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Abstradt:"' We preéent an extension of the closed formalism for elastic
and quasielastic heavy-ion collisiops to accdunt for channel cbupling:

' effécts on these_procééées.z. Starting from coupléd—channels ééuations}
we use suitable apprdkiﬁations to calculate directly the corrections to
the elasﬁié”partial—Wave S-matrix that arise from the feedback of
certain strongly céﬁpiéd Channelsron'elastic sCattering,'withqut having
to determine effective potentials as an intermediate step. The
S-matrix corrections are completely determined by the characteristics’
of the transitions to the intérmediary channels (spédtrdscopic and form
faétops) and by the uncoupled elastic S;maprix;' The édrresponding
contributions to the scattering amplitude are evaluated in cioséd form.
As examplés we derive explidiﬁ'expfeséions fpf'chpliﬁg to inelastic”
collective channels, by both Coplomb and nuclear éxcitation,'and to':;'

transfer reaction channels.
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1. Introduction

E)

It is well known that in heavy-ion collisions channel coupling

often has important effects on elastic scattering, inelastic scattering, |

and transfer reactions. These effects manifest themselves in deviations

from the "normal" shapes of angular distributions, in anomalous large-
angle scattering and unusual structures of excitation functions. Since
customary optical model and DWBA calculations ‘and simple S-matrix

descriptions are found to be inadequate in these cases, the use of much

more elaﬁorate coupled-channels computations appears to be inevitable.’
Because these can be prohibitively expensive and time-consuming, it_is i
highly desirable to devise_methods,by_which channel cpupling effegts__
_may_be:;ep;esepted_in a form, albgit:yery approximate, that can bg_used
_in_straightforward extensions of the conventional calculations.
One such method is to derive effective potentials which can be
cadded to ;he.nqrmalvgpt;gal potential to simulate the feedback of strongly
5 : coupled channels on the elastic scattering. . Since the effective
inpe;actiqn_isdnoniocq;,hit_is_usuallyrapprqximateﬁ_by"qqﬂﬁequéyqlegt"
local potential which then, in general, depends on the orbital angular
momeptum_g,, In the case“of_qogpling to lowilyigg collegtiyé (2+) states.
via ng;ng gxcitat;gn, such potentials:have_been deriyed_by several

authorslﬁi)

- As a by-product ofdthe_mefhgd.@gsc;ibedpip;this paper,
the present authors have derived more general effective potentials which
represent the coupling teo inelastic channels by_both goulomb%anq:pgclear

'exc%tation,'and'to transfer channels").

An altefnative £§ tﬁéuoptical modél anerWBA dégériétiéﬁ';f'heavy-

ion elastic scattering and direct reactions has been developed by one of



- us, in which the simple general properties of the partial-wave elastic
. §-matrix {dueto. the st;ong absorption and strong Coulomb interaction.
in heavy-ion collisions) are utilized to derive closed-form asymptotic
< .pxpressions for the amplitudes for elastic scattering?),-inelastic
'scattering®) and transfer reactions’}). .: Bside from an extension: that -
~“accounts for the effaéct .on elastic scattering of dynamic polarization: .
by=Coulomb.excitation8)4 thig theory - c;lled'the Closed Formalism (CF)
fér: short - does not incorporate channel coupling.effects.:

In the present paper we develop ‘a procedure which -enables us, .:
starting from a set of coupled-channels equations and using suitable
approximations, to calculate 'in explicit form the modifications of the
elastic S—matrix.that arise from the coupling to:certain types of
strongly excited channels. These medifications are determined- solely
by the characteristics of the transitions to the intermediate ctates: .
(i.e., ‘the:spectroscopic: factors and the form factors) -and by the
uncoupled elastic S-matrix. Their analytic forms:are such that the
corresponding contributions to the scattering amplitude can be evaluated
in closed form by the same methcds as developed in refs. 7). In this‘
way we achieve a natural and straightforward extension of the CF to
account for channel coupling effects.

We considef it a significant feature of our approach that the
modifications of the uncoupled S-matrix, and hence of the scattering
amplitude, are calculated directly, without the need to determine
explicitly the effective interactions which appear only in an intermediary
role in our derivation. Thereby we avoid, in contrast to refs.l—q)r
the two-step procedure of first calculating an effective potential and

then solving the Schrodinger equation to calculate the scattering

amplitude, Moreover, whereas the latter can only be done pnumerically,




£hetana1ytic+fbrm of our results displays explicitly the physical nature
and dynamical origin of the various: contributions: to'the scattering cross
gection. -

Forfsimplicity.we consider only individual channels: and- treat; the
coupling in lowest order, but we show for gome cases how the methed can
be: extended to higher-crder, multi—stephprocegseswby iteration procedures.
Ag gpecific examples we consider the most important channels: -inelastic
scaﬁterihg {by Coulomb- and nuclear excitation), and particle transfer
{including cone-step and two-step elastic transfer processes}).

In the present paperx (Part I} we deal with elastic:scattering;. .
in ‘a ‘subsequent “paper {Part II} ‘the method is extended to inelastic.
scattering by modification-of the bWBAHamélitude. --8imilar -extensions: to
transfer-reactions,.and;applications of .our results, will}be-described_in
further papers.

~A brief summary accounf.of our method and results has been

presented previouslygl..




2.  Generic formulation

We start from the coupled-channels equations for.the radial
wave func.tions.')(.(:'Q’I)J(k,r} for orbital angular momentum £, spin I

and total angular momentum J in channels denoted by n, m:

gt Y L (laF) 2y e . ) -:dln(kﬂ)'
'[Z:* * “ , e . :4- U,” .. xu,,z,.)a “‘_v_".J_e__

. (2.1)
2, 7 -.'-U‘n(&m)
= lzé —‘E:- \/‘nrna "m Im (r) xuh I‘“)J (l‘,,.., r) ¢ '

where U is the. x.e:duce_d mass and Oﬂ,(k-)'- are Rutherford phase shifts.

For simplicity we consider spin-zero nuclei in the entrance channel
which we denote by n, i.e., In =0, This fixes the value of J to be
Rn. The igteraction in the elastic channel in the absence of cpupl;ng
to the channels m is assumed to be described: by a local opticai

potential U (x) and the Coulomb potential Vc(r) '
U(r) = anr) + UN fr') s UH (") = V(r)-i-c.W(r). {(2.2)
We write the coupling interaction as

4, L {m)
Vio e (M T Yo, (R} = @ o o e

"o L]

i
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where Fim)(r) is the form factor for the transition n - m with

multipolarity L, and all épectroscopic and geometric factors are

lumped together in a(m) .

Since the nonelastic channels m # n have outgoing waves only,
the wave functions Xﬂm(km’:) {in simplified notation) satisfy the

integral equations

. ':Ld B » . -aé g;L; SO  _-:”Ljf ' B ;ﬁ }cd
X, (or)e = = 2ka furra® (e 2V, (g, (k,)e
Lm t.z A lm -t, me’ 8‘

(2.4)
where &é+%r, r’) is the Outhiﬁé—Qave Greeﬁ function for ﬁhe léft;
) s
hand side of eq.({2.1).
" our first approximation is to neglect all couplings except’

to the elastic channel,

» . o i : 1
cenltenar BRI Y . P : R Cie S Lo o e ; g
X, (erde ™ a2 (u' a2 (ne) v, (D, o,r)e o
L] T R TET T S ;‘ﬁ! . L, 0 £m{n~e AR e o

{2.5)
Insertion of (2.5) in (2.1) results in a Schrodinger equation for

Xg {kn, r) with an effective interaction
n .

UL“ (r) = (_j(:—), + GL. (r) (2.6)

?

where




g - . \' J. . L .M ° y L t [
G, e, (hr) = 2 TV, 0 (et € eV, (g, ().

L L] 4 o )

(2.7

We bypass an explicit determination of the (non-local)

interaction operator El (r) by calculating directly the partial-wave
n A ' -

S-matrix elements. From the "radial Gell—Mann¥Goldberger relation"

{see appendix A) we obtain for the nuclear part of the total S-matrix

S = SéN) exp(iQOﬁ),

N)(Ln) = S‘:N)(Ln)'i" St:N)('«tn) , : o (2.8)

8
where SQ is the uncoupled elastic S-matrix and

. l.p,,.,n .o R : s o . |
SO0 ==t e X, (LU 6, )

L
z,. Wk,

gives the channel-coupling contribution. Insertion of (2.7} yields

c~) gl"l ¢ . *
D) st Tk eV 0

L)

(2.10)

o o w ' -
. gdr, Gli)(r,r')\’z,,z.. (r)xlu(ltm,.:).

Our next approximation is to replace Xg  ©n the right-hand
. n \
q
side of (2.10)by the uncoupled wave function Xg .- This amounts to.
treating the coupling to lowest order; highe_rﬂ_)rder" contributions -

can be obtained by iteration. Our third step is to approximate the



. Green functiqn_in chahﬁelfm.by;its Onuenergyféhell part {see appendix B)

6 )
G (nr') = -
£, k

a -
LI &

m

Using (2.3) we can then write eq.(2.10) as

ok

~ {w} f"'n
k) = —

Sgn ( n) -z'ﬁ'ztlh

: {n) ()

* zz' atv‘nen a“h {m "n"’

where

(m)L Lw

R (ku,ka) = —

(L

m ) R

° (:L.'m'.

fmy L

{( m,l‘ )(: 2w L“)] ,

"

r)
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(2.12)
-1

(m) ° (ko r)

L]

(2.13)

are the DWBA radial 1ntegrals for the transition n * m with multlpolarlty L.

The total elastlc S- matrlx can now be wrltten in the form

S(L)

with . .
(n Vﬁ) ™o
um¢ ) = .

. g

[1 t“”%ué ﬁj“

!

(2.14)




where we have defined

(mt
n,m R‘ k“ k R
(nym) (l«m,k“) - .1, ( ' ) L, | L ) . | (2'.1@

“ (k) s‘"‘( )

In fact, the use of the on-energy-shell approximation of the’

Green function, eqg.(2.11), allows us to perform a summation ovér terms

SRR {n,m) . : o . : o
of all orders in ty (km,kn) in the form of a geometrical (Born-type)'
n

series, with the result

.S (Ln) = - . .¥§; (Lﬂ.i; _-H_ ;_._: (é'lv

‘Eﬂ

Note that because of the coupling %m + L = %n only a few (at most 2L + 1}
' terms contribute to the sum in (2.15) . | |

We may regard eq.(2.14), or the iterated form (2.17}, with the
expressions (2.15) and (2.16) as our main result: it gives the coupling
corrections to'the Srmatrix in the form of well-defined expressions
determinéd.by the ﬁWﬁA radial integréis and.tﬁe unéeftufbed.s—matrices.

However, in order to proceed towards anal?tic expressions and
closed-form evaluation of the scattering amplitude, we employ for the -
examples treated in the fbllowing sections further approximations that
have been used before in the closed_forﬁalism.for qﬁaéieiasticlhgavy—ion

. 57
reactions Y.
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3. Dynamic polarization

3.1 Modification of the S-matrix

The effect of the coupling to (low-lying, collective) inelastic
.channels on elastic scattering_is.texmed_“dynamic pelarization". For
a given channel of spin Im.= L this is, to lowest order, a two-step .
process in whigh the level in guestion is excitgd:and de-excited by..
inelast;c transitions of multipclarity L. This effect has been studigd,
for Coulomb excitation, with the effective potential method in refs.l"a),
and with the extended CF in ref;Q).._=Ih éﬁf present tréatment we include
.tﬁé effecﬁs of nuclear éxcitatiéﬁ ag.geli;

In the "extended optical model" the coupling interaction (2.3) is

L L

Vﬂe’ (r) = Qlt, _FL. (I') , . o . (3-1) |
where |
. : : ) ', _ L 2e'L
L 5 {22+ 1y (2¢ H)] -(_“)x.- {z ] }( ) - o
LA = .?.-“-‘h AR I SN D B LQ:‘E Oo e/ L3

and. the form factor is given by.

F (r) =éCC) 3 ZA ZB-Cz" ._R'.S__.- P ‘5:”) O{UN (1’) I ._(3..3)
- Lol et e
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for r ; RC; where.Rc'is the charge radius. < (Here and in all following
expressions we write k= and. g = 2’} “The Coulomb and nuclear

_ : . (C) (N} . . N
deformation lengths are dencted by SL and 6L ;respectively, and
ZA,.ZB_are the atomic numbers of the scattering-nuclei*A;”B;'-55'

Now we use the’same approximations for the radial  integfrals

(2.13) as in ref.®) in the CF for inelastic scattering,

RS (ki) = 2T (e g (1) R () X, (e, r)
tle e o * . ‘

(3.4)

o . | o v
1 _ A - o ¢ y (m) S {ord k' Sfu)“() :

P de’ : 0(.8
where
2 TR
. 13 ¢
CL"M (A) B YWY} ( A ) 'I'-‘-“ (1}'5)
SIS T e (3.5)
We have written k, =k, k= k', M, = W and defined
K= 2_’_!' X::"r.z"""‘l y £ ='3.:'1_ ('24-.2'):;-
3.6)
?3*=-% (n+n') : ¥ = ntfn ) {) = l.arc#an (Ff/k ),

where n and n' are the Sommerfeld parameters in the initial and final
channels, respectively. The functions IL_K(4},€) are defined as in

ref.®) as standard WKB radial integrals for Coulomb excitation. For
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details of the approximations leading to eq.(3.4) (which involve the
"Sopkovich approximation" f;r the'Coulqmb part of the radial integ?als,
the WKB:approximation for the Coulomb excitation integrals, and the
Austern-Blair relation with Hahne's modification for the nuclear: part
of the radial integrals) we.refer:to.réf.EL.and;the references-given
there.

Note that expression {3.4) is symmetrical in the initial and

final channels. Thus we obtain: for.the quantities,defined by eq..(2.16),

Lo, 1
[ Rt'c “‘*{‘))
Sy $¥)

e! '

.T.;“!. (e, k) =

S (3.7
-G [em i)
with the definition
e , ’ ;c») ST
aA o dS. (KV/dt'  dS™M(k)/de (3.8)
N (M) = TN S ™ (L) .
¥ Sy (K) S, (

.\ L : N R
Since also the coefficients aggs are symmetrical in £ and &', our result
for the total elastic S-matrix, modified by_dYnamig polarization, can be

written in the form (2.14},
§, (k) = [ L=~ % (K k)] 5, (k) | (3.9)

with
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t (k) = 4 kK Z [amml

K=-t
A TEm] - WV LR a5 e R

where we have written agﬂ,-E.aLK(X3 and replaced the summation cver

Ln = L' by a sum over K.

This expression displays the contributicons .of dynamic polarization

due to Coulomb excitation, nuclear excitation, and the interference _

between Coulomb and nuclear excitation.

The result (3.9), (3.10) gives only the lowest-order effect of

the dynamic polarlzatlon (blllnear in the deformatlon lengths S(C) and

6£N)). As shown in sect.2,” 'a Born type iteration procedure allows

us to sum all higher-order contributions - within our approximations of

Channel coupling ~ in the form of a geometrical series, with the result

(opore? 1- ( L)
S (k) = 2t bk 5 (L)
& 1edt (k)

{3.9a)

where tg(k',k) is given by eq. (3.10). A different-way of including
higher~order effects (which we cannot derive within our procedure
because it corresponds to a WKB-type or eikonal approximation) leads

to an exponentiated form of the dynamic polarization correction,

(exp) ® , .
S (k) = S, ep [-HGD] . G
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Obviously, both expressions,(3.9a)'épd {3.9b) reduce to (3.9) to lowest

order in the coupling constants; in fact they égiée even to second
order in tﬁ- P
For pure " Coulomb exc1tat10n and in the adlabatlc llmlt k k,

i.e. with to (k, kit (X} given by

— (c) " '_ A ; X 3 C e
t (X)) = L (kd, Z a.. (3) cL_ (X )] (3.10a)
the exponential modification of Sy(k} in (3.9b) is equivalent to the
one derived in ref.?) frdm‘thé'Qéaépéndéﬁtfefféé££v5.éétéﬁtial of Baltz
et al.?), using the so-called "'cdiiléimb'—'di'stéxt'e'd‘é'iko"'rial':éj;')‘;'ufoximat'io'n".
A comparison of the closed-form éfpféssidnésfdfhfhé differential
cross sectiohé”deriﬁéd'ffbﬁ'the'"sﬁmméd'Borﬁ'Sérieé"“fofm (3.9a) and the
"exponéntiéﬁed" form (3.9b) ﬁsing tﬁe'ﬁécl qivéﬁ'by (3.10a) for scattering

below the Coulomb barrier will be shown in subseét.B.B, see fig.l.

3.2. Evaluation of the scattering amplitude

Our next aim is to derive closed-form expressions of the elastic

scattering amplitude by evaluating the partial-wave series

LU

i (E+§)[1 5 (k)] P (cese)

TS : RS :(.3.‘311)

x l "-_:_

£06) =

where

‘E = i’ i (h-'fz) [1’_ gg(i‘)] F:- (co.'s 9) (3.12)

lco
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is the amplitude for no_coupling"(i.e.,fscattering-by-the_potential_l

%(r)) , and

FE b 5 () 8 (0 ()
£ (8) k :L.: (845 5, (KIF, (e0s8) (3.13)

is the channel-coupling contribution, with

5 (1) = - £, (K. k) S, (k) o (.10

according to eq. {3.9).

Analytic expressions forﬂ%(e), fepresenting the leading terms in
an asymptotic expansion for laxge Sommerfeld parameters n and large
grazing angular momenta lé, have been derived in ref.>) to-which we. .
refer for details. ~Now we use similar metheds to thosé developed in

&
refs.®’10)

to evaluate the amplitude {(3.14) in closed form. ..The.:
procedure consists in replacing the summation over £ in (3.13) by an
integration over the céntinuous”vafiable A=R 0+ % {or bf'the exact
Poisson series), using appropriate asymptotic expressions for Pl(cose),

" and exploiting the general'properties:of-§l(k),: The latter is

interpolated by a continuous function of A,

5 (1) — SN ==t({)S, () exp 228, 0

with X1=A-%K. The A-integrations are carried out in.different ways,
. -0

depending on whether a given term in t(A)SN(A) is slowly or rapidly

varying with A, assuming that IgN(All has a "normal strong-absorption

"10) .

profile the slowly-varying parts are evaluated in stationary
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phasa*approXimation'(SPA); while for the rapidly-varying terms.the
Rutherford phase function G(\] is expanded linearly about the points . ..

A= Am of maximum variation,

()
26 (\) = 2a(A) + (A=) GR ; (3.16)
where
(m) a(-?.d(k) o :2 : c. I RS
8, = [T]h/\m 2 2arcton (n/A,) (3.17)

is'the*Rptherford=sbatteringzangle peftaining to Am,;m-Thenlatter
procedure ‘leads -to expressions for the amplitudes that. invelve Fourier,
transforms of ‘the rapidly-varying parts.of'tQX}gN(X).

‘If we ‘write the three terms of tg(k’,k) > t(X) in eq. (3.10) in

an obvious notation as
CE(R) = tc.(i:) s, (V) + ey X , - .. L 3.18)

the contribution E(86) to ‘the elastic scattering amplitude due_tquynamic

polarization is split into the: three corresponding parts, !

R ACREACE N,

(3.19)

Using the asymptotic form of' the Legendre polynomials,
o : ;-f';iyﬂ :"'(XB;LW) o L
~ 1 -;(AG --'ﬂ') hd i
y 2 T _ SR ’. < {3.20)
(2rr Asin®)
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each componént of (3.19) consists of two branches, -

E{(e)f—% -mee)'* -?H(a)'; R S (3.21)

which (in a classical picture) Cdrrésﬁdnd to scattering by the "near
side" and the "far side" of the interaction region, respectively.

o Té.é§éluate fc(ej;.wé.ﬁuét:éiétiﬂguish;_és ih“the caléulation of
%(8) according:to_ref.s), between the "illuminated" region 6 ;=8R and

the "shadow" region B ;=8R of the angular distribution, where

| dum} ~ R
g = | L & lantan (n/A) (3.22)
&’ dA A=A ( '

is the "Rutherford grazing_ahgle" associated with the angular momentum .
. o S T T s S
A defined by [S(A)[ = %. This distinction is necessary because in -

evaluating the integral,

N L7 s(h)
fo = &) A

' . - .:.n - o .
AANE(T)S, W)e | (cos8)

L (3.23)

with the asymptotics :(3.20), there is.only one contribution, namely

N L he o _
fé )(8) in the region 8 §=6R’ that arises from a point of stationary

phase,

la = N :ot-i-e . } {(3.24)
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in the range A-;zA, és_well‘as.frpm the vicinity of A.ipselﬁi all_of _
the other leading contributions to £(0) come from the neighbourhoods
of the maxima Am of the rapidLy—varying parts*bf?ﬁ(i)gNGk);

With the methods of refs.® %) we obtain the following results.

First, the,contributiop_due to Coulomb excitation is

=@t 0g) « w(MO)G(Bm0)e T E a0l t(R),

""(ﬂ(e) - . R o O : e (3. 25a)
e q!- (A, 9)
« (A, e)@,(9~e ) F, ['AB 6)]'!:(!\
> g ?, éa-* L
A (N8 F o Ta(e,+8)] o
%:cc.‘(g) = «(A B)e Lot t. (),

8 5§ (3._25_13)
R JTE 4

where )\e = )\8 —%K with g =: n'cot -1~6, and A = A - —K with' A n cot. %GR'

lThe other quantities in (3.25) are deflned as follows

{R(e“,i E:.(_#—:-—e) exp { [zé(o) ,ln_tn (Sn—e)]} (326)

is the Rutherford scattering amplitude,

1y

.«(n,e) = -L—- ( A ) » 9y (M8) = 28(A) 1-(’\5'1;’.’) ’ (3.27)

2msind
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[ 0
and FN[AZ] is the Fourier transform of the derivative of SN(K).

o L O-A)2 e
| PR LB L ds, () :
£ lae] = E dX D, (N e ;DN = s (509
(Specific forms of these functions are given in appendix D). The *

functions G(zz) describe, under the conditionsll) A > 1 and AsinBRzzl,
the Fresnel-diffracti%e propertieé of elastic heavy—ibn scattering;
their analytic form is given in appendix C.

The contribution due to nuclea; exc%ta;ion and Cbulomb—nuclear

interference are

£ < inln, 0 BN (20 8, (R,)

(3.29)
and

~ (£ . %**(Acme.) tc&) \

fon (B) = ix(Aey, B) e HCN( )t ) 7 (3.30)

respectively. In these expressions, the angular momenta'Am = (AN’ACN}
are respectively defined'as:thé:bésitibnsJof thé:maxima of the rapidly—

. varying parts of tN(X)gN(A) and’ e (A)S {(A), i.e. of [[ﬁK(X)]ng(A)I and
|§K(133N(A)[, and we have K# = A -2K. The corresponding Coulomb

scattering angles are

() (ew)

O, = 2arctan (n /AN) , B, = %arctan (n/ﬂtﬂ) (3.3




- 20 -

-Similarly to (3.27) we define. . .

i’y

. - ] . ft = .2 . f\ ) - P
(0,8 = (Z527) 0 A0 s 1) 5 (heeg)
and to..(3.28) .correspond the Fourier transforms .
R 'A ;()\ A )
H, 2y = § [N A)] S,e MM
‘ — 6 o (3.33)
B _ - R _: & (A= AcN)z :
Moy (21 = [ dd N (F) 8, (0)e : 338

Spec1flc expre551ons for AN ACN and analytic forms of the functlons
HN(z), (z) are derlved in appendlx D.
Finally we give the CF expression®) for the elastic scattering

amplitude without coupling,

tdy (A0
A0y - (4, e)C(e e)e___f.._)m[a{a -9)] »

-« {A,0) G (B8-8;)e ‘(0 e)r [ (8- a)] 20, ,

3

{-"’(e) . «(A e) ed‘:“ 0 F [Afe +e)]

where all quantities are the same as in egs.(3.25}, except for the functions
G{*z) which differ slightly from ' G(%z) and are also given explicitly

ir a;ppndlx C.
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The sum of.expressions {3.35), (3.25), (3.29) and (3.30) is our

closed-form result for the total elastic scattering amplitude in the

presence of dynamic polarization by Coulomb and nuclear excitation.

3.3. Strxong Coulomb excitation

18

In several cases, such as the scattering of o+ '8y at 90 Mevl?)

analyzed in refs.'’?¢%),

the dynamic polarization by Coulomb excitation ‘

is so strong that the lowest—order appfoximat?on,;eprééeﬁtéd'by egs.(3.10)
and the amplitude (3.25), is inSufficient. " Then we must use thg expressions
obtained by summation over higher-order contributions, either in the
geometricgi (Bdfn).ée?iesTfo¥ﬁ (B.Qai.or iﬁ thé“éxPoﬁéntiaﬁed.(WKB) form
(3.96). “If wercénfine.ourselveé to pure Coulomb excitation (6£§)= o),

the total amplitude becomes

f6) = £ (8) = £ + £ (01

(3.36)
evaluated with the S-matrix
. ' 5. _ : : _:.' e (I‘)
(geom) f'-'i'bcfx) o (exp) _ 3
5.t (A = S(), e~ S, ()= SMNe C G

1+4t (3)

R S o : P ' s I
Because of the slow variation of tc(X) compared with SN(A), the
corresponding amplitudes %C(S) are still of the form (3.25), but with

tC (of argument Xb or K} replaced by

_ {exp) -t ' (3.38)
:1“‘“) - tc. —_—, or tc - L-e ¢ .
I+ 4t |
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As the 51mplest case let us consmder scatterlng below the Coulomb

barrier, where only the first terms in eqs. (3 25a) and (3 35a) remain.

Then the total cross section G (8} lelded by the Rutherford cross

section OR(B) becomes

{9eom) - 3
csc' (e) = t 2 tc (AG) S , o s (3-'39.)
=M (6) 1+3% tc(ka)
‘ N o
o - . . S 3
‘2“‘“—‘(""1 = &P [‘N:c D\G)] ) (3.40)
e (8). - S N

As a SpElelC example we glve the expllc1t expre531on for t (AB)
defined by eq. (3.lOa), for quadrupole excitation. Wlth the coeff1c1ents

azK(Xﬁ from-eq. (3.2}, calculated in the large-2 llmlt,

'/2
iy ~ ! o 2 l B
ro— , (3.41)
Qlo (i\) h_ﬂ"? 2 ._ | 23:2. (/\) . (2_) hw[_;. :

we obtain

kA

t.(%) & = (k) {[c“ W) -3

2

([cu(x )J [_sz *e)] )}

(3.42})

" B(Ea, 1)
n* Z et

R
18

{[iuw4ﬂ1+%(FaJ&nf+[gmef)},

and using the expllc1t expre551on513) for the functlons I (8,0) in -the

adiabatic limit £ = O, this becomes
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| " : | v 1 “ : :
_t ()\ ) _g- _k__ B(?z;zt) { (5!"‘%_'6) +3 (tah—ie)-[i—z(ﬂ—e)tunﬁe] }'

{3.43)

EXpIESSlon (3 39) w1th (3 43) agrees thﬁ a.eesult obtalned neeently by
Baltz et al.?”) Equatlon (3.40) is 1dent1cal to the result of ref. 2)
at 6 = 180_, otherw1se the expllc1t angular dependence is sllghtly -
diffegentf_ As long as the coupllng 1s not very strong S50 that'%tc(ié)
is less_then.unlty fo: all angles we:expect eqs- (3 39) and {3.40) to
give compereble_results. To exhlblt this we.snow in. flg._l a comparlson
of the cross sectlon ratlos (3. 39) and (3 40), thh t (l ) glven by eq..
(3 43), for the scatterlng of ?DN + 1525111 at El ab 70 MeV )
(Reorientation, prejectlle exc1tat10n,_etc., are neglected in.the.
exp;eeslons, although_our fe;malism cpuld be.ennended to include these

effects as well.)
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_4;ff'C0ﬁp1ihg to.tranSfér Chaﬁﬁélsm

4.1, Modification of the S-matrix

Now we turn to the coupling to rearrangement channels, and
consideg.pr;céssés iﬁ whiéﬁ.tﬂe Eﬁtefﬁediﬁté éhannel ﬁ differs frdﬁ”
the initiél éﬁannel ﬁ b§ éﬁe‘tfanéfér'éf:a.nuciéon.éf a ;lustér ¢ from
one of the:ééétteriﬁé ﬁﬁcléi (A; éé?)“tgftﬁé o£her (Bflu. Here:;é
encéunter.the problem.of.hon—ofthbgoﬁaiiﬁf of the wave functionéxiﬁ:'
the”initial and intermediafe chaﬁnélé. For.the-a't.v.s.rc.n--steag.:.prcu.:cai;s.s:.'.::'E
A+B A’ +B >A+B this results in an additional term in the |
effectivé in£é¥ac£ion.§§£eﬁtiél.fp;uélééﬁéé sé%tﬁériﬁéikééé éﬁgéﬁdiﬁ.Ei:
Although oﬁr freétméﬁth6ﬁla“bé‘exfeﬁded.to.inélﬁdé'éﬁcﬁ ﬁé?m;:;wé;;hali
for simpiicity negle§£.tﬁésndn-érthogbﬁéiiﬁy.coﬁtributioné.on tﬁé'
expectatiéﬁ that theif effect is of iessér importanée for he&v& tHaﬁ
for light nucleil®),

Thus we use the results of sect.2 (writing again Qn =4, ﬂm = &'
and My, = 1) with the coupling interact;on

' !

vi o= a0 e

2t ? (4.1)

K'Y .
where the coefficient ag includes the product of spectroscopic factors

and angular momentum coupling terms, and

n L)}
0 2ot h, {iw'r)

.

e o {4.2)

fi?
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is the form factor for transfer into a bound state of imaginary wave

number k' = (2ué:Eé#/ﬁ,rwhere ué is the reducgd mass and Eé the binding
energy of the traﬂsferred'partiﬁle c.in the”nq;;éus-B'. |

Now we employ the approximations useé in thé ciosed—form description

of heavy-ion transfer reactions given in ref.’). Thus the DWBA radial
integrals (2.13) are replaéed with'fhe "Sépkovich”preséfipfién" 6f
factoring out the sqguare roots of.the nucleay parts of the partial-wave
elastic S-matrices in the.i;itial and final channels, and the rémaining
transfer radial integrals with Coulomb wave functions are approximated

by their WKB forms. The result is

(%)L g " N
R, (Kk) m — LK(«?’n)[(Jk)SH(k)J

- 4.3
4 Uc’«' ( a)

where 1 and £ are defined in the same way as in (3.6), and ¢’ is a

scale factor that partly accounts for recoil effects (see refs.”*7).
o o K

The definition and main properties of the functions Iévétﬂhi)_are

given in appendix B of ref.’). With a similar approximation of the

radial integral for the reverse transfer process,

(=)L o . : Vo
{(x)L . A (W) Stwy, < Zem pan]
thf ([“jl‘) : ’SL"‘ ' LK () ")[l )el ] | ’

{4.3b)
where € ¥I(ZUCEB)%/h is thé'iﬁaginary wave numbeér for_particle'é in" the
initial nucleus A, and using thé symmetry relation

r«:

{+) .
u-< ('& = IL—-K ('3’; },) - ‘ {4.4)
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the quantity (2.16) becomes

o s TR e
o (k ) - ST w --IL_K.(aj,;,)I. g& g) s

The wodified S-matrix (2.14) has the form

5 (k) [1-_ (,«)(h L)] S (L) :” .:_l  ; .:‘gﬁ)

with
L ZL (T) = '
B (KK =2l ey m (M)IL.«N W, IR TR

K=-L

where we have written

- Jara
och(A) = k7 ;r o {4.8)

{since the coefficients a, in general depend on L and K and are slowly-

T
varying funétions_of‘X), We note especially that the contribution to
the elastic S-matrix due to transfer channel coupling in eq.(4.6) is;’s

0
aside from the factor Sz(k), completely determined by the characteristics

of the transfer process. In particular, the relative phase is fixed,
. . K, 'l . -
and since the function tp ' is mainly real, the transfer coupling

contribution is predominantly absorptive.
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4.2, One-step and. two-step elostic:transfer processes

One~step elastlc transfer is a well _known contribution to
elastic scatterlng of nuclel of the type A ='(é + c), so that the
transfer of partlcle o leads back to the elastlc channel B + Al ),'aé”'
shown schematically in fig.?. The corresponding éffeétiﬁe'interactioﬁ'
Uﬁ(r) in eqg.({2.6) is a real ekchange potential:of the fbrmk

(%) (Y S : o e
U (r‘) (—) a. (). (4.9)
A simple modification of“ﬁhevfofmalism in sect.? then leadé.tb

the follbwing form of the total S-matrix,

52“&) = [1—"(_) qg-,- oo o)] 5 (f‘) . (4.10)
where
()
Qer
— #_ - ¢ .
e T Tkw BRI EN

Thus tﬁé.contfibution of éne—é£é§ elaéfic.traﬁsfér ié p£edémiﬁaﬁtiy-".
ref?éctiﬁé.amigivésrise to an.“odd~even sta.(_:;g.eJ:J‘.rrug.;‘.r iﬁ“tﬂé'pégﬁiél—wéﬁe
amplitudes. {An expression similar to (4.10i égé.5e¥ivé6 é;riééf;.in"
segt.l10 of the first ref.s).)

A two-step (sequential) eléstic trénéfér.is a poésiblé Céntribution
to elastic scattering of nuclei of the type B = (B + ¢ + c), foxr which

- the intermediate channel is:symmetric with nuclei A’ =.(A=c) = B' = (B+c).
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This is shownrschemaﬁically in fig.3(b). ~Afi example is a two-step
a-transfer ip 16Q +_2"Mg wi#h the symmetric.ﬁnpgrmediate channel
20ne 4 ?quT, This reaqtipn was étudied recently by.ﬁaﬁdéwne aﬁd
ngterl?l by means of a full coupied—channelé caiculation (wi£ﬁnfécéil
and flnlte range 1nteractlon but neglectlng non—orthogonailty. |
contrlbutlons) lncludlng coupllng to the lnelastlc channél w1tﬁ 2“M§
in its lowest 2 state. Although the two-step contributions to.the .
,ela$tic‘cross section were fqund-toﬂbe*af_least 3 orders of magnitﬁde
smaller than the-direct scéttering.ﬁrosé gecfion.at 900;.an ad hoc
1ncrease of the two—step amplltude by a factor 5 would be able to
account for the weak 050111atory structure observed ).1n the eiéstic

16

0 + %*Mg scattering at E = 29 and 33 Mev.

lab
The contributiopgof-the twofstebftransferiprocess depiéted in

fig. 3(b). corresponds again to an exchange interaction

~ ~ (1)
0 =20,

2 2 (4.12)

‘‘where ﬁéT)(r) is’ the effective interaction COrreSpondinQ to the process
shown in fig.3{a). From the formalism of sect.2, our results (4.6)-(4.8),
and insgeqtianof fig.?, it follows.immegiatgly that Fhe S-matrix for
‘direct e;astig_séattgxing_plus thé sum of.thg cogtribqﬁions from thé

processes of fig.3 becomes

'“(k k) } § (k).

S (k) = { 1—[1+(-) ]t
L o {4.13)
'Thus the odd-% contributions vanish while the even-{ amplitudes are twice
as large as those given by eqg.{(4.7}. As in eqs.{(4.6), (4.7}, the two-step

transfer contributions are predominantly absorptive.
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3 4.3. Evaluation of scattéring amplitudes; ~intermediate angles

To obtain closed-form expressions for the scattering amplitudes
corresponding to the S-matrices (4.6), (4.10) and (4.13), we use a

similar procedure as developed in ref.’). We write

£(6) = f(e) + ?T (0, | (4.14)

where %T(B) corresponds to the second term in eq. {(4.6) which we replace

by a continucus function of A = E-+%,

(«,u'). P

S5 S) = St M0, g

where tT(X) withfi-= A —éK is given by the right-hand side of eq.(4.7).
By using the asymptotics (3.20), each of the two amplitudes in
(4.14) splits into a "ﬁear~side" (+) and a'ﬁfar—side“ (-) branch, with

Q (%) .
f (8) given by egs. (3.35a,b}, and

~ (t) o
[e) = .
fr k (arsmg)’t

O3 .
'/3 - o ,
{an N £ (1) S,0) exp {2 T20007 G0-4m] -
o . _
(4.16)
' To evaluate the integrals we must identify the rapidly and slowly varying
parts of the integrand. Since the main, asymptotic behaviour of the

i_;{-&;&) is exponential in A ') we write, as an auxiliary

functions I
step,

{1}

~ -y A
A (1) by
T« ('&.E) = T (¥ %)e (4.17)
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. A ' : .
where the functions Iifi(ﬁ',ﬁl. defined by eq.(41;7},_are_slowly—varying

functions of A. The quantity Y is mainly determined by K and given by

. P13 P Lo L . |

where

¢

..
il
x4

(4.19)

' rl'l-:'t'
o

Theén we can write

where
L c__ » | m, |

En) = L «XMTL ) I () o
s~ R

is slowly-varying in X, and where Y = %(Y+Y’), with v’ defined as in
(4.18), (4.19) with K’ instead of K.

Thus the rapidly-varying part of the integrand in (4.16) is
o K -
ey =S MWe T st s e T L W

Since there is no contribution'from any point of stationary phase to the
integrals in (4.16), the main contribution comes from the vicinity of

A= AT where TK(A} has its maximum. After a linear expansion of 20(A}

..about this point,
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T ¢
26 (0 = 2a(As) + (A-A)) Q_n'ﬂ- e

ZQ.(4.2m
where
(v} d 28(N) ¥ Qaretan (n/A.) -
--GR = -—r = - retan: T (4.24)
d Ae A

is the Rutherford scattering angle pertaining to A.'I.‘..’ we obtain

<Py (a,,0)

T (8) = ¢« (f\.“ 8)e HT ( 3:’-): e‘) tf(NT) L (4.25)

AT

Here, K’f = A’T-—%K', and

) qﬁ: (A_'n:e);? ‘26(“1)$ (Are"‘{'"'), (4.26)

while

= o -y (A=AL) c(A=A)2
H-.- () = g A SN (M e :3'_ e e o
e - (4.27)

is the Fourier transform of T, (A} exp (2yAp). Note that the factor
exp(~i?ﬁfj has been used.together with ETfK) to restore in (4.25) the
original function t'I" according to definition (4.20), at the point KT'

This. is given by
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’ {4.28)

: L
— T ["“) - ) .r"."> - (T}
(R = 2 e (R YT (BT T (BT 8

KawLl

where

"ém = Zarctan (R /K.,) ' i '
a : ! " (4.29)

Specific expressicns for_AT:anq HT(;) axeuderiyed in gppendix D.
The sum,
. : ‘fokékbt??luyﬁi.. ';F)3ﬂ-t "=‘f&ﬂ'a
f8) = § (@) + £ (6) + £ (0 + {; (8), . (4.30)

with the four terms given by eqs. (3.35) and (4.25),_ts our closedffprm_
result for the total elastic scattering amplitude in the breéence of
coupllng to a transfer channel.

For the ampl;ttde fﬁr eléstlc scatterlng w1th a one- step transfer
contribution we obtain from the S-matrix (4.10), following the same
procedure as before but noting that the factor (-)2 changes 0 into 7-9

and interchanges the (+) and (~) branches,

f(e) = f(e) ¥_QZE? (é);; RS A R .:(4'3;)
where

t&_(ﬂm” 9 | c .
+ET (e) '"K(Asf:e)e . i )He_-r[ (ﬂ (“’“6)]“ (r} )

(4.32)



- 33 -

In this expression, A__ is defined by the maxinum of -

ET
- ] .
_ .‘Z>‘- _ .
TN = S o
furtherlﬂé?T) = 2 arctan (n/AETL and HET(Z) is the Fourier transform
= :d ¥
He (et = fas,one D0 ThemT L,

{A SPeqific expression is given in éppendix D).

'Finéiiy, foi éiastié SCatférin§3With:£bé twofstép'trénsfef;:
contributions shown in fig.3, the total amplitude follows immediately.
from the form of the S-matrix (4.13} as

.{_(e) = {‘.'(a) + .'{:vr (8) +f,. (v-8) (4.35)

where %T(H—Q)-is'given_by eqgs. {(4.25) with § replaced by:ﬂ}B.

4.4, Evaluation'bf'scattering amplitudes:i'large arigles

Because of the use ;f ﬁhe.asyﬁptbtie forﬁ.(3.20) for the Légendre
polynomials, the expressiqns_fpr the amplitudes_de;ived in subsect.4.3
ére festricted to the angular fange AR <0< m-A"1, excluding in
particular a small region near B-m. Since effects due to.transfer
.channel céupiigg cﬁuld be most conspiéuéué.inIlargé—angle scatﬁering;
it is- necessary to supplement our previous results with expressions that
cover the large-angle region uniformly up to and iﬁcluding 180°. This

is possible by using the methods developed in ref.lo).
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Using instead of :{3.2Q) the large-angle asymptotics

e (A=t g Y e
. +(3-%) (L@,) : 3L, 28] | ase

14

(cos 8)

> ©

§in O

ke[~

valid for Kul <8 g,w, and the Fourier-Bessel transform methed described

ln Appendix A of part I of ref. D), the partlal—wave summatlon in eq.(3.12)

Q(~}

-for-the unmodified elastic amplitude f(ﬁ} = f (8) + f (8) can-be

evaluated by means of the Poisson sum formula with the result!®)

@ i3 ) o] £13 [0 !
by - 0 (2 0 o et e

(4.37)

where JO{X), Jl(x) are cylindrical Bessel functions, and

2 lamay(A-t) F {8+ me) T & (1-0))]
G&)(B) = 2_ ¢ HAS At . , ' (4.38)

pﬁ-”—aa' I PP P eR +(-2.m+l:)‘1T + (-rr-—e)-.

(In the notation of ref. 10, we have g(*)(e) C(-H?‘) where ‘a‘ = T-8.}
Expression (4.37) is valid in the angle range
8% 8, + |28, (M) =8, + XsinB,

REECIEI Y "(4_395

i.e., from just beyond the Rutherford grazing angle up to and iﬁéluding

8 =.w;
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By a very 'similar procedure the. transfer channel coupling

contribution "fT(G) = (+) (0} + f( )({3) can he evaluated, with the
result’) |
. Hy
~(t> ;A e..2::.(/\1-) (1-_-__) Jt (9 {'_] [A (w-e)]rLJ [/\ (v a)j}t (l\ )
‘FT’ : :z_l: Yoo 0 Xgin
| _(4_.'40)
where ' o
K] A

mw - D

(4.4L1)

Similarly, the one- step elastic transfer amplitude

() ()

(8} = f {(9) + f (8) has the form (see sect.8 of part I of ref.!?))

L26(Ag,) ( 8 )"‘
_ Su'ne

r ) er
12 (0) {3 (A (0] 23, [ 0]} gy 10 (6577, )

X
(4.42)1
where
[ . 1
(£) tdm (Ae-r"i) (eT)
R (8) = Z € | H_, [_eé o+ -ijr * (er)].
me — 0 L ' . _ s :

{4.43}
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If we use the asymptotic expressions . .-

I (x) £ 3 (x) 3 (2/mx) ) exp [ £e(x=4m] (4.44)

the intermediate—angle region (i.e., m = -1 for the (+) branches and
m = O for the {-) branches of %(9) and ET(B), but m = 0 for both bkranches
of %Ei(e)), it is easily seen that eq.(4.37) for %(+)(8) reduces to
eq. (3.3§a) for 6 > GR, ncoting= that accg;di_n_é_to eq. (C.10) i_n appen.a'ix:”r
¢ the G;fﬁnction haé tﬁé.asyﬁptétid fo?m:er—BR) EL(B—SA)‘I under £he.
condition (4.39), and eq. (4.37) for %(_)(8) reduces £o.éé.(3.35b).
Similarly, ags. (4.40) and {(4.42) reduce to egs.(4.25) and (4.32),
respectively. This shows that, taken together, ocur closed-form
expressions for %(8), %Tfei and %ﬁ%(@)'coéér thé Qhéie fané§ qf':'

scattering angles.

4.5. Backward=-angle excitation functions

At 6 = T, egs-(4.37), (4.40) and (4.42) reduce to.

o ‘_ L24(A)

£m = 'AE e ' Gw), (4.45)
RN T o |
'F'r(‘"’)s - %. 2 T }t"r (m) t‘r(l\r)r R ' (4.46)

26 (Nep) (%) (&7)
o),

A
f, M o= - _.SI e H_ () e, I, (8, (4.47)
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where the superscripts () on the functions QF(HY,-JfT(ﬁ} and J%ET(H)

have been dropped because the two branches coincide in the backward

direction. If we retain only the leading terms of the Poisson series

for angles near 6 =T, the:tdtal backward-angle excitation function,

divided by the Ruthexford cross sectibn'dR(ﬂ} = (n/2k)?, becomes

| e
oo | Hmafe
S, (m | £ ()™ B |
- (_J._fl_)z' Fu [0(9.-;."7")) . - Fu [(\__(eg+v)_]_e='-..-lﬂ‘f\  (4.48)
n wv-0, TT"_f'OR

2
4 4= —id (7-0g) r) o Lir(Aedy)
St () (10 %) e [H (87-m) = 1 (8w m)e ]

for the direct scattering plus transfer coupling contribution. In
eq. (4.48) we have used AT = A+ d, as defined in appendix D, and the
expansion 2U(AT) s 20(A) + dTeR‘

Similarly, in the presence of one-step elastic transfer we obtain

for the total backangle excitation function

| l {:(7) + "Fﬁ'r (W)_)_l-

Ser (M)
Sam ]
; : )_. )1 1 R (:A{eﬁ"v)-] . F}'& [ﬁ(gg‘*ﬂ-e&lw-ﬂ: R (4.49)
~ (T ey o TH8g
| Cder By b )T
() ) d v R L(ET) T '
"'" Xer _I“ (.9:“ ' °)(1+ —AEI) < o Hsr (eR ) e I ?
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where we have used AET = A+ dpr @s defined in appendix », and the
expansion 20(Ag;) & 2a(A)l + dEfBR.-'~Note that because of its exchange
character, the elastic transfer contribution oscillates-in A with: the
period §A = 2, i.e., with twice the normal period 6A = 1 of the
oscillations in the direct scattering: term.

The energy dependence of the quantities appearing in egs. (4.48],
{4.49), and the oscillations that arise f£rom the interference of the. 
different terms in these expressions (which may account for some ofithe"u
gross structure dbservea:in lsQo éxcitation_fungtions),:have been discussed

10,7

in refs. ) to which we refer for details.

5. Conclusion

In this paper we have developed énextensionAof ﬁhe closed formalism
for elastic heévy—ion scattering [refs.® ") ] which includéé tﬁe effects.:
of coupling to inelaétic and transfer channélé: The corréspoﬁdiﬁé
contributioné tb the'S;mat£ix for ﬁo?mai écétte£ing without coupling,

22, have been calculated in expiicit form, using appropriate approximations.
These contributions depend, aside from gl' only_qn the properties of the
coupling transitions, and thus, if the latter are known, contain no
additional parameters. Wé have furtﬁer calculated closed-form expressions
fqr the corresponding contributions to the total élastic:scgttering
amplitude which cover the whéle range of scattering angleé ﬁé to and
including 6 = m. Thus, in paiticular, we have obtained analytic formulae
for the.lSOQ excitation functions.

It.should be emphasized that our results, like thoée of refs.é'ld),

: 0 o]
do not depend on any specific form of the function SR + S(A), provided
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only that the reflectién function %(ll = !g(A)| has a norﬁﬁl strong-
absorption profile. if one doesn't want to rely on parameterized forms
of g(A), {such as the simple example givenlin appendix D), this function
may:pe:ggnerated by”phgngmepplgg;ga}_o:ﬁsemifmicrngopiq (e.q. folding)
éotentials,_and_the rqui;ggiFgurieg t;qufq;@sgalculated,ngmericql}y.
Extgnsion 9f:pur mg;pgdﬁtﬁ.ipe}gsyig.heavy—ion scapte;igg:and‘_ 
transfer_reactignsstotagcoupgﬁfor h;gher—grdgr, multi—step cont:ibgtipgs
__tg the fi;st—q;de;:DWQAfgmplitpdes,”q;e fqirly strgightforward_and Wi}l

_21)

be presented in subsequent paper . Applications of our theory to

experimental data are in progress.
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Appendix A.  Radial Gell-Mann-Goldberger relation

The Gell-Mann-Goldberger relation relates the amplitude for
1] —
elastic scattering by a potential Ug(r)_é_U(r) + Ug(r}-to a sum of

two amplitudes for the cohétituént'poténfiéls;E

ke +
fo) = =L (T Y (] R CWAN
('A._'ls'

- {( “ﬁ‘--ﬂlﬁml ANCRMERE A ,.,..)Iu QIR (..,.. >}

A #z

where Y(k,r} is the total wave function for scattering by Ul(r} and
° . T T AT -
Yik,r) the wave function for scattering by U{r). -~ Expansion in

partial waves,

ca (k) A n o
(k,r) = Z'Lllt(i‘.ﬂe ‘o Y (T (%), (a.2)

l‘l‘ Rm

etc., and comparison with the partial-wave series for £(8),
N -~
£o)y = ¢ 2_:. 2 [1-51(k_)] Y, (k)Y, (£) C(A.3)

yields, from the first part of eqg.{(A.l) , an exact expression for

the S-matrix pertaining to Uz(r):,' S

T _
St(k) = 1- v I girr— ]L“cr') UJ. (r) k; (L’,r) S | (é:_%)

LA
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- From the second part of (L.1) we.obtain in a similar way,

, " '
b S : o o ¢, (k)
S (k) ==t _15 dre §, ) Ur) x (ko) e
- R R T
. '_} e ~ ; sd&(l()
=i 2E fde g (Gon) Uy 0) @, Ugr) e @.5)
4 k Y = : R S :
3 S (k
= 5 () + §(k).
We call the equality of the right-hand sides of (A.4) and (A.5) the
"radial Gell-Mann-Goldberger relation".
Appendix B. Green function approximation
The Green function of the left-hand side of the eq.(2.1), for -
outgoing-wave boundary condition, is given by (omitting the channel .
index n)
&y =l Y ()0, o)
" "a")"‘tkl vl [V LTy {B.1)
with
X-t( "-)_"2_'[ ‘( ,I') 3 % T ? (B.2)
where Og(k,r) and Io{k,r) are solutions of the left-hand side of
eg- (2.1) that behave asymptotically as
Ly o -y ' ; o
O (kry—=e | I (kr)—e , @, = kr-ntn(ke) 2T +o,.

{B.3}
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In (B.1) ., >(<) denotes the greater-{lesser) of r,r .
On the other hand we have the integral representation (derived

from an expansion in biorthonormal basis functions)

° ™

Gi (r,r') =
X ) X, (%) a" -1 e
fm 2 go‘.« e e [5”(«)]
E—>6 T ¢

t 1]
fe = & +LE

with € > Q. By separating the contribution from the singularity at

k = k and the remaining principal value of the integralfwejbbtain7

bt (-r)

o -4
° V P N}
G, X, (k,e) X, (k) [ (1]

(e, ¢’} = =

3
k

(B.5)

| + N P Sdk X‘, (« r]X (ﬁ, . [S(N)(1<)]
ar .

k* - se?

Qur approximation is to neglect the second term in (B.5) c¢ompared to

the first, "on-energy-shell” contribution,:

® (4

G, (nr') = '“f: ,,(kr)x(h J[sf"’mj (5.6)

A criticism has been raised®?) that with this approximation the

coupled-channels effects would be overestlmated for low partial waves

N}

:51nce the factor [S( (k)]‘1 is large for small 2 f In_qu formalism,

however, the reciprocal of the nuclear S-matrix in the intermediate

N - Q
3! )(k ) ]! in eq.(2 11), is cancelled by the factor SEN)(km)
. m

channel, [S

arising from the "Sopkov1ch approx1matlon“ for the radlal@lntegralé (2.13).
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Appendix C. The functions.. G(*z) and -G{tz)

The functions 'G(iz} that appeaf iﬁ“eq.(3.35aJ aré.aéfihed as
G(tz) = iy(tu)[i-ia,(u)] + oa, (), (C.1)

where

A

zZ = G—BR: S . u.::x( A ) (G‘BR) T Gen 2 {CL2)
T : lﬁheg |

and

o Wy
ix A . ik
yle) = -;—:B—R-) exp [-_L (u”t-;—;jr)] —l— effc (e__.__ it u.) , (C.3)

with the complementary error function defined by

- - S .
S dee © . _ e 4)

erfe () = 2
"I.
g R

Further

2 S:I;.h g ’ - ‘ .

oy = 2= JarSlead)(mrad ] ey

a, (u) = 1' - [1+2 (4 %l«‘)(_."”_"ses)._] C e



‘The functions: G(*z) "in eq.(3.25a) rare defined as

G(re) =+ yl£u) [-1.-—254- (W] + @) 0 ey
where
Q (w) = a,(u) + b, a,(w) = a,(u) +b (c.8)
with
! —
pe A (D i

Here), té-denotesthe derivative-with-respect_tofx of ‘the function defined.
by eq.(3.10a).

Finally we note that the functions G({%z) and & (*z) have very

simple asymptotic forms: for |ul 2’;1,-i;e! [8—8R| 2’(251n9R)/A,
SN
G(s2) = — + (-—-——)
( 3) a 0 At (C.10}

" Appendix D. Evaluation of Fourier transforms =

In this appendix we derive analytic expressions for the various
Fourier transforms that appear in our results for the scattering amplitudes.
For this we need a convenient parameterized form of the zero-order S-matrix,

. - 23
and choose the often-used Ericson form' °}

5°~ ()\) = [1. *._JWP_ ( -0-—-3- —c.oc)] -1 _.: - o {D.1)
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where the real phase.parameter o is.restricted to the range 0 << %W.
First, the Fourier transform {(3.28} of the derivative
0 0 o : : oo .
DN(A) = dSN(R)/dK, whereleN(K)1 has -its maximum{at A =:A, is given by®*}
elbz iz S
F,[az] = Floele ) Flae] = (D.2)
sinh (wlz)

Next we derive the Fourier transforms HN(z) and HCN(Z) defined
by eqs.(3.33) and (3.34), respectively, These involve the functions. :;.
ﬁK(X) defined by (3.8). Clearly, the sgﬁargiroot ?f the product of
logarithmic derivatives of gN(l) is veryiEWkw;fd ﬁétdeainwith; however,
in appendix A of ref.’) a method has been devised by which such
squafemrdots‘can'be'replééed in'good:apéroximation by ‘a”single function

of the same form as one of the product functions. This method: yields

CA . d.SBN ("X d;‘" S R PP
NK(A) = . {/ " (D.3)
5,

2 (A+A%), but we

0 — — —
with SN(X) depending on {A-A) /A, where A = k—%x and A =
may set A ® A in the adiabatic approximation.

Before_evaluating_HN(;)ﬁgnd HcN(z) we have to determine the values
. , T
of Ay and A, where the fun?tlons [[NK(A)] SN(A)I angd ]NK(A)SN(A)I have
their respective maxima. ‘For simplicity we neglect the K-dependence of

 w§£(X).(or set ¥ ='Of; so that from (D.lj'aﬁd fb_§j:we have

W as Cooy
\ < - _5
N (A) S, () 8 Ger (D.5)
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where = exp[(A-A)/A+ia].  Hence we ohtain

b f”' Y .
S R | ETn ) s R
(thus 4 = AQﬂQ"fér:dL=.b)}_and
/\dn = A. o S (e-7)

To evaluate the Fourier transforms we uSe a contour integration

method described in appendices B, C of ref.’”). The results are
1 ' R voh, 2
H,(#) = — (1+LA}) F'[-Qa_']e e , o (D.8)
oAb T P
~oc 2

ch (ﬂ = F[Oi]e Ly R L (D.9)

where F[Az] is given in eq. (D.2) and dg in eq. (D.6).

To evaluate the Fourier transform for transfer coupling, HT(z)
defined by eq.({4.27), we must fi:sttdeﬁérmiﬂé.ﬁhe.ﬁagimum of |
=|8N(M|exp(-2.??\), agaih withi£ﬂ;.cﬁoice (D.1)  for gN(i). a éimble analytic

expression for AT can be obtained only for o = O,

A_=NA+d, d_='4dn ( ~ 1) ,  (x=o0) . {D.10)

1?[}
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Then we calculate

HT '(E:) = -\ O{X SQN(/\I)Q

-—

§° L (h-(\,)(aulf)

HA)eri2y)

_ ea(/\nnf)(“cz;) Sd'\ S°~ (\)e

- MO

e-c:i,.(;--;-ily) :
= L F, [3(24-:2}')] , (D.11)
S EHody L

with the function Fg given by (D.2).

For the one-step elastic transfer we obtain similarly,

AET‘ = A+d.E1_ , dET"“ FARE V) (—ZE"’) R (O(=o), ©{D.12)
and the Fourier transform (4.34) has. the -'_f,o_i’_m_: fooE o
_LdET(&+63)
e ol ¢ |
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2ppendix E. Nonorthogonality effects. -

In this appendix we give a formal di5cussioﬁ of how the noi—
orthogonality of the channels in the case of transfer coupling manifests’
itéerf'in‘our theory. ~For brevity we confine ourselves here to deriving
a formal expression for the effective potential in the elastic channel
due to coupling to a transfer channél, an expression that contains'the-
nonorthogonality effects.to all orders.. The actual evaluation of the
nonorthogonality integrals for different partidl waves, and their
incorporétion in our éxplicit formulae for themedifieQ“élastié S-matrix,
.wiil be cl_escribéd elsewherezs) . ,In' our formal development wéfollbw :
ciosély the ‘work oﬁ-uﬁagéwé EE“3£.27).' -

| Consider the decompositipn-bf‘the“total wave’ function |¥> iﬁto two
components correspdnding to the elastic (o) and transfer (t) "channel™

wave functions,
(¥ = X, (z)on? + X, ()it n) . (E.1)

Equation (E.1) serves as a definition of the distorted wave functions

xo&fo) and xt&ﬁt)' ‘The vectors~fo andﬂEt specify the relqtive distances
between ithe centres of the heavy ions in the elastic and the transfer-.
channel, respectively.

Now we project outlof 1¥> the elastiqﬂamplitude.<o|?> ang the
transfer amplitude <t|W>. It is thesé amplitudes ﬁhat.ésymptotically

would give us the scattering amplitudes. These amplitudes satisfy the

usual coupled-channels equations,

Ce-H) Yy = LoN-U ¥y e




- 50 -

(g, - (EIYY = (ElV=U [¥) (E.3)

= T + U, are the optical Hamiltonians .appropriate

' _ = + d H
where H0 TO Uo an £ . ¢

for the elastic and transfer channels, respectively (T is the kinetic.: -
energy operator and U .the optical potential).. -:The total Hamiltonian,. H,
is invariant under the different compositions,  di.ce.,..

H = HO+-VO—UO'= Ht+Vt'rUt .

.In order to cast eqgs. (E.2) and (E.3) into a form that shows
explicitly the coupling between <o[W> and <t]?>, we need td know: the
relation between these amplitudes and the distorted waves xogio) and
Xt&it) defined in eg. {(E.1). Since <olW> and-<t|W>:depéndfonnfd and‘Et,
respectively, we shall for clarity dencte;themsby-xbﬁfd} and-xt&Et).
Using (E.l) we immediately obtain feor Xéﬁfo) énd.xtgzt) the following

equations,

X—o.(:o_) = Xé (:3) + Sd:—e 'ACt (E,:.:)Xt(it), | (E.4)

X (r)= Ko+ {an M () X (),

- (E.5)

where .we have introduced the nonorthogonality overlap.integrals given by

ot

N (&»Le).'é(ci.fg'lt)ﬂ‘})f B8

N, (ron) o= e o) e

Ao

It is understood that these overlap integrals vanish. asymptotically, thus
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rendering ¥ and X_équal.in that fegion}
Equations (E.4) and (E.5) may be regarded as two coupled integral
eguations for Xé(ro) and Xt(rﬁ).~:”A,£ormal.solution,of_these-equationsq

L

can easily be obtained and is given by .. : -

X = (l-ﬁc{:"co )_ (x'a—jctxt) e oo (E.B)

-] ?

(E.9)

By means of (E.B) and (E.9) we can then write down the form of the
coupled equations (E.2) and (E.3) after denotipg.the-COupling;poﬁentiaLf
V-U by V,: =

(Ea" H.o)_x..n‘_._u_ Vo(;': (1-M M) s ,(_xt__j/;o_ x;.).,: o o {EL1O)

(Emt)x, = Y, (A (AL x). e

Equations “(E.X0) and (E,1l) are the correct coupled-channels. egquations. ,
appropriate for transfer coupling.
Since xt_contains only outgoing waves, its formal structure is

obtained.dirécélyffroh (ﬁ.ilr=as ==

() — _
= gt (=Ef)_\/+_° (i'—)c JV'::o ) _-_.x,,‘ S HESL2)

+ L : . ;
- .where Cié )(Et);is the_transfer channel Green function formally given by



- 57 -

- -1

q:ﬂ(EtB = [EE_H‘E + -\-Ju;o"('i_'N;‘EN;o) "M:f ] A (E'lS)

. o +
~ The presénce‘of‘the-nonorthogonalityfterm.in'(ii'liEtljimplies a

modification of the optical potential U .that appears in"H_-= T, +U, .

t t t t
Since in this paper we are concerned with elastic scattering, we derive
‘the effective equation for xo(roj;by means of (E.13)-and obtain
— -1
(E’u-Hn)xd = Vb'f: (;_ME_QM‘# )

(E.14)

[ G0V, (=N ) = A, ] x,

Equation (E.14) :is the  principal result:of this appendix. It: shows hew
the elastic channel iz modified due to its coupling to a transfer channel.
By setting ff;o equal to zerc we obtain the result that was uséd in
'Geriving the modified elastic amplitudéfiﬁfsect.'4z  'Thus eq. (E.14) -
should serve as a starting point for generating the corrections to our
expression (4.6) due to the nonorthogonality of the channels,

Furthermore an exact,: albeit fbrmall:gxPréssionmfor the effectivé;

potential, UéT)

, in the elastic channel in the presence of coupling to a
transfer channel, can immediately be extracted from (E.l4) and is giveﬁ

by

[

U = Vot‘ (:L- to et) qt ( t to L Vet te T e J U (ELLD)
In"the limit of smallF)V;o; eé; (EZlS) reduées fé

LA B : ; o= T T .;:x oL
U(T o Vo't (Et“H-l-. +Lrl) Vtﬁ - Vtc.M' - (E.16)

¢ to
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... Figure captions

Fig. 1. Cross section ratic G(O)/UR(G) for the elastic scattering

20Ne. + 1325 at B

1ab“=‘70 MeV, calculated from the WKB

-expression (3.40) (solid curve):and-the Born series summation

(3.39) (dashed curve) with tC{Xé)fgiven by eq."(3.43).

Reorientation and projectile excitation are neglected.
Fig. 2. One-step elastic transfef.

Fig. 3. . Two-step elastic transfer processes.
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