested condition, Pq (2.8),
impiics that'nn equilibration among the dcgrees of freedom of each class m

is reached before the system decays back into the open channels.

B. Ufg and the t-Matrices

The transmission matr1ces<ri>are related as directly as possible
to expcrlmcntal data, but they are conceptually a bit complex hecause it is
their ﬂlﬁfﬁiﬁﬂﬁﬁi_th“t are related to a single class of states. Previous
atu!;horsé'9 have found it coﬁvcnient to introduce a different set of trans-
mission matrices, ¥, defined as in Eq. (4) but for the hypothetical casc

of an S-matrix that contains only the nth class of resonances {which thus

+ . : . .
have no Fn, and decay only directly to the channels without passing through

the doorways "above' them.
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To obtain the {linear) relation between the P's and the T's, we
consider first the case of just two classes of resonances, fine-structure

and one type of doorway. We recall from Eq. (2.10) that
(12 )
< g 'l =T (2.23)

is the average partial width for the decay of the levels of class 1

{doorways) "upward" into channel ¢, so that
Y p

Tr X, = ( 2 1/2 Z r.(1) 2 ( 2T )1/2F+-

~1 FlDl B FlDl' 1
. (2.24)
n (1/2 ¥ '
(=) r,-r) .
l"lD1 171
Then if we define
. CIFOL |
(_T_ )Cc‘ - D < (2'25)

as the transmission matrix to the channels from the levels of class 1 in '
the absence of downward coupling to class 2, and also define the branching

ratio for downward decay,

rt
by, T - (2.26)
. _ ‘
1
we have
(P, -P et = (X)) TrXy)
_am A (o .
=T 18 Ber o (2.27)
ry
= ‘1"""" (TI)CC' = (l_ulz) (Tl)CC'
1 -

Then,



N~ 12

- } 5
.I.,z - E.] (El 52)

=P - Q) g
(2.28)

=1yt (B

1

LM th ’

which defines T, as the limit to which EQ goes when the classes are de-.

coupled, i.e., when Hyp = 0. It is important to realize that I, = 31‘14

does not depend on Uygs for EJ = 1—§1§1+ only measures the upWard coupling

;%;pfwclaSS 1, and so is itself independent of Hyge Eq. (2.28) clearly shows
that the fine-structure levels of class 2 are fed both through the doorways
(_’E_1 ulz) and directly from the channels (I,). However, note that T, defined
in terms of 52, not P,

state energy dependence. We are introducing the T's only for comparison

so that, unlike EQ(EJ, it does not have doorway-

with the work of other authors, and it is clear that they view all T's as
beihg'ffeé df'ddofwayFtype'energy dependence. Hence in order to agree with
their usage, we shall introduce the T's only through equations which are

always averaged over the full internal Il‘ In particular, in the present

case,
Py =By = Xy ey =L L (2.29)
In the case of three classes, the total width of the levels of class 1
is
o4 + ¥ '
S S A (2.30)
so that | ) T:
Py-by s il Tr(ii) = I = (1—U12— U13) I | - (2.31)

1
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N
Similarly, _
*. N
) M @0
<P2~P3>l = <X Tr £2>1 = <y 2m 5 >1 .
_ 2 2
o s ' (2.32)
. * .
rt OO
T gy <A i) ST

in which, if the last step is not justified, it can be taken as a definition
of <F;/F2>1. Its importance is due to the fact that g( ) describes only
the upﬁard coupling of the states of class 2; it is thus not affected by
the présence of class 3, so we can employ Eq. (2 29) to identify the second

factor in Fq (2. 32) as (T ”12 * T, ), giving

- (2:33)

These results can be extended to more classes by induction, the general

result being

<P P s =Yy (- § om o )DTL, e T (2.34a)
Loy 17 gy Mo S | |

o

g = .. = 1, nd

where .. 1, pix'i ! and e
T El ' (2.35)
- 13 P i :
i'j

is the i ~ j “downward" m1X1ng pnramctcr. given in terms of the effective

interaction V that COUplcs thc classcs of states. Note that
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. _
+ ‘ ¥
. = 3 .. r'a.
r;_ Tyone J#§+1 ij | (2.36a)
_ 4
and ri.= Z ric =) <|g(1)| > . ‘ (2.36h)

We also note in passing that Eq. (2.11) and (2.19} (for general n} guarantee
the usual unitarity sum rule, which in terms of the t's takes the form .
, S : - N e s _ S
£ o _ "
Docery = ()= 1 (). - (2.37)
. 1 . . e . 'n=1~ d g ool ) S o o
Substituting Eq. (2.35) into_Eq. (2.22) re-expresses _<0f2> in
terms of the Ifs}giving it a form which we can adequately illustrate by
the case of only two classes, Assuming,for simplicity of notation, that
the ©'s have no ¢ # c' terms (absence of direct-reaction channel coupling),
we have in this case

(1 M )(r )
i F.Q. e SR . 12 }- CC' : (UIZT "'Tz) (‘JIZTI TZ)C C' 5 .
<g ')I = <(£I)CC + >I . [2.38)
" h Tr(1,) Tr (4 ,2,+1,) B -

The second term of this cquation, symmetric in ¢ and <, 15 the Hauser-
Feshbach term for the long-lived compound nuulear stqtcs (2), wh1ch are
entered both dlrcctly from the channcls (TZ) and .through "the class-1 door-.
ways (Tlulz = /F ). The first term of Eq.(2.38)descr1bes that part of

the reaction which occurs with the shorter time-delay K/Fl: andISO-pnsséS” 

only through the doorway stntcs without.feaching class 2. It is not sym-
metric in ¢ and ¢’ if we interpret (T ) as the transmiﬁéion coefficient

into. thc doorwqys from channel ¢ and (1 ulz)(rl) ,c,/Tr(T ) as the branchlng
ratio for decay back to ¢!, Fhls lattcr 1nterpretat1on follows from Eqs (2.34)

and (2.35) which give




4’.
(t,) r;r T
Iderer Y1t Nie .
(I )p) —m = — e = = {2.39).
Tr(TI) | Tl Fl Fl

summed over the exit channels ¢! this gives Z,(rlc'/rl)'z 1 - F:/FI;.
which is less than unity because the doorways ;lgg lose flux downward to
class 2. This loss of flux is in fact irreversible in the first (doorway
only) term of Eq.(2.38) it does not rcturn to class 1 from class 2 .in
this term, and so destroys time-reversibility and hence the Syﬁmetry in ¢ and
¢*. The physical reason that this term contains no "up-feeding” is that .
it describes only the prompt contribution to <0f1>; keeping only lowest. -
order in lerl << | essentially gives class 2 an infinite time-delay relative
- to the doorways, and so includes 2 + 1 feeding only in the compound-nucleus
term. This lack of up-feeding is an_essentia} physical featurc of the
general cxpressioh £q.(2.22),that iﬁ.nutomaticnlly introduccd by the‘ﬁse of
well-nested énergy averages: thq term contributed by class n, although it is
fed from and decays to all classes ahove it, contains no feeding from the
longer-lived states below it. We also note in passing that this term (for
n < N} contains the féctor lern, and so vanishes if F:/Fi + (3, This is as
it should be, for Fi/F: + 0 only if either that class of doorways is .decoupled
from the channcls altogether (Pi = 0), or if their lifetime hecomes so:short
that they cease to function as doorways at all (Fi o),

Thc,nhovc results solve the ncstgd—doorwuy proh}em_jn general, with-
in the constraints imposed by Eq. (2.7) But by éonsidering_l%mitiﬁg
cases &e can make contact with_prvvinus_npﬁronchcs to the problem.

a) Isospin mixing.throﬁgh a single class of doorways (isobaric
analog states) has been discussqd by Grimes et a1.% and by Harney et al.”

It was subscquently discussed by Lane, Y who showed that their expressions



16

2 . . e
for <0f > are equivatent, and that both can be written in exactly the fornm

of our Kq.(2.38) for the N=2 case, provided that one assumes <1i£j> = <<,

These authors have obviously dropped the T . terms {c # ¢') for simplicity,

but they are readily restored if nceded.

b} The "chaining approximation' .of Feshbach et al. > assumes that
(1) only nearest-neighbor classes couple with each other, i.c., Mo = 0
unless |m-n} < 1; (2) the incident channel c couples only to class |-

(3) class n decays directly to the exit channel c', without returning

through classes m<n; and (4) dlrcct reaction channel coupling is neglected.

‘m-1
In this case thc'mntrlx-Dnm-of_hq;(2.34)15,Dnm = RE“ “k,k#l’ anq,-aga1n.
assuming A, T2 s <Im><zn>,
N n-1 o (t.)
L Inlcret
T > (r.) ) o(nmow YO-u_, . .4)
ce’ I 17 ¢c k,k+l1 n’n+l Tr(t.)
Nt I.'+ v S (2440)
12 °23 . -1,ny nc'
S (), 1 G =
n=f 1 2 T T

which is the-rcsult given in Ref.3; we have used Eq.(2.34) and assumed,
" with Feshbach ot al., ~that (Tr X ) < Tr T implying that direct decay

to the channcls dominates for all classes and most channcls.

c¢) In the "sfrong.mixing" limit, deflned by Fi P; for&all
n<n (cqﬁ{Vthﬁt:ta'Eh?En+ilé En'Tr zh = 0, we have Xy Tr Xy = § T and
Rq.[2.22)reducv§:fo. B o
B | <Uf£ ;  ; (P )CL ( TWerer + ey Byere
cc"[l T T (PN) T .0
2% oo * @ e Qe

Tr (E
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which is just thc Hauser-Feshbach formula for the fine-structure states
alone, all doorway effects having vanished. In the opposite limit of
zero mixing between the classeé, uij = 0, each class couples only to the

channels and we have

n e @erer  * Gleer (G)

cte! T cc' c'e
_.<U ] = £ 5 n — n i
n

ce' 1

> _(2.42] _
1 SRR U

Ir En | Ill

dj In the 1imit that only class 1 couples tothe channels (Im- 0

m# 1), all the terms of Eq. (10) contribute, but combine to give.

/-;FQ' . (ll)cc_ (ll)c'C' + (ll)CC' (ll)c_'c . - (2.43)
[P | = - S .. :
e ll N Tr (11]

All flux to the "internal" classes must cnter and exit through class 1,
and the net effect is the same cross. scction as though the other classes

were not present at all.

We wish to thank A. K. Kerman and W. A. Friedman for stimulating

discussions.
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