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COLLECTIVE MOTION AND THE GENERATOR COORDINATE METHOD

E.J.V. de Passos¥*

ABSTRACT

The generator coordinate method is_used“te construct a
collective subspace of the many-body Hilbert space. The construction
is based on the analysis of the properties of the overlaps of the
generator states. Some well-known ._ﬁdsﬂﬁmwﬂmmsof_the generator
coordinate weight functions are clearly identified as of kinematical
origin. A standard orthonormal.representation_in the collective sub-
space is“introduced which eliminates them.'_It is_alse indicated how
appropriate collective dynamical VariablesVcen_he_defined_e_posteriqri.
To illustrate the properties of the collective subspaces applicatione__
are made to : _ o

a) translatlonal 1nvariant overlap kernels _ o

b) to one and two—conjugate parameter famllles of generator |

States. ‘

* Partlally supported by the Conselho Nacional de Desenvolv1mento Cien-
tifico e Tecnoldgico.
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I - THE KINEMATICS OF GENERATOR COORDINATES

In the generator coordinate method (GCM) there is a clear
separation of two stages in the setting up of a phenomenological scheme
to describe collective motion of many-body systems.

In the first stage we select a subspace of the many-body
Hilbert space (HS) which is spanned by'states constructed as a linear

supernosition o©of the generator states ]a>(l),

. +o S
lf> — f-m f(OL) IG.> d(]', B ; .. A . I_:.l_:

with square integrable weight functlon f(a)

‘The generator states |a> are spec1f1ed a prlorl usually
on the basis of phenomenologlcal considerations in a way to reflect :
the distortion of the many-body system during the collective motion.
The paremeter'd is the generator coordinate and it estabiishes*a '
one to one" mapplng between the generator states and p01nts in a label
space. ' ' o '

(1)

In contrast to other approaches , which use product
type wave functions, the GCM does not reqguire an expllclt reference to
ahy'collective dYnamlcal variable at this stage. Indeed the specifi-
cation of the appropriate collective degrees of freedom is in general
very difficult, the adeguacy of a given choice being a dynamical
guestion which cannot be settled without explicit reference to the
many-body hamiltonian. Furthermore even in the cases when one has a
good phenomenological knowledge as to the nature of the collective
motion under consideration it is, in general, very difficult to find
an explicit expression for the collective degrees of freedom in terms
of the microscopic ones(l). These desadvantages are absent in the GCM.
The dynamics is established in the second stage with the
determination of the weight function f(o), the only unknown in eq. I.l.
The states given by the ansatz I.l1 are used as trial

wave functions in the variational principle

s <tlale

<f]f>

resulting in the Griffin-Hill-Wheeler (GHW) integral equation for f(a)

[(<ajH]a'> - E <ala’>)£(a')de’ = 0 | 1.2

(1
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The GCM is probably less a accurate  than methods involv-
ing the explicit introduction of collective dynamicalxmmiﬂﬂés (1) in
cases for which this explicit introduction is straightforward.
Unfortunately this is not the ¢ase in general and the GCM provides a
scheme which is very easy to apply in practice(z), However in this
lecture I would like to discuss the GCM description of collective
dynamics with especial emphasis on questions of interpretation, To do
so, the first difficult that one has to face is the well known fact
that, in many cases, the weight functions f(a) have undesirable mathe-
matical proPert1e5(3). The consequence of this fact. is that the GHW
ansatz (7.1} willassociate highly sinéularmWeight'functions'to vectors
defined in the many-~body H.S..

This difficulty can be shown to be simply a consequence
of the use of the non-orthogonal and, in general, linearly dependent
generator states |o> as a representation in the GCM collective subs=-
pace Sand it is eliminated by introducing a standard orthonormal
representation in S. This standard orthonormal representation is
constructed in terms of the adopted set of generator states and it allow
us to define, a posteriori, the collective hamiltonian, collective
dynamical varlables and ccollective wave functions.

The basic tool of the method is the diagonalization of

the overlap kernel. <a|a'>(4 =y 6)

J‘*“-’ <la'>y (@de’ = AR wla) . L.3 .
-— 00

The eigenfunctions of the overlap kernel form an orthogonal and camlete
set -

too
f W () (0)da = 6§ (k=k )

J+wuk(0t)11]: (o:,')dk .-_-' 5((‘1,,,,0;.7) " | | I.4

In eg. I.3, A(k) is always a seml—p051t1ve deflnlte functlon of k (theﬂa
~overlap kernel is a norm}) and for simplicity it will be assumed to be
a monotonic decreasing function of k vanishing only at |k|#e . The
general case is discussed in ref. 6. To procéed we need to be

specific and we_def;ne'the‘GHW space as the space spanned by the

many-body vectors cthtructéd aé_in 1.1 with square integrable weight
functions, The scalar product of two such vectors is equal to |
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where f(k) is equal to :
- 40 - e
CEx) = VRK) J_m fﬁulu;(@)_d®_~a

oo
1

- ,71?%¥-J da “;'fd)<alf> Ce

SkUE> o h.zia; 1.6

“Ineq.-I. 6 we introduced’ the orthogonal states’ |k>, which"

are defined as '+

_ oo - : e
x> = 1. j |u>uk(a)da O I TR TR Ry sy
v A{k) LT L R I £ ;

<k|k'>= & (k-k')

Therefore to each vector definedlin the GHW space we' can:.
asscciate a square integrable function £(k), which is equal to the scalar
product of |f> with the orthogonal state |k>. However the inverse

is not true ., To show this we write the weight function as
£ (k)
YA (k)

I.8

£(o) = [k u (a)

Thus f£(o) is a regular function.cnly if £(k)/VA k) goes to
zero when |k| goes to infinite. Otherwise it is singular. At this
point we consider the extension of the GHW spacelto a subspace of the
many-body H.S. in which the vectors have square integrable Fk). This
extended space is the GCM collectlve subspace S ‘and the projection

operatcr 1n S is 91Ven by ;

From the prev1cus dlscu581on it 1s clear that not all
vectors deflned in the GCM collective subspace S belongs to the’ GHW o
~space. However it can be shown(s) that the GHW space is dense
in S and the subspace S is the smallest (closed) subspace which



contains the G.H.W space. Therefore we can'say that the singular _
behaviour of the weight function is related to the fact that strictly
speaklng, the generator state 15 a well—behaved representatlon of the
GHW space but not of the GCM collectlve subspace.

II - DYNAMICS IN THE GCM COLLECTIVE SUBSPACE - COLLECTIVE HAMILTONIAN,_
COLLECTIVE OPERATORS AND COLLECTIVE WAVE FUNCTIONS '

The description of the dynamics in the GCM is given by .the
projection of the many-body dynamics'onto'the collective subspace S

by lv(e)> = BT fyey> - .1

Where.: R _ _
s |p(t)> = |p(v)>
In eq. II.l ESCM

is the GCM coliective'hamiltonian. It is the pro;ec—
tion of the many-body hamlltonlan onto the GCM collectlve subspace S h

ﬁGCM

o = SHS | I1.2

Using the expression I.9 of the projection operator S, we can write the
dynamical equation II.l as a wave-equation in the "momentum" represen-
tation |[k®

= i 8¢(k,t) I1.3

{ hik,k") ¢(k',t)dk"
: ' at

where

hik,k') = <k|d|k'>

Il

u];:.(o‘)<a| I‘_‘I_Ia,> u_k!.(u')

[dado' ~ 11.4
vA (k) VE(kT)

il

and ¢(k,t) is the collective wave-function in the "momentum" represen-

tation

pi{k,t) = <k|o(&)> . _ 1.5
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The above discussion was carried in the SpelelC represen—
tatlon that dlagonallzes the overlap kernel. Although thlS representa—
tlon is very convenlent for sortlng out the klnematlcal oddltles 1nhe-'
rent to the GCM other representatlons may be prefereable from a

physical point of view, They can be obtalned by unltary transformatlons
in 8. One which has been considered often in the llterature(l 7.8)
the "coordinate™ representatlon obtalned by an unltary transformatlon ‘
of'the."moﬁentum representatlon glven 1n terms of the elgenfunctlons

of the overlap kernel <a|a'>

4o S T R R
= . lewma 0 me

As pointed out before,_ln the GCM there is no explicit
reference to any collective dynamical variable. However once one has
a representation in the collective subspace, one can define, a poste—
riori, collective dynamical variables in S. These collectlve dynamlcal
variables would allow us to describe the dynamlcs in terms of a small
number of specialized degrees of freedom. As an example( ) we can
aéSociate‘ to the coordlnate representatlon II 6 a palr of canonlcal

operators in S,

0 7> = n>
inn nin

P |n>
) __n_ln

[Qn ,Pn] = iS

These canonical'collective operators in S can be easily
(6)

expressed in terms of the microscopic degrees of freedom . We can

ia/an]ns_ T T

also express any operator defined in S in terms of én and Pp. For.

example, the GCM collective hamiltonian is given by(g)

GeM _ ® 1 am oc(m) s . .
H I SRR BT () ¢ IT.8 >

In eq. II.8 the normal order is defined as

L;m g (m) . 5 ' m Jk ;(m)”" “m-k
:P0 H (Qn) I B B e

{Pn,{PnrJPn,H(Ch)}...}}-

m anti-commrtators



.and

- R i -
8™ {) = fda_f_i-?lu <n+ E/2|H|n- £/2>
5 : - oml SRR

- JdE ‘"i)'m <n+ £/2] [611,[6“...-[6“';51]-;} .]]ln— £/2>

m.

m—a:mmuﬂxis

This shows that we can always write the dynamical equation
II.1 in the form a Schroedinger type equation in the coordinate repre-
sentation |n>. However, in general, this Schroedinger type equation
has a "velocity"-dependent potential and a “mass-parametér“, which
depends on. the. coordinate,.

IIT - SPECIAL CASES AND EXAMPLES
ITI-1 - TRANSLATTONAL INVARIANT OVERLAP KERNELS ‘'®’

Pranslational invariant overlap kernels depend only on the
difference of the generator coordinates - RO A

<a|a'> = N(a-a') B o s e & A |

and they are diagonalized by a Fourier transformation,

[<ala'>u (a')da'= 2mA(k)w, (o) III.2
where
1 ika . o o
LN -
A(k) = A IN(a) e 1ko do SR III.4
27 _

In this case the "coordinate” representation is the Fourier

transform of the "momentum" representation



-ik :
= = [k e KX g III.5 |
vam |
and the pair of canonical collective variables defined as ﬁ
- .
0 x> = x|xs o . : .
P, x> = i3 x> -

satisfy the eqgs.

Qulk> = -id, |k> |
Pglk> = klk> ERRa

The gaussian overlap kernel is a special casé of a transla-
tional invariant overlap kernel where

o e 1Y2 2
<ala’> = e {o—qa') /4bcj

o

—K2p?

Ak) = e o) ITT.8 ¢

/r

Until now we considered: only the Eontinuousf"coordinate"
or "momentum" represéntations. -Wé~could also have consideredudiscrete
representations which diagonalize a boson number operator constructed
'in terms of és and ﬁS' Taking the case of a Gaussian overlap kernel
as an example and expanding the reduced energy kernel, h(a,a’)

h(a,a'j: iﬁlﬂlﬂiﬁ

I
<g|a'>

in a power series in the generator coordinate one has

’

h{a,a") = gzm

Introducing the boson operators .

- é - - -— E )
C = l_/z (BE + iPsbo)’ [c,c'l'] = g
o

and using the expression of the GCM collective hamiltonian in the

' . (8
"coordinate" representation (see eg. II.4), one can easily show that )



- - h o~
HGCM _ Z n m (/— b )n+m (C+)m(c)n

n,m n. 'm!

Therefore, the expansion of the reduced energy kernel in
the generator coordinate is eguivalent to a boson expansion of the
collective hamiltonian, where the boson is constructed 1n terms of the.
collective canonical operators in §, QS and P Pg.

In order to shed llght on the origin of the singular beha-
viour of the weight function consider again the case of a Gaussian over-

lap and a quadratic approximation to the reduced energy kernel.

N _;fhi "i ::"' _ 2_ . . ”_._ . 5 .. -
. h(-oa,.oa. ) ho + 3 _h20(“ +o'% ) +2hy 4 00  + .0 IIIL9:
' T"TﬁéHCOIiéCtiVé'haMithnian ﬁgCM can be written in this case.
B |
SGCM g = 1 -~ MCEORE S S e -
HC = Eo + i + ; Q EPZ | IT1.10

where the zero point energy EPZ’ the mass parameter'M and the spring
constant KMeue respectively given by .

= h2
EPZ bo hll _ _
M = 2(h11 2% )b I1T.11

= +
KM 2 (hll hzo)
The hamiltonian III.10 is a standard harmonic oscillator
hamiltonian and its eigenfunctions are harmonic oscillator wave functions

¢ho(x/b ) and its eigenvalues refered to the unperturbed ground state.

are

E = %hp (n+l/2)~E

n o] PZ
where
= JL Z - 2 )
hwc A%f(hll h2°).
h2 = hll-h20 bz
h. . +h o

11 20
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To procced, consider the ground state wave function
¢o(x/bc) = — e ITI.12

- The weight function associated to this state is (see eg.

1.8}
| fka " w3 a
f@) = VBB |ac & &K Bbghg/2
_ _ 2T
which exists as a regular function as long as béwbé . The nature of

this singular behaviour is‘equivalent to the high-momentum divergence
considered in ref. 10 and it stems from the fact that when b-<b a

function which has high "momentum" components is being expanded in

termms of a wave—packet Wthh has only "low" momentum components(G).

Indeed, the wave functions associated by the "momentum" representatioh | -

to the groundstate and to the generator_statezﬁe respectively,

//b —b2k2/2 : _ : : : S
and 2 é
- /b kb /2
<k|a> = e~ika /o e ©
JT _

which shows the correctness of our statement

III-2 ONE AND TWO-CONJUGATE PARAMETER FAMILTES OF GENERATOR STATES ‘Y]

The: one and two-conjugate parameter families of generator:
states (OPF and TCPF) are defined respectively as

[C)t,> = e-].or,P
_ . ITT.13 ”.
o, 8> e—luP elBQ

il
o
v

where 6 and ﬁ are canonical operators in the many-body Hilbert space
o:7]

The overlap kernel of the OPF is a translational invariant
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overlap kernel and so it can be diagonalized by a Fourier transformation

f<a|a'>uk(a'fda' = Zﬁﬂ(k)uk(a)

where ika,
(a) = :
and _
A(k) = <0} T PY |o>
HPY is the Peierls-Yoccoz projection operator associated with thé'

k
operator P

~PY 1

ikgq -iaP
I = — fe e do
. ki
= & (P=k)

Thus, the standard orthonormal "momentum” representation in the GCM_'_
collective subspace S, associated with the OPF of generator states is
.1dentical to the normalized Peuaﬂs—Yoccoz prOJectlon of the reference

state ]0>, associated with the operator P

Hk-.|o>-

sl k Y —'_—"'_"
e V<0|HPY|

| III5

By cqnstrucfipn_one has

.§]¢k>i = k|¢k>Y
and the pair of canonical collective.operatOrs;inwSI;are.given-by“;“
5.P = P3

g 1 1 _
0. = S.08 _ o IIT.16

el
I

Howewver, in general
SN 7 '

S0 §1 is not an eigenspace of é and we cannot find a base in 54 which
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diagonalizes Q.

On the other hand, the overlap kernel for the TCPF is

<GBIG'B'> = <0|e'iBQ eiuP e—ia'PeiB'Q |0>

and its eigenfunctions and eigenvalues are determined bf’the equation

[<agla’8'>0 ., (a',B8")da'as’ = 2\ (k)o_ ., (a,B).

It can be easily shown that ¢n-k(a'ﬂ) is glven by(g)

elka

O,k (80B) ¢, (B-k)

2m

and the An(k) are independent of k.
The functions $,{B) and the A are eigenfunctions and
eigenvalues of the seml—p051t1ve deflnite Hllbert—Schmldt overlap kernel

N(g,8") = <0le 8% 3yelf' Qs 0 o 111ia9

The Hllbert Schmidt kernel ITII.17 can have zero elgenvalues and when
they occur there are two-important consequences.' One is that the
weight functions defined in the null space of N gives rise to vectors
of zero norm in the many~-body H.S. Therefore there is no loss of
generallty if we restrict the welght function space to the orthogonal
complement of the null space of N. The other is that the existence of
eigenvectors of ﬁ with zero eigenvalues implies that the generator
states are not linearly independent. - -

In this case the standard orthonormal representation in

the GCM collectivexsubspace S. associated with the TCPF of generator

2
states is given by the Peierls-Thouless progectlon of the reference

state }0) associated with the operator P

| PT |0> SRR
] > o= = A_#0 o I1T.18
k;n' T ! n
In eq. III.18 ﬁiTn is the so-called Peierls-Thouless

r .

double projection operator

. ' _ika ' ai
n]ETn = jdo&ds e oy (8-%) emP 180
S e o 2w T . CE
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By construction one has

(9)

and it can be easely’ shown that

-1i% > . I11.20

olty e = 10l g

Therefore the pair of canenicél'collective operators asso-
ciated with the continuous label k are in this case given by

Pg. = S,P = BS,
IIT1.21

- P

Thus-in the. TCPF case-éz is_aneigenspace of both é“and P
and by an unitary transformation we can find a basis which 'diagonalizes
6. This basis is +the Fourier transform of the states ka'ﬁ>T and it is
given by the Peierls-Thouless projection of the reference state | 0>
associated with the operatof'é}

PT

| > = E_E_lg> A #0
xn T S ' n" T
n

III.22

1 : T =ikx :
‘2-.; flwk,n>'_1‘_ e_.‘_ dk

To proceed in the discusSiOﬁ'abdut the physical properties
of the GCM collective subspaces, one 1ntroduce a canonical transforma—
tion from the microscopic degrees of freedom to collectlve, Q ‘and P '
and intrinsic degrees of freedom. Together with Q and the remaining

-

N-1 intrinsic operators El,éz,.. 17 which byethe canoﬁical nature of

-
the transformation must commute wifh both Q and P, we can arrive at a
coordinate representation of the full many-body H.S. defined by the:.
kets |Q,E> chosen as eigenkets of é and é. This representation is a
product representation and the states_IQ?_'epan e_H.S. of one single
degree of freedom, the collective space and the |E> are likewise |
associated with a H.S. of N-1 degrees of freedom, the intrinsic space.
' However it should always be kept in mind that both Sl and S carry all )
the N degrees of freedom of the many-body system under consmderatlon

_ _They:are_d;st;ngulshed_erm theeﬁull_manyebody H.S. 1n that
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they contain various imposed correlations among the N'degrees of
freedom. The discussion which follows will be aimed precisely at
‘exhibiting the general nature of these correlations in each of the
two cases. o

We begin by considering the wave function-associated to =
the states Iwk;n> by the |Q,£> representation

T r
ikQ | . L -
<QE| ¥, _>q = =— X_(E) III.23
kin T Vo n . . . | .
where
_ 1l
Xn(E) = —_—— j' ¢n(Q)<QE[0> do
YAn

and ¢n(Q) is the Fourier transform of ¢n(B).

The states Xn(g) are orthonormal and depend only on the
intrinsic variables and so |¢ n>T comes:: out as a product of a
collective wave function and an intrinsic wave function; and this holds
even when |0> is not itself a product wave function: Indeed, the. .
wave function associated to the reference state :|0> by the [Q,t>
representation can be shown to be given by(gl- P '

<Q¢|0> = nrzkn?éo . q»n(o)_xn(z)_ -

Thus we see that the reference state |0> is given by a
sum of products of collective and intrinsic states, the number of
terms in the sum being equal to the number of eigenvectors of
N(B B' ) with elgenvalue dlfferent from . Zero.. s ;

~In the case of the OPF the wave functlon assoc1ated to .
the states Iwk> by the [Q,E>. representatlon are(g) o ”

_ bt eikQ -
<Q€|wk T /§ﬁ X (g)
where. -
X (E) = ;————-——-l 6 BOR ()
' L (k) |2. . 0 R
n, %0 bn [ © Ny % ‘ |
Therefore the states |wk are glven by the product of a collectlve o

wave function and an 1ntr1n51c wave function. However, the intrinsic
wave function depends on the elgenvalue k of the operator P. This '
property is responsable for the fact that'éi is not an eigenspace of Q.
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On the other hand if the reference state ltself is a product wave

function
<Qz|o> = ¢_(Q) X _(£),

in whlch case N has’ only one elgenvector with eigenvalue dlfferent fromi
zero, one has

x (&) %Xo(g) '
|wk,0>T becomes equal to'|wk>Y”and'the subspaces S, and S, becomes

L 2
identical. If we identify the canonical operators Q and P with the

center of mass coordinate and momentum respectively, the above discussions

shows that in general the subspace associated with the OPF of generator
states is not galilean invariant. It is galilean invariant only when

the reference state itself is a product wave function. This fact is =
responsable for the incorrect translational mass that one in general
obtains in GCM with generator states chosen as in eq. III.13; On

the other hand, the subspace associated with the TCPF is always a galilean

invariant subspace and this 1is true even in the case when the reference
state is not itself a product wave function. However when the reference
state admits itself a factorization into a product of collective ahd°'
intrinsic wave-functions both spaces are galilean invariant and identical.
To conclude, in general the TCPF which depends on two-
generator coordinates describes two-degrees of freedom, one collective
and other non-collective (it depends only on the intrinsic degrees
of freedom)}, and its nature depends'only'on the correlations imposed
on the reference state Id>. When we make this identification we are
supposing that the dynamical variables which are diagonal in the basis
obtained by the diagonalization of the overlap kernel are the appro-
priate ones (if not, they can be found by wnitary = transformations in S).
" Purthermore theé GCM collective subspace has the property
that those two degrees of freedom are kinematically decoupled. They
are coupled by the dynamics, in other words by the GCM collective
hamiltohian, which can be easily written down in terms of these two
degrees of freedom fullowing ref. 9. However we are in general inte-
rested in cases when the coupling of the collective and non-collective
degrees of freedom is small so that one has almost decoupled bands.
In that case we can always restrict the non-collective degree of freedom
to be in the lowest energy state and so the dynamics reduces to the

(11)

collective dynamics only On the other hand when the generator

states are so redundant that there is only one eigenvector of N
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with non-zero eigenvalue the TCPF which depends on two parameters

describes only one degree of freedom, the collective one. In this

case the TCPF is redundant in the sense that the collective subspace

associated with the one and two conjugate parameter family of generator ¢

states are identical(ll). This happens when the reference state itself

factorizes into a product of a collective wave function and an intrinsic ag

wave function. However in the case when the reference state does not

admit this factorization, the two subspaces are different and the

~collective and non-collective degrees of freedom are knematically coupled

in the GCM collective subspace associated with the OPF of generator -
states. |
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