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ABSTRACT

Starting with the coupled channels equations describing multiple Coulomb

excitations in heavy ion collisions we develop- an approximation scheme based

on replacing the channel Green's functions by their on-the-energy. shell forms,

which permits an. exact analytic solution for the scattering matrix. We con-.
struct the trivially equivalent Coulomb polarization potential valid for

strong coupling and small energy loss in the éxcitatiqn-processes. This

. potential is seen to have a very simple r-dependence. A simple formula for

. the sub-bharrier elastic scattering cross section_isﬁthen derived both by

using the WKB approximation and by summing the Born series for the T-matrix,
Comparison of the two forms for the elastic cross section shows that they
give almost identical numerical results in the small coupling limit only.

We also compare our results with the predictions of the Alder-Winther theory.
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I.- INTRODUCTION

Multisfep processes are the rule rather than the exception in heavy ion
collision phenomena.l- To deal_with these procesSes one has to perform a
coupled channels calculation which becomes prohibitively costly as the
number of channels increases. Several approximation schemes have been developed
which have in common the basic aim of reducing the computation time. In par-
ticular, due to the short wave lengths that characterize these reactions,
several forms of semiclassical approximations were developed and pﬁt into

test recently giving overall reasonable results. Of these theories we mention
that developed by the Copenhagen.gfqupzénd the methods based oﬁ.thé‘WOrk of
Miller3 developed primarily by the Berkeley group.4 However, the intrinsic
-difficﬁlty of performing a many coupled channel calculation is not

completely overcome by these methods. The Winther-de Boer code for Coulomb
excitation can handle few  channels; the method developed bf

the Berkeley group can, in principle, handle a larger number of coupled
¢hannels but i5 restricteéd to cases where a classical hamiltonian function
can be constructed. Most of the numerical results given in Ref.4 were
ohtained for back angle scattering in which case the resulting geometrical
simplification makes possible a speedy calculation. Extension of the methods
of Ref. 4 to threezdimehéioﬁs is still pending.5 |

Tn the present series of papers we try an alternative method which is

hased on the use of the on-energy-shell form of the chanmel Green's functions.

: . . . 6
Although several authors have discussed this method in several contexts,
we believe that a study of the full consequénce of the OES approximation is
called for. Moreover, this approximation scheme has been adopted recently

to extend the closed formalism approach developed by FrahnSIby including




specific multistep processes in heavy:idh?colliéiOH phenomena. © An important
test is a comparlson of the range of annllcablllty of the OES apprOXLmatlon with
the already established results of multlple Coulomb exc1tat10n theory 9
The paper is organized as follows: in Section II we formulate the

coupled—chépnels p;qb%gm.for_mq%Fiplg;Cop}qmb_gxci;arion,_ In Section”ILI:we
'introduce#theponjengrgyjshgl1 approxima?iqn for the channel .Green's functiens
and derive_gn_expressjoq,fqr,the_lgcally;equivalent Coulomb pelarization poten-
tial (LECPP) in closed form. In Section IV we demonstrate,through numeriCai:~
calculation, that the cross section for subaﬁafriéf:élégtic scattering calcu-
tated using the WKB approximation and using the LECPP.is almost identical to
that calculated by summing the Born series for the elastic amplitude without
any refeérence to the LECPP. Discussion of our results as well as suggestions

for pqssible improvements and the conclusions are given in Section V.

II. THE QUANTUM MECHANICAL COUPLED CHANNEL EQUATIONS

FOR MULTIPLE COULOMB EXCITATION

We consider the collision of a spherical nucleus 1 on a defofméd
target nucleus 2, at sub-barrier energies. We stqdy the Coulomb excitation
of low-lying states IM of spin I and magnetid'quantum nuber M with excit-
ation energy E .. We consider nucleus 1fasf?fP§iﬁtfcharge,uii§, #or thekﬁqpa¥'

wave function in the center of mass system we use the expansion
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where the channel wave functions are given by

lenas = ] <2miM|JN> ..|.:'IiM>. Ym(’f) | | o | (2)
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Here J is the total coﬁéérvéd'channél'anguiaf'moménfﬁm'éﬁd N its projection
on the Z-axis. The relative position of the centers of mass of 1 and 2 is
denoted by r while thé superindices L1, indicate the initial condition.
Inserting the wave function (1) into:the time-independent Schrodinger =
equation o

(H-B) [¥> = 0. e B

we obtain a system of coupled equations for the radial wave functions @~
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The coupling poténtial VQI Q{fi. is given by
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whore ’I'l|MfEk}|II> is the reduced matrix element of the electric X-pole
moment of the target. We shall, in the following, consider the specific

case of a quadrupole-deformed even-even target nucleus 2. Assuming a

rotational band structure for the low-lying excited state of 2, the coupling




- different:excitation processes we: have
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where ag is hatf the distance of closest approach for head on'collision in
7.7.,6° Z 2,6 :
, 172 172
channel 1, dp = oo — , Ny = 7
2(E-E.) v

kIaI is the Sommerfeld parameter in

channel T and q is the symmetrized dimensionless' quadrupole strength

>1*
parameter for the coupling I+I' and is defined by
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in thg limit of a pure quadrupole rotational band and zero energy loss in the
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" ‘Once “the W(QIJJ[r)are obtained from Eq. (4) the correspondlng T-matrices -
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where ¢21(r) = kIr Ny ln(ZkIr) - %—2 +:og(ﬂI)

J

0, being the Coulomb phase shlft Nlth the . TM % I

one can then calculate

the amplltudes f (8,0} for Coulomb excltatlon from the ground state

IOM0+IW
|IOMO> to the final state }IM> (in coordinate system C of Ref. (10) )
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The differential cross sections are -then. calculated as usual.

ITI. THE ON;ENERGY—SHELL'APPROXIMATION AND THE

EQUIVALENT LOCAL COULOMB POLARIZATION POTENTIAL

In order to calculate the cross section for inelastic Coulomb ‘scattering
one hés'to solve Eq. (4) with the approniate boundary condition of an in-
coming wave present.only in the elastic channel, For fuller:dotgils,we_rofer
the reader to Refs. 9 and 10..It is important to recognize that with an increasing
number of coupled channels the solution to Eq. (4) becomes more and'ﬁoré
compiicated. For our purposes .we adopt the on-energy-sheli approximation

} 11
for the channel Coulomb Green's function

GER}J (r,r') = - %} Fplkgrd Fylkyr) ()




We shall assess the accuracy of this approXimation latér. In ‘theé “above,
Fﬁ(kr) is the regular Coulomb function and r<(r>) corresponds to the
smaller (larger) of r and r'.

~The solution of Eq. (4) may be}written as an integral equation

N S 1
w(QI)E (r) = FgotkOrJ 611 5 TCIEL IE F 5 Vigipryg (X)dr

e 2 e Pt o0

| | (12)
We now use the approximation (11} in (12) and obtain

U (r) = F, (kr) 8 8y, + (k ) F (k r) f dr!

R T T oo -
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Multlplylng (12) by’ EE—EH« B (k ) “and integrating over ‘r we obtain
k

nt

the following relation

1
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©(14)
where: we have defined the coefficients'_
'
Mggt k f dI‘ F (k 'I’ ) r w(ﬂlllr)g ( ) (15)

and.the:integrals. IR”Q (kI, I) are the: usual Coulomb excitation 1ntegral§9

.Q;"Q;(kI", J’ dr F,Q,” (klﬂr) Q(kIr) (16)



Eq. (14). can easily be $°1V34:ﬁ9r=-~2g11!3agrgfIr:Mggr;g-;¥111~~=-~

”Y:TL;}HZS.{[E;;ri“E];I}ﬁV2¥ ..%;:...'

21 #1280 Ly 2 (k ko) (17)
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where we have introduced the coupling matrix C whose matrix elements ave |
given by ‘ : 'w
|
z

LanIlng'I = kI” aQ;"I"Q,I I,Q,"R‘(k':[uakl) (18)

The matrix (1 + iE_)—l acts in the full channel space.

Since aR'I'R 0 2 % cqrresponds to the couPllng of the elastic channel

to the 2+ channel (due to the quadrupole nature of the coupling only the 2+
can couple directly:to:the,Of),the_values_qf L1 are COmpletely,dﬁtg?min¢d ;
by the 3-j symbols that appear in ag,, o 0, i.e.,’

2 o2
OH 0 0

Eq)‘£17)3méy be rewritien as (lébéliﬁg,thehmatrix'eléﬁents Qfl[}_+“{.g ]

( ). Therefore, &' can be 20, ﬂ0+ 2 or gd-z. This says that

-1
by the intrinsic spin only)

& sy -

Vo lie iy, Gy

I

‘The vector Y contaips:I,fil compoﬁents_fﬁtahdil'ﬁust always add to J = 20)

Therefore, the matrix [1I + i E}—l is a (I + 1)x 3 matrix. Once YQI
ié“évaluétéd;”the'WaVe function 'wgi(r); which- is also a’ vector with: 1!+ 1
components, is then obtained from Eq. (13) vis

P oA
10 zz + (1) Folker) [1+ 1 &]12 Cag

$(QIJQO(r) = F, [k r) 6.

(20)




Hq..(20) can be used to calculate the trivially equivalent local Coulomb
polarization potential in the elastic channel as was done in Refs. 11 and 12,
Inserting the second term of Eq. (20) in the r.h.s. of Eq. (4) for

Vo ave (r) we immediately obtain for the sum
(QdOJgdf-f”ﬂ‘ R RN R £ R R R ST

MRV (x) v ° (r)
SEPRRTIUE SR ) TR (A3 S F

ol (21lﬂﬁ

-1

27 20

= % 002 ‘;gk'i) Fy (k,r) [T +3C() )
0 T .

.= 2
= Vopt(r) Fﬂo(kor)

HZ

1
z

or B VL) = i@, [ i g

‘ e 22
Jr,12 20

.~ where F(L;r)is:a 3-component vector given by. -
e R G Ry G
(F(31))gp. =

e a. —a
PR g 20,24.2’2! w378 0’2, 2 .
FQ (kor)l’ o 70 FRO(erJI" o "o

0
E (k) (23)
p 22 . \ T

—_—— a
Fo (k ) r? 2'00’2'0'2’2/
5 © ,

Eq.:(22) describes the effect of :the céupling of the elastic channel to all
other inelastic channels. Tt is 4 simple realization of the Feshbach
_th_egry for jf:hé dpti.c'al! potential. 13 Denoting the projection operator that
pf;jects 6;t the eiastic chaﬁnél of tﬁé full wave function by P and the
.S9mplementary operator Q % 1-P  which projects out all inelastic channels,

we can write Eq. (23) as _
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R st oy

Therefore, the matrix {1 + i —QQ] is effect1ve1y the Q space propagator

In our particular case of multlple Coulomb ex01tat10n through ‘the *

quadrupole coupling,V QP is just V20 as only the 2 channel is coupled directly
to the elastic, O +,channe1. Within the Q space the 2" chahnél*pdubles,di-

rectly only to the 4%, The 4% then couples to the 6" state and so on. This

o
3
-
suggests that the structure*of;the matrix. [1. + iCQQ]_I?iS -w
o - K 3
 ﬂ
(25) .
[1 +i¢C ]“1 =[1 +1 ¢ [1 + iC .]*lc ]'1 (25) :
1 Soqlzz T ML T 22! a24 g2 q-2laazad o MY

where the symbol Q-2 refers to:the subspace spanned: by states in the Q-space
except the 2", Eq. (25) can easily be derived by expanding the matrix

propagator in C,"énd insérting-Q'whenevef éélgplating produdﬁéIOf‘" C's,

i.e.,
P "’l . . . 2 " 1

[1+1 E.]22 =1-1 Ezz_' (1) EQQ-Q §Q2  | ‘

- (1)3' QC | i

, 2Q ‘a0 Loz g

L i S (26) ‘3

=1-d Gy () (sz)

(1) 24Q2 QQZ @ QongQQ c42

Rearranging and summing the series (26) we obtain (25). Tt should be empha-

sized that once the matrix propagator is decomposed into propagatioﬁ'in'"
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smaller subspaces as given in (25) the‘ééiéﬁlatidhwaf'vaﬁi'bECBméQ:. o

quite simple. ;Réaiizing“tha£"cijiis'aﬁ"ti+ijk(j41)’mAtrEX'(iﬁ'magﬁéfié""”

quantum numﬁer space) such a calculation can then be easily made by in-
verting the matrix proPagator as_was done in Ref. 14. In partlculax if all
coupling except the C20 were made equal to zero we obtain the potentlall
considered in Refs. 12 and 15,

y(2)

Vope (1) = - ——'(F(Q 1)) 5,C20 (] (27)

Inwthe=folibwingJWe;assumé”zero:energy loss in-the different excitation ... .

processes (kI = ko). We also utilize the,simple relations,. valid for large %,

among .Fl(kr) N F£+2(kr)_and Fl_z(kf);obtained in Refs. 11 and 12,

(k) 2,4 F, (k)
2+2 = -1 4+ 22 > [nz + Zﬂ £ . §~2_] v = -2 . (28)
Fg(kr) L74n kr kK"r Fg(kr)

Finally, we shall use the:large & values of the:3-j and 6-j symbols needed::
in the calculation and givem in' Appendix I... ..-°. With the:above ap-" -
proximations and assumptions. the eXpression-foT-Véﬁ%(r)*given in.(27):reduces

to the form derivediin Refs;12%@nd: 15 "

32
{2) . 2 E 2 a. 3. 3% +1 1 -
Vo7 () = -1 7 2 & g (& (= L - — arctan §
2
4
T2 : 7 @
(ﬂ_ + l)-“g.;' - (293 BT
-4 .
2% a2
¢ G
2 2T



12

-+ 1/2
= =t
no C

the exp11c1t forms of the Coulomb 1ntegrals Igg,(k =k ) as glven in Ref 9

where we have 1ntr0duced the quantlty _and have used

2 . .
I = = ‘ 2 1 (30) ‘
W2 en? e a1l ) e’ el B PP
IQQ - %E (1 - arcfan %y 1 (31)
2 [ 2a

&kapproximation by inserting the semiclassical energy

I'o
loss'factors*gi4i{(Ei;i;];*for:the'proceSS-I*I' 16

We corrected for the k

where - E ,qv ‘is ‘the adia-

baticity parameter, which is given by

. :";:H”!:; hal; n_ Jﬁ;f _ f 1:HJ;; N . ]
I+1 1 1 o LI )1/z  (B-E )1/2

- (32)

where 1 and E are, respectively, the Sﬁmmerfeld pafameter and tﬁe cénter of
mass energy in the elastic-channel;-EI is-the excitation energy of state I.
Numerical. values of gi;I,(§I+I,)are given.in Ref. 16.. It is easily seen .
that: the simple r-dependenﬁé“of the potential given in (29} also holds. .

for the more exact potentiél of Eq. (22) if the_samecassumptions and,. ..

approximations are made, i.e.,

U‘ .

B by S (33
(r) 3t —z =

This is clear since the r-dependence of-Vdpt(r) is contained only in the

vector F(r;l). The propagator :[1 + i c(%)]_l, which is the quantity

used to get approximate forms forlvgﬁt(r), does not depend on r. In Eq.(33).
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comp lex : :
the/ coefficients, a, bﬂ and <y depend on the orbital angular momentum, 2

the Sommerfeld parameter,n, the center of mass energy, E, and the quad-
rupole coupling stfength qij”‘ Ianef. 15 the potential Voptgr) wa§:4¢rived
using the semiclassical theory of.Coulomb'QXéitation deﬁeidped by Alder and
Winther.9 The %- and r-dependenéé'of Voﬁt(f) of.Eq.(SS) and that of Ref. 15
are quite different. One advantage of Vopt(r) of Eq. (33) is its simple
r-dependence as well as the explicit £-dependence which can be obtained by |
inverting the matrix (Efigﬁﬁ)) in Eq. (22). We shall give below the

result for the case of the coupling of the 0" channel to the 2+ channel
including the reorientatidg ?f the 2+ to all orders. We_;ﬁéiiu;1§; §r;ééﬁ£Ti;
the result when including“fhé;éaﬁpliﬁg t§ the 4+ éhannel. In order to perform
these:talculations we first rewrite Eq. (25) in_the equivalent, but mere trans-

parent form

™ 1465, 020y (114G, (s D[] 17

L+ 1 )]
Lo pren RTEE g

-1
i

(34).

In the above each coupling matrix Eij#i(ﬁ) contaiﬁgxéﬁ aﬁ;idﬁ;{éﬁé*énefgy 165;
'facto;y@l}fﬁl}j—whergas fhé.réprieptation'matrices Eii(£) doigot. Therefore,
the Coulomb polarization poteﬁ£ia1.fdr thé.tWo éﬁannel case with reorientation
is given by | |

V(Z)Reor.(

opt r) = - _11.—3"(%1‘) By TL+ 10 G G

(35)

The matrix“'gzz(i) haé'the form |



14

where we have defined

o

Slnce C (2) is symmetrlc and real we could 1mmedlate1y 1nvert the pr0pagator

and write down the expressions for the real and 1mag1nary part of VE;%Reor

utilizing the form for gzoczj

ﬂgm = — Ay 20200 |

l_
=

(2)Reor . 4 E. 2 a,3 -~

4 arctani.2 1
1+ 75 9. GGl - =7 * 3
2 .

[ HIRT)

2

[ (1-arctan E/i)z . 2 (1 arcf;n%/? -1 )

% 12 s’

X

e

6N

'F(géi'

1 -1
3z




1 _S(I—arcténi/i)

T e2 132 7 7 (“:T) |
3(87+1) (B o
| | (39)
4 Ez(léumtani/ﬁ) &7
(E2+1)2 ™ .
and
2)R i a T e g A el i
Tm Vgp) eor( o= [1 z§1q2+zlﬁia (1-ar§tan%zg)2.+ %j(izil)z)]_l VézJ(r)

where:VégJ(r):isugiven in Eq. (29). Eq. (40) is the.potential gifen:in o

(Z)Reor

Refs. 11 and 14. It is interesting to notice that Re V opt -

identically Z??O:Wh5n~ﬂ2¢2.? 0, i.e.,. no reorientation effect. As a matter
of fact this result is more general, Re Vopt(;}_=:0.when all reorienta-
tion couplings vanish, 434 = 0, as can be seen from_Eq._(34) and_(22).

The above observation sheds some 11ght on the results of Ref 17 where

Y (r) was calculated assumlng a harmonlc v1brat10nal spectrum for the .

opt
target nucleus (gl} qii;_ql and. it was found that_Vopt(?).ls_purely- o

imaginary.

' ' 14
in a potentlal V( )(r) whlch has the form

V£4j(r)'=¥i Eff,l) e . -.920(%)--.
G, () 5+:.£24:(2')E4-2£-%)."

o 2
a. 3

+2 ( )

. 2E
STty g e 02(‘502

=R

4
7 252 © “f | |
| 6 2 2 yz.

+170124,2(1.%‘“0”}X_

. ) . ) ;_:2 .
36 2

(r) becomes o

Includlng the coupllng to the 4 state to all orders results

}{( 1+f(r)) [i ® qM g24(524)(u Ly

(40)
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2 18 7.

4 2 A ' -1
T a9 922 (@ + ) -1 15%40 q2+422+4(€24)q2+2(Y -0 )@} {41)

where £(r) is given by

2
1+%
and vy = BV6. Eq. (41) reduces to. (39) and (40) in the l1m1t Agsy = 0.

f(r) =

1+ 2883 + 24 Y

It is clear that one could calculate eXp11c1t1y V opt (r) to whatever order_
desired. However, such expressions become more and more complicated as
already indicated iﬁ“eq;”(41).: Instead one could simply invert the matrix
propagatbr'numericeli&fin'eonjﬁnctibn:With optical model calculations. In’
Fig. 1 we show thesceeffiéienté ég, bg'end'c as function of ¥ for the

o

L
different cases studied above as well as for that including the excitation
e un te'the i;e 16*"stafe;” It is'cleer;from.ﬂig. 1 that'the'imAgihafy
part of Véé£tr), determlned by Re aﬁ, Re'bi and Re cg,
like r > for small values of § whereas for large Yaluee of Tit goes ds
r™>. This fact seems to hold irrespective of the value of the quedrﬁnele”
coupling strength q. The above result cont1nues to hold when the energy
loss is pr0per1y 1ncluded by use of the sem1c13551cal energy loss factors

as discussed before. The real part of V opt (r) shows a 51mllar behav1or to

Im V op t(r) namely it..goes -as—r -3 for -small § and as r = for large 2; For

intermediate values of E both the Teal endﬂthe'imaginary parts of V0p+(r)
show the peneral T- dependence of Eq (33). The g-dependence of Vopt-is shown

in Fig. 2. ‘The coeff1C1ent a,.bg and CE have a.rather emoeth'dependence

on q. Notice that for g = 0 the coefficients b2 -0 and S5 Are identi-

cally zero for alliq. - This corroborates the discussion above about the

(r). It is instructive to compare our results for

r-dependence of V opt

opt(r) with the potential derlved 1n Ref 15 where the sem1c1a551cal theory

beﬁévéébasiéélly:,_:_m
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of multiple Coulomb excitation has been used. From the closed expression for
the elastic amplitude for ¥ = O,and,E_#_O(essuming a pure rotational band)
obtained by Alder and Winther,g one can extract the Vopt(r) following the

methed develeped in Ref. 15,

Re V (r) =-3. —~[—-q arctan: (Frzay: (zq))]( ) o nn Gt {42) 0 L
o 5 - ,.%,%ﬂi/% (1c,)1? + 15, (__zq),l?l-;_, &

where‘c;endﬁsfere the Fresneiinteéraleg

We have compared our potentlals of Eq (22) with that of Alder and Wlnthnr o
glven in (42) and the results are shown 1n Flg 2 where we have plotted

Vg 0 as a functlon of the quadrupole strength parameter qOZ N It is clearlh””:
that our potentlal is %50°"smaller than VA " Vore 1mportantly we do
not reproduce the broad osc111at10ns seen in Im gwo(qj. One possrble }eason for
the dlsagreementcan certalnly be tracked down to a shortcomlng’of tne on energy—

shell approx1mat10n Another p0531b111ty is 'the fact that the potentlal

given in. (42) is.extracted from the elastic amplitude, an:asymptotie¢qoantrtxﬂ
and therefore is a phase-shift equivalent;potentiel“whereasﬁour potentjel‘:_
is a wave functlon equ1valent potent1al belng obtalned dlrectly frow thv wave
_annctronr We shall address ourselves here to the questlon of the on- shell |
“aoproxinetron and_rtslllmrtatronei_ Imp11c1t 1n our calculatlon 15 the neglect
of aii terms involving the.rrregolar Coulomb solutlon Gi(kr). If we were to.
calculate the potential to first order, as was done in Ref. 12 such an ap-
prokimation is all right since it amounts to'neglecting terms of the type

(assuming zero energy loss)
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f Fo (kr)” 3 gr(kr) dr -’ T e 'ﬂ(43)“ W

with i;*=‘i'%“2,'2_2, %. it 15 clear that for large n; the Sommerfeld
parameters, F % and G, © sc111ate out of phase and therefore the above term
mnay be neglected as compared to the domlnant term f Fy (kr) == FR,(kr)dr It
would seem reasonable to adopt the above approx1mat10n i. er, neglect all
integrals involving FQ and CQ even111the calculatlon of hlgher order’”**)'b
terms in the potential. However, upon an_ 1n5pect10n of our series (12); _
one notlces 1mmed1ate1y that terms llke ng 13 2 start appearlng and oneb”.
certalnly cannot neglect them as they could be as 1mportant as the terms -
1nvolv1ng palrs of Fﬂ's : Short of actually taklng full account of these o
terms we, 1nstead attached one parameter o, to all the reor1entat1on matrlces
(Q) and another one, ,to all the coupllng matrlces C (2) 1n our S
eXpre551on for V (r) and adjusted these two parameters to obtaln a best frt to
the Alder-Wlnther potentlal of Eq. (42) Our resdits are shown 1n Flc..Sg Hhr
The final adjusted values of a and B are 2 23 and 4 46 respectlvely o
It is clearly seen that the real part can be micely fitted, the imaginary
part, however, fitsﬁoniyhon‘the:aﬁeragéiwithOut eihibiting“aﬁyfosciIlations;*"
The fact‘that-the parameters a and B wh]ch f1t tho average behav1or of
AW :

v ‘come out to be greater than un1ty is an 1nd1cat10n that the neglected terms

if ‘!ﬂClllded would tend to enhance the matrlx elements C (Q) and C i3 Q)
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Iv. THE SUB;BARRIER ELASTIC CROSS SECTION

Cnce the optical potential is obtained one may then calculate the sub-

barrier elastic ‘scattering cross section either from an exact, one-channel;, -

optical ‘model calculation or simply by using the WKB approximation. Due to - -

the fact that the number of partial waves involved in‘ the hedvy ion reactions
. We are cqnsidefing is quite_lgrge, one may use the ﬁsual_arguments_of re;
PlaQiﬂg_the ﬁé?tfgi'wave sum.ih the elastic amﬁlitude.ﬁf an integral arid
perfofm the integration using the stationary phase method. Insofar as the__
realspart of Vopt(r) of Eq. (;2 ) .is q#itg small.aSICQmpared with the

dominant monopole-monopole Coulombfpotential_one.may then use the Coulomb

deflection function to relate L =_gfi/2 to the c.m. scattering angle 6,
. 6 ' B
(2)Reorx

A numerical calculdtionwas reported in Ref. 14 where. the V 7(r) corres-

opt
ponding to two channel coupling with'rebrientétion was incorporated into an °
optical model code.” The deflection function éxfiacted from the resulting

phase shifts was found to be very close to a fure Rutherford ‘deflection func-
tion:“Eq (44 This gives us confidence in using the WKB formula for o,

given in-Refs.2"and ‘18, which adapted to our case, becomes

el _ 2u opt :
o - epi Y| By 0y ey

L)
.;'rt(ECS))
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where % is given by Eq. (44), and

SRR St i oney S
k (r)= Eg% E(1 - Ez'iﬁ -2 ﬂl/z “e
r .

and rt(i) is the classicdl turning point determined by the larger root of
2 (r)} = 0. From the general r-dependence of our potential given in Eq.

Z
(33), Eq. (45).may be rewritten in the form . - .. . . s

2 (8) = expl-[Rea_ I;(8) +Reb  I,(8) +Rec I (e)}}
R o .. .we- > Re Y Le) _ |
5 - (47)
where . , o
1,8} = 2 ) J dr' S o’
and Re a.. s etc. are functlons only of the center of mass angle,.the
2(8)
quadrupole strength parameters a; 5 and the'énergy loss factors gij(gij)'

The integrals (48) can be evaluated in closed. form and the final expressions

for i = 3,-4-and-Sqaré_collected in Appendix II.". .
2, (9)
et

R
the Coulomb damping in the elastic channel. . In Ref.12: the Coulomb orbit -

was used in.Refs.1l and 12 to calculate.

The above formula for.

integrals of Eq. (48) were evaluated in a slightly different way from our

expressions given in Appendix II but comparison of our expression for

8] W
£ .

—%-(6) with the V opt (r) given in Eq. (29), i.e., Véz)(r) and with the Ii(e)

glven in AppendlxIIand their expre551on (Eq (9), Ref. 12) indicate that

they are practically 1dent1ca1 | In Ref 11 the potent1al Im V(;)Reor( T)
given in Eq. (40), was used in 2(8) and the expression found was
(assuming only target excitation) "

% 16 2 4
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wheye _ - T R
‘M-8, 8.2 40 .1 .40
fl(ﬁ)_f:[(l_—.fo—)tan.gJ_ tan’ 5 + 3‘5??: jﬂ-

and £(0) is the universal eﬁgle fuhction given in Ref. 11. Ageih the
comparison of Eq. (49) W1th the corre5pond1ng exPre531on obtained from

Eq. (47) and using the I 's glven in Appendlx IIlndlcate that they

give almost identical results. When performlng calculatlons w1th the
o .

general potential of Eq. (35), Eq. (47) for EE&-(S) is more appronr1ate
In Fig. 4 we present the results for the system 20Ne +15 Sm at El ab = 70 MeV
The egreement w1th*the data (from Ref. 19) is qulte goed In F1g 5 we
present the resultsfor ;E—(S) for two values ~of q (assumlng a pure qua&?u—
pO'erotatlonal band) f1x1ng the potentlal v opt SO that the maximum I 1nc1uded
satlsrles the 1nequa11ty - | | o h

: . >_2q  . .  . | _  ‘.' _: - _ | CSb).

» MAX =
The above inequality. guarantees, for a given value of g, tthPrQSGHCQle._,
the effects of the coupling to all channels included in the eonstrucpien oﬁ_
V _..(r).  This follows from the classical relatipn,between_the‘velue othf;

opt 5
.and .the maximum angular momentum transferred namely,

AnotheriWay’of"beiéuieting the elastic scattering cross ‘section
s by sxnnmijméi of the Born series for the elastic ééaftering‘ampiitu&e '

obtalned d1rect1y from Eq (4) upon replac1ng the rlght hand side’ by
o

op*(r) w[r). ThlS results in the f0110w1ng 51mple expre5510n for EE&(B)
A : _ S coo1 TR
6eq 1- . J FE(B)(kr) V (r) Fg(e](kr)dr ,
R v E TR a Vot (7). F (kr)de
k 51(6) ey




a A
La die

Here we have adopted the on-energy-shell approximation for the elastic
channel Green's function. The amplitude AOO(E) may be written in terms of
the.coupling matrices,Cij(R) ‘as can be seen from the structure of V . given

in Eq. (22) and the defipitiop_ef‘gij(g)wgiven_in_Eq, (18)

1.

130 (@) <2] — |2> RO
_ . 0227, L+1i € - —20 ST S T
Ao = _ 7 (83
1+iC 2(2)<2[ ! |2> czo(z) o S o
1+i C(,Q,)
where the Q space “prOpagator” of the 2+ state. <ZI 1 l2> is glven |
e : S I £ C(l) .
in Eq (25) :
N _ o, _ , . ,
We have evaluated 6—-(9) as glven in Eq (52) 1nc1ud1ng in the
R

constructlon of the 2+ propagator Statesup tO I"18 i.e., 1nc1udlng up .

to 8 memncrq of the rotational band and taking q02 to be 2 36 1nd 9, o6

The result is shown as the dashed lines in Fig. 6. It is clear that the WKB
. o
expression for'ag&: given in Eq. (47) and the summed Born series of Eq. (52)
R o )
give almost identical ‘results for small values of q. However, for large g

the two ekﬁrésSiehs;'eithougﬁ'give‘CIOSe results at small angles, presents
qualitatively different behavior as can be seen in Fig. 5b." We have accounted
for the energy loss by insert;ng the factors gijEEij) in the coupling matrices
The semiclassical coupled channels-calculation of %—-forﬁthedebove

system has been reported recently and it shows that G/OR osciliates slightly

C

at angles larger than 60°

Flnally, we g1ve below the elastlc scatterlng CYoss sectlon evaluated
at 8 =1 (1nc1uded in thlS calculation are the coupllngs to the 2+ and 4+

states as well as the reorientation of the 2+ state)

Tep ™ 2 1+0.065 d;,, £354(5p54)

16

——— = gX - P

"o (M) p [- 75 9902 S0z Coud) 5 2
0.036 q5,, + [1+ 0.065 qp,, g2+4(€2+4ﬂ

(54)
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It is interesting to note that at back angles both the WKB and the Summed
' SR

Born series expressions for (8) becone, for a pure rotatlonal band and

in the zero-energy loss limit, 2 function of only one variable, the quadrupole
strength parameter q0+2. ThlS is also the case with the elastic scattering
_probability calculated by Alder and Winther9 without resorting to the Coulomb
polarization potential.

| From the elastiélécattéring cross section one may calculate the totél
_ 1ne]a tlc scatter1ng cross sectlon u51ng the un1tar1ty condltlon whlch the

matrlx,mpst satlsfy,h

(8) o.+(8) G . (0) .
iney - i _q ek
o8 i=;,4,... o9 = ' op(8) (55

in order to exhibit this property of the S-matrix we notice that a manifestly

_ unitgty:Stmattix;payrbe_pgggtr?qted_from out.equatiqn (20) thtqughzl
g #(k)+1/2. ¥ (k)f}/zf,;r~ S Lo ey
oo s ovained rom g0, GO,
%<1 =42ik_;:£: arEwp™ L (s7a)

where F and w are matr1ces in channel space and V is the coupllng matrlx
}rom the unltary S-matrix above we can determ1ne the T-matrlx whlch is related

1l

1-2iT =5
or . T kl/z-kf}J g k2 5™

k_1/2[,}:%,1(.-1/2
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Defining a new coupling”matrix_gf.td bé:.§f¥ k1/2 k"l(j.k-.l/2 = k—1/2 g g 1/2

we fiﬁally 6b£ain" o '._. e T . '.”’T e . |
SR e V2ol | -
L 1_+ ik-1/2'c k-1/2-:7'1 +;i%" S (58)

and g . _L- ik—l/2 Q_k-l/z JEETIE ?

I R | k"'l/z Ek'l/z

In the above symmetrized form, T'may be used to calculate thé'diffeféhi

inelastic cross sections. This calculation is reported in the following f
_ S w

paper..

- V. DISCUSSION_AND:CONCLUSIONS_-

In tﬁis pépef we héve ékplofed.tﬁé.éoﬁSQQﬁénéésuof'the on-éhérgy—shéii
approximation for the channel Green's function on the multiple Coulomb
excitation coupled channel problem. We have, amoné other things,derived a '
closed expression for the Coulomb pqlarizafion'pdféﬁfial ih:théilfﬁif'of'
zero energy loss accounting partially for the last through the semiclassical

energy loss factors. Our general expression for the Coulomb polarization

potential reduces to the more approximate expressions given in Refs.1l and 12

as limiting cases. As a check on our results we have compared our potential

for = 0 with the potential based on the Alder-Winther theory, obtained in
Ref.15. The discrepancy found is accounted for pértly by the terms in the
Born series neglected in thé dn-Energy-sheli épproximation. We have been
able to fit, on the average, our potential to the Alder-Winther omne by

adjusting two parameters--one attached to the reorientation matrices and the

other to the coupling matrices. It is argued that the failure of our
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adjusted imaginary potential to reproduce the oscillations found in the
Al§e35Wip;herEpepentialfeeg}d:peﬁgeepeequepee_of both theﬁfeeﬁ:ﬁhat“the_,_
AW:PPteati#} waS*¢XFI?9tedufPQW;tbe.asxmthFiq_?1as§i¢;éﬁp;iﬁudﬁawher@aseouts
directly from the wave function,as well as the on-energy-shell approximation.
Althqugﬁ:the methods déveloned in this paper are not meant to substitute for.
more exact-coupled.channelscalculations they do nevertheless, supply. us . . -
W1th 2 very 51mp1e closed form for the sub barrler elast1c cross section . .
approprlate for the case of strong coupling. ‘Fg;;heypere,_hav1pg‘qbpa}ped__‘
the,?las?icach?nnel.9991°mb?P9¥aﬁi%ﬁﬁion E?FEP}}31@Whi9h;Cpntai¥5~m94?i?¥e.;
CQUlQWPuQXQitQF?QF,?ﬁfeﬁféa9ﬁ¢:9°H¥9<U§Q,i?_FQ;ﬁimﬂlifX,aﬂ*cherwiSQym9¥e=v~
complicated coupled channelscalculation. 'As an ._examp..ie,, . We.cite the case. of
sub-barrier fusion of d.éfp_rﬁge:d nuclei.”’ As is known, deformation of the target
induces both static as Weli as dynamic effects onrthe fusion cross section.z4
If the target is so deformed that multiple Coulomb excitation is important,
one needs to perform a calculation’involving several strongly coupled chan-
nels to account correctly for these effects Our potentlal v opt (r), makes

it possi ble to account almost completely for the dynam1c effecfs in a one-
chamel optical model description. The study of statlc effects is thus a
macde easier and could be handled following, for example, the ideas in Ref.23
Aside from the above practical aspects of our results we consider our findings
as a first step in the direction of exploring simplifying schemes for the
coupled channels calculation in the more general case where the nuclear force
is included. In such cases the on-energy-shell approximation amounts to

replacing the channel Green's function by(Ref. 7)
o
¥ 1
STt =y (@) by (2)/S) () - (59)

Here $9(r) is the regular solution of the optical model Schrodinger equation

describing the elastic scattering in channel ¢ and S (k) is the elastic
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S-matrix elemént in channél c. ‘Dde'tofétféﬁgsabSdfﬁtibh'fof idw.i:partiéli
waves”the*fé§tdfﬁ(Sg;b(k))-l Cdﬁid'ﬁéésﬁé'QUife'féfée fofcéﬁﬁiiﬁi;:}ééuitiﬁg
i1 'a possible overestimation of the coupled chanmel effects.’ However, as’
demonstrated ‘in Ref. 7, this needs not be a worrying point if the amplitudes
were to be evaluated in closed form as another factor of ég(kj;'ﬁﬁibﬁﬁéaﬁékj

from the' 'distorted waves, approximately Céﬁéeisﬁfhe'dangéfoﬁ$ ISE”;fkj];1

factor in the channel Green's function. Finally, the inclusion of the nuclear

excitation into our expressions for the inelastic amplitudes, which are cal-
culatéd'ﬁithdut'fhé'nﬁtiéaf'effebté'iﬁ'tﬁé'foilowiﬁélﬁapér; would make the

investigation of the dependence of the nuclear-Coulomb interference effects
25

on the spins of the excited states simple and transparent. These ideas

" Will be explored and developed fully in the third part of this series.2®
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APPENDIX I

In this appendlx are given the approx1mate, Iarge L 11m1t ‘values of

‘the 3-j and 6-j symbols needed in the calculatlon Throughout we shall use

the definitions and convention of Edmonds?7

a) 3-j symbols

DI W R 172 SR
~\0 00 o (2043) (2041 (20-1) -

2+1. P i Ll AT-1)

. )
V8T
w22\ 0B (@) 12
0 0 0 2 (22+5)(2g+3)(22+1)
: (AI-2)
1 3
Jiﬁﬂ
b) 6-j symbols
In the following & >> I, & >>m .
£ Ram I
1/2
! {m+1-3) (m+I-2) (m+I-1) (m+I) L) e et o (ATSE)

T (21-3) (21~ 7) (21- 1)(21)(21+1) -

£ L+m I
12 I-2 f44m
L L
w1200

3 (m+1_1)(m;i)ti-mii)(iimj' ' 1 ' (AI-4)
T T (21-3) (21-2) (21-1) (21+1) (21)
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=

L+m I :
I-2 Q+m+2

1 (I-m-3) (I-m-2) (I-m-1) (I-m)

= lgg (21-3)(21-2)(21;1)(21)(2141)]:' - (AI-5)
.Q L+m I wk
2 1T 2+m+2 - ) |
L (3 (mI-1) (meD) (T-mel) (I-me2)  41/2
Iy (21-1)(21)(21+1)(21+2)(21+3)1 (AI-6)
£ R4+m I.%
2 I R+m
- (3m"” - I(I+1)) ALT)

[ BT(21-1) (21+1) (21+2) (21+3}]11/2

APPENDIX II

The Coulomb orbit integrals defined in Eq. (45).éré easily evaluated
following the methods.de3crib¢d:inf3éfL28;'f We obfain_for‘IS(B), 14(8}
and IS(B), the following expressions

1 arctan %, 2n
5 [ - — 1 =5
A 2 Ea

i

1,(6)

C(AIT-1)
8 n
= [1 ( 2 ) tan 5] —;
_ : -_Ea_.-
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—-_L— [-(E2 + 3) % arctan ¥ - 3] 2n

I,(8)
4 27 _ Ea®

-2:' tan4—3—[ (Cot'z _ +3]( )tan ?_, -3} ED_ ERUEE I .‘(AII:I—Z)E

I

a2, 5)-(357,24»5)

I.(8)

arctan 2] —¢

.zcl [+

a4 28 28 9 2n

6 0 ot -—+5) (SCO‘t _’+5)(2)t ]

(AII-3)
a. HEIENE i
in obtaini_ng the final angular dependence of I'i (8) we have used the Rutherford

relation © = cot% (Eq. (41)).
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FIGURE CAPTIONS

Figore 1 The coefficient a , b and ¢, plotted as functions of { é"giiﬁlizmé
for several values of the quadrupole coupling parameter q. A

factor %—was taken out of the coefficients in order to present

the result in as general a form as possible.

Figpre*Z: The coefficient, ag, bl and ¢, plotted as functions of the :
' : . -+ 172
quadrupole coupling parameter q for several values of { = —
A factor %—was taken out of the coefficients (see caption to
Fig. 1).
Figdreisai The potential V§=O plotted as a function of q and adjusted to

the Alder-Winther potential (dashed line}. The adjusted values
.'ﬂ‘of the parameters o and B used to fit the potential to the A-W

potential were 2.3 and 4.6, respectively (see text).

Figure 4 ‘The sub-barrier elastic cross section normalized to the Rutherford .

cross section, plotted vs. the center of mass angle for the

‘152

system 2ONe + 775m (Elab = 70 MeV). Included in the calcu-

latioﬁwis_the couplihg_?o the 2° state as well as the re-

o, -, * o .
orientation of the 2 to all-orders in both target and pro-

jectile. The data are from Ref. 19

o o R
Figure 5 The ratio 2% calculated both from the WKB expression Eq. (47)

o

_ R : ..
(solid lines) as well as from the summed Born series Eq. (52)
(dasHed lines). &) q = 2.36; b) q = 9.56. Energy loss was

~~accounted for by inserting the apprOpiiate.éemiclassicai.energy

loss factors (see text}.
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