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ABSTRACT -

We calculate the S-matrix of cp 71 and SU(n)

Thirring model perturbatively up to 2 loops. The calculation

shows striking similarities, but the S-matrix has some deviations

from the expected exact one. -
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INTRODUCTION

The SU(n) chiral Thirring model and CP n-1 model

1) 2} )

have been recently extensively studied and many interesting

results were discovered. For the first model, the class II S-
matriXB) was suspect to represent the exact S-matrix of the model.

)

Recently Iowenstein and Andrei®’ succeded in diaconalizing the Hamiltonian

The model is plagued with infrared di#ergehcess), due to the %
spontaneous break of symmetry. .Howeﬁer some authors managed in

1/n expanding the S-matrix in lowest non-trivial order, which was

proved to be the class II one, with bound states modification.

Recently one has proved that_Fhe infrared divergences came from

a spin 1/n particle and the physical particles of the theory have

spin %'e %h 6). Moreovey, each pérticle is a bbund state of the
‘remaining anti-particles, The CP n-1 model was proved to describe
7) 8)

confined pérgicles. Both modéls are assymptotically free,

and exhibii, at classical level an infinite number of conserved
currents. - Then, one suspected that the models presented fatoriza-
tion, and were a couple of models, analogous to non-linear 6 and
Cross-Neveu models, Although the cr™} model presents confinement,
we suppose, due to asymptotic freedom, to be licit to speak of

an S-matri¥ at veéry high energies, using perturbation theory. In

& recent paperg)

we proved the non-existence of pair production in
this model. This proecedure shows striﬁing similarities, and some
gurprising departs from S=matrix, which we discuss at the end
of this paper.

Thig paper is divided as follows: in section I

we expand the proposed S=matrix describing its properties, in

seetion 11 we presént the SU(n) model in perturbation theory,
A=l |

in Bection III the €P fnodel is discussed in the same framework

and in sectien IV wé discuss the results.
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THE S—-MATRIX

Two dimensional'theories, without particle production
are known to possess very ?imple S-matrices. Indeed, these theories
are known to be of soliton type, that is, the scattering changes
only a phase of the solution,

The S-matrix is enﬁirely defihed in terms of the
2—2 S-matrix, if the matrix presents factorization, whigh”ﬁnder

10)

very general arguments is egquivalent to no particle production.

Because of energy-momentum conservation, in two dimensions, a 22
scattering is such that the set of inicial momenta is equal to

the set of_butgoing momenta and the S-matrix is given by

out - oo
| (TJ(A (74).Ag L£2) | P \ps) Azr,.-’(])z)> =

L B 0TS R) o

and
oit L | in
<’P‘3 (?s) ?5 (p2) ‘ ,P‘,( §2)) ?3‘ (Pz)> =
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]

(2)

where ‘EX is a particle and P\d an antiparticle belonginglto the
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fundamental symmetry group of the theory and pPa=mechbo, Po=m*
11)

If the grow is U(n), Berg et all showed that

B A A CE N S5 (3)
w5 ® = 1 S S+ ne & s @

5.0 - oy 5, S

3P g %5t u?_[g);a‘(g ‘Sa"_rs'- _(5)

and using general arguments of‘field theory they found that there
were 5 classes of minimal S-matrix satisfying all requirements,

its meant the one with the minimum number of singularities and zeros
on the physical sheet. These S—hatrices depend on the function ”

S(<w @ A ).as follows.

Purg ). TEAEDT(E+42-49)
(5-40) Plas 42+ £4)

We will be interested in a class where the amplitudes I (8) and

Yz (@) vanish., The ohly one is the class II, given by:

T ‘L - - e
,10) - >< = £(9,2) - (7a)
a

4
ta(0) = >< = -A LT {ZAtG) ~(7b)
/ 3 | (-9
. S 4 |
U, 18) = = t, ({n-9)

{(7¢c)



U, (@) = j:><i: = TA LR Uy te) (78)
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{0
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é i L . o
(7€)

We can obtain the high energy expansion of the S-matrix as a series

in 1/6 , beginning on the_assymptotic expansion of the_‘q_ func~

tion.  We have:

1(\(9 2).__|—"(‘L m)P( *"ft"t?ﬁe) Xe_Y '_ (8)
C(£- 8 M54~ ) o

~ (8a)

X_-.i+9‘(_4_)
ea
= £& _  2&L 9’(-1— R 8b
Y E EL 4 = (8b)
we get then

£ e%[i»r_igiﬂw ,ggi&(hé?)z] o (9)
u:_ - _ AR o SR

where we used
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THE SU(n) MODEL IN PERTURBATION THEORY

The model is defined by the Lagrangian density

L. Wesy ., %U‘?"f)z_ ("7!365 "F)f] | (11)
The model is'aséymptotically f@ee,.and présents an infinite number
of conservation laws. The model presents also a chiral symmetry,
which is spontaneously broken, bringiny about terrible infrared
érobiems, becaﬁsé'this is a two dimensional theoryS).

We circunvent this problem by giving the ¥ small
mass 'P?. We expect the theory to yield maSs transmutatidg, S50
that the theory should depend on an approbriate combination of FE
and g. In all the cases infrared divergences do not appear, we put

peo

The graphical strubture,upﬁxf3nio:der perturbation

- theory is given by figd( 4-47). The amplitude

was calcnlated, and we had as a result Y3i€)=0O
Analogously ¥, (e)=0 |
These results by them own show that the only

candidate should be the clzss II of ref. ( 11 ), and they came o




.
about because of the chiral interaction, as a cancelation graf

by graph of the (“V XB 4’) - and (“fqr) pieces, so that each
graph contributing to thgse amplitudes is equal to zero. For
the W;(@) we have similar cancelation in the majority of the

graphs, and the only surviving ones are:

wor s (1 YK

The result is given by:

2 ‘
wey= 4+ 4 B 5 _ ig;”‘n«_( I 8 a
T P’z Qﬁg P‘z. .

And U, (g) is given by:

LA P yi*

W.10) = "3 (4— ng fas +[ n;%‘.ﬂn-_s;__]ﬂ 9 (Lﬁz_)z) BNSEY

It is interesting to note that the first 3 graphs .-
contributing to this amplitude are the ones expect from the 1/n

expansion of the theory whereas the last one would be only expected

to 3rd order.



TﬁE CPnfl MODEL IN PERTURBATION THEORY —8"
The Lagrangian is given by
o= O+ G Ap - | (14a)

A,.u = _'-z.(i;' Qr&z -2 Qﬁi)  (14Db)

with the constraint Zg;Z¢ =4

This model is also assimptotically free, and
presents an infinite number of conservations lows. It was shown,
by 1/n.expanding the model, that it describes partons, confined
by a topological Coulomb force. -Because of assymptotic freedom,
we expect however that the pertﬁrbation theory S—matrix has any
meaning. We will not pursue this point any more, but suppose
the validity of the argument.

Again, in order to circunvent the infrared problems
associated with the Goldstone beoson, we give the Z-particle a -
small mass 'E' , and the theory is supposed to yield mass trans-
-mutation, analogous to the one discussed in the SU(n) model.

The graphs, up to 37d

order are in fig.4 {(4-55).
First of all we treat IX,l0) and ¥.(¢) 1In this case all the .

graphs are equal to zero, and we have
Lte) = r,le) =0  (15)

For w,(® we have many contributions, but many cancelations

among diferents graphs. The nett result is
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7 . ¥ 2 3y 2"
u(e)__L+L3 __3 h%—%(kﬁf)' L_(ﬂa_é.). .(16)

472 oy

For (@) the result is’

B S S5 o

CONCLUSION

For both models, we verified that the amplitudes -
Yi®) and 1 \6) - vanish identically. This means that a
possible S-matrix must be the one of class II SU(n) symmetric
S-matrix. This is the most stribing similarity between the two -
models.
However, this similarity fails, as we go closer to

suln)
the other amplitudes. For the amplitude Ww,e) , we have:

Suiny

Uie) = 4 +_g. ho (SLWS) | (18)
pe 2K o |

Which is the expansion of the exact S-matrix
W
amplitude, if we let the factor e aside. But this factor



=10~
should come from the strange spin character of the theory: the
physical fermions must carry spin 1/2 - 1/2n. This anomalous
~ spin must also explain the terms of the S-matrix expansion,
which are proporcional to thé'powers of lfn, not expected even at
lower energies.
At high energies they do not contribute. The

exact S-matrix fails for the‘amplitude W, {6) which should be

we) = RiT uy (8). (19)
. _q-,g ' . .
Now concerning the Uy (@) amplitude for cp™ ! model
4‘
we got (16) which fails to reproduce the expected result already

n-1 odel a class

at first order. However, as.we_expedt for the CP
‘IT S-matrix, the same factdr. eﬁq"' should appear in the w4 (&)
ampiitude, and we could speculate about the spin character of the
24parti§1eé.'

We did not calculate, for the cp® L case the scatte-
ring of bound states. However we hope, in the future to have some

more ideas about this problem, and about the instanton background

effect.
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