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-ABSTRACT

The on-energy-shell-approximation is used for the channel Green's
function to solve the coupled channels equations for sub-barrier multiple
Coulomb excitations in heavy ion collisjons. A set of recursion relations is
derived which permits a simple algebraic solution for the S-matrix elementsi
The resulting excitation probabilities satisfy the unitarity condition exactly.
Comparison of our results with those of the exact quantum mechanical and semi-

classical treatments is made.
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1. INTRODUCTION

In a previous paper1 (referred to as I ), werstudied the censequences,
on the sub-barrier elastic scattering betweeﬁrheavy ions, of using the on-
energy-shell approximation for the channel Green's function in the solution of
the coupled channels equations for multiple Couibmb'ékciféfion. A simple
expression was obtained for the Coulomb polarization potential which was
~ then used to calculate the sub—barrie;délastic cross section. Another
method, the Born series summation, was aiso_cpnsidered and it gave very close
results for the elastic cross section as the WKB approximation. By adjusting
the Coulomb polarization.potential 56 thétuit.reprpduces, on the_ave¥g§e;.the
Alder-Winther potential we were able to account, to some extent, for the
off-energy-shell effects. The resulting adjusted potential, seems to
describe well'fhé effect of multiple Coulomb excitation on the heavy ion
sub-barrier elastic scattering, | o

In the present paper we apply the methods developed in I to the sub-
barrier heavy ion inelastic scattering. This application is, in our view,
an important testing ground for any approximation schemes devised to simplify
the heavy ion coupled channels problem and should be considered in comjunctiom
with the application to elastic scattering. 'Althdugh'the semiclassical
theoffTOFLMuitiple Coulomb excitation as used, e.g., in the de Boer—Winthei-2
code'iézadédﬁaté'for not too many'coﬁpied channels, the need for alternative
appréximatioﬁ becomes apparent when the number of the coupled channels
increases. Soveral methods® have been developed to calculate the inelastic

cross sections. for heavy ions in the case of strong coupling. We mention



in particular, the methods based on the work of Miller4 which allows some
feedback onto the trajectory due to the coupling to the oifferent excited
states (channels). However; these methods have been, so far, restricted to
back-angle scattering only. . Our aim in this work is to solve the coupled-
channels. Multiple Coulomb excitation problem exactly within the on-energy-
shell approximation adopted for the channels' Green's function. This pro-.
cedure allows for the construction of the different inelastic amplitude in . .
a simple closed form and thus permits the introduction of improvements in a.
simple way. The numerical evaluation of the auplitudes involves only the
inversion of finite matrices which was discussed in I. Furthermore,_the
introduction of the.huciéar:offects, which becomos'importanr at higher,
enorgies, is Straightforwurd and willﬂbe &isoussed in part III of thio
series. Although we do not expect our f1na1 results which are based on
the OESA, to be very close to the exact coupled channels or de Boer-Winther
results, we do belleve, however, that such an OESA procedure oould serve as
a reasonable starting p01nt for a more preC1se yet simpler, calculatlon of B
the effects on the different heaVy ion processes due to strong coupllng to |
many other channels.

Furthermore, és was diocussed in I, the formalism we derelop allows
for a very clear separation between reorientation effects and coupling effects
and thus allows for a‘simple exploratory study of the change in the nature
of the channeéls, i.e., vibrational vs. rotational. Although the energy
loss associated with the different excitation processes was accounted for
in 1, using the semiclassical enorgyloss factors, in the present paper the
energy loss is accounted for eractly, albeit semiclassically. After some

preparatory -developments in Section IT we deriye,in the OESA,general



expressions for the inelastic amplitudes which contain multiple Coulomb ex-
citation effects to all orders.  In Settibn.III we evalu#te the sub-barrier
inelastic cross sections for the system 40Ar 2238y at Elab = 240 MeV assuming
for the excited states a pure rotational character. Comparison of our result
at back angles with those obtained by Alder and Winthé;‘ are discussed,

Finally we give a general discussion of our results and several concluding

remarks in Section IV.

ITI. PRELIMINARIES

In this séction we summarize some of the results obtained in I which
are relevant for our discussion of the iﬁelastic cross section. We consider
the collision of a spherical nuéleus 1 on a deformed target nucleus 2, at sgbul
barrier energiesf We study the Coulomb excitation qf low-lying states IM of
spin I and magnetic quantum number of which excitation energy E;. We further
assume nucleus 1 to be a point charge Z,8; then from the set of coupled radial

equations given in Section II of I we can extract the coefficients TiI 01

. - S ' 17070

which determine the amplitudes fI M T (6) for Coulomb excitation from the
oo M h

ground state |IOM0> to the final state |IM> (in coordinate system C of

Ref. & ) through
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where RO(E) is the orbital angular momentum in the incident (final) channel -
ko(kI) is the asymptotic wave number in the incident (final) channel J

is the conserved channel angular momentum, and Og(n) is the Coulomb phasé




shift with n being the Sommerfeld parameter. In what follows we consider the
ground state to be 0" which fixes the value of J = 26;' The inelastic cross
section is then given by

doy

df?

o<lH

Z{ oo+mf9 ¢)| | (2)

where vy(v ) is the relative velocities of the heavy ions after (before) the
collision. By using the on-energy-shéil'approximation for the channel Green's

function we were able to obtain the solut1on for the matrix TRI ﬁ d in closed

form
—1/2 C k-1/2

14K 172 ¢ k‘1/2

where the matrix C is given by

C =1

' ) l.I | k .'..’;k L R 4:,
—,Q,"I",QI kI” a»erI",R:I /QJT,QJ( :Il I) ( )

Here the coupling matrices a have the form ( QSSuming quadrupole coupling)

I I | o
fqp1 01 T RAD N q1+1.(0 : z ) Y(2I+1) (21'+1) - ¢
2 '2"2
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and;IQHQ(kI”,kI) ire the usual Coulomb éxéitation ihtééiéls givén Ey'-

o0

. ' 1 ] ' . ;
IR’IIQ,(RIH kI) = IQ dr FR,"(-RI"T) ;3‘ Fﬂ’(kIr) (6)



In Eq. (5) the quadrupole coupling strength qy iy are defined by

| Tj% Mg <x]|ucEn | |1
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The quantity ay is half the distance of closest approach for head-on collision

in channel I and-is given by S
2

Z.2.e
8y - 172 R ‘ | (8)
e : )
L ‘ ZIZZe
The Sommerfeld parameters n; are defined as usual by ~f v with Vi
, CTERT I

being ‘the asymptotic relation vglocitf:in the center of mass system in
Channel I. In the special case.of a pure qﬁadrupole rotational band
description of the excited states in the target the*couplings.qi+1, s
defined in (7} satisfy the simple relation

| i+i;+é

O B ®)

A1 dos2

Our expression for T (Eq. (3)) guarantees that the resulting S-matrix, defined
by 1-2 iT, is unitary. . =

in order to carry out the numerical calculation we have used Eq. (3)
to obtain the following;recqrsion equation that relates the amplitudes for
the different processes.The details of the derivation of this recursion
relation is given in Appendix I: o

1

. Cras -1
Rig = =1 Cyppll#d Cp 5 p ot CI—2<-.;1+iCé<C<I-2]: ooy
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where
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and RO =“L

0

and the symbol < refers to states with spin less than I. The matrix element

1l

<I|[1+i§J—1|O? g1y 1is given in terms of R, by

gro = [1+3 Cpp * C1<t14ic<<]*1_¢<x.f,CIé[4%i¢>>]f} C>1J-1_§10- :-(1?)-_;-H
where > implies all I is larger. - The matrixfeleménts'<I|T]0> are identical
to g4 Since for I # 0. |

| <1|[1+i£'_1] i£f|0> - '.<"I|“[1+i£‘,]-1lo>.,. o : S e (13)

Eqs. (12} and (13) constitute the basis of our calculation of the inelastic..
amplitudes... Implicit in our calculations is the usual semiclassical assumptions
of large & .and n..  The results in the following form. for the inelasﬁic

cross section

Oy .so it e e e
@ ~R®H®O

where_oR(e) is the Rutherford cross section and PI(G) is the probability for

Coulomb exciting the state I and is determined basically by_|g1012.

III.  NUMERICAL RESULTS

Refore entering.ihfo the details'bf'6ﬁ%iﬁﬁﬁériééi”fésﬁlfg'wé'give.
below an account of our treatment of the énérgy loss. :Aiﬁhoﬁéh‘iﬁ I we accounted
forwtﬁé éﬁéfgy loss thfoﬁghrthé“iﬁtroduétién of fhé cdﬁétaﬁt Seﬁiélassical eﬁéfgy
loss factérs, in this ﬁaper.we”tfy to treat the'énergy loéé more fealistically.

;e




Since in our theory energy loss comes in basically through the Coulcmb excita-
tion integrals, IQ'Q (k I"k ) of Eq. (6), we therefore ueed the semiclassical |
theory of Coulomb ekcitation to calculate the I's and utilized the fables
given in.Ref. 8. Such a procedure to apprOX1mate1y account for tbe energy

loss in the excitation processes turns out to be qulte reasonable espec1a11y
in the calculation of the 1ne1ast1c cross section, 02+.

hand, we were to use the constant sem1c1a551ca1 energy loss factors of I the

If, on the other

02+(8)'wou1d show an almost monotonic decrease With'eCM .and a maximum at
§ = 0. As we show below our calculated o, (8) exhibits a maximum at some

small angle and drops to zero at 6 .= 0 as 1t should 7

To be specific we shall. con51der below the system 40Ar 3 U at E lab = .

240 MeV. - Although the center of mass energy correspondlng to the above E1 ab
is slightly hlgher*than-the Coulomb barrler of 183 MeV, we shell,rgnore all:
nuclear effects in our calculation. ~We shall assume a quadrupole rotational

band structure for the excited states in 238U and shall ignore precjectile:

excitation. Since the value of q for the above system is 9.56,9 it is clear
that we must con51der in our calculation the coupllng to all states with

I < 18, Thls requlrement is a consequence of the apprOX1mate sem1c1a551ca1

relation between the average angular momentum transferred, <A%>, and sy o
7
namely

CAR> =T s T om

. p
max 2q0—>-2 (15)

We have used our recursion equstions (10) - (13) using for the coupling matrix
C the explicit form given in Eq. (4) with the I's celouleted»according to

the prescription given_previously. We have generated a pure rotational band

238

for "7U by taking the exPerlmental value for the first excited states to.

. _ 1
be 44 keV9 and used the rotational energy formula EI =‘ﬁ_%§;i;L_ The




results of our calculation are showp in Figs._l-s. The_elastic_cro§s section
normalized to Fhe Rupherford{cro§$ se;piop‘is plotted in_Eigi I. :The:rise Of”G{UR
back angles will, of course, be modified if nuclear effects were included. Also
shown in Fig. 1 is_the_inelastic cross section g

24 for exciting the 2+ state.

Our results for o, 1is qualitatively similar to what one expects for smaller

2+
Ay It is.interesting to observe that with_increasing I the peak in UI+(8)
is shifted to larger angles and the right wing of the cross section becomes flatter
and flatter as shown in Fig. 2_qnti1_finally the peak disappears completely start-
ing at T = 16 (see Fig. 3)., It is important to note that our resultg for o,
and o, ~satisfy the ﬁnitarity“SUm'rule at every angle, i.e.)

S oy 18 Gy ot

E-«-.-4- Z - =1 _ (_16)

g 122 % e o R

It is worth neting that-if we mock up sone - of the ofoshell effects by
multiplying the reorientation matrices by a factor 2-3 and the coupling matrices
by 4.6, as was done in<I; we would obtain peaking,_in.alllf&¥0=at some NONZero .
angles. It is clear that the spin dependence of our resulfing Coulomb excitation prob-

0]
abilities PI'E .El‘ evaluated at back angles show a marked. difference from

the results of seiiclaSsical theories.-6 Whereas exact quantum mechanical

and semiclassical theories show an initial rise of P;as a function of in-.
creasing I and then, after passing through a maximum, drops precipitantly

as the excitation of states with higher spins become classically forbidden,
our results show,on the other hand, a rather smooth decrease of PI with
increasing I, This failure of our theory in reproducing the exact quantum
mechanical -and semiclassical results is a clear indication of the limitations

of the on-energy-shell-approximation: It is hoped, however, that one might

be able to account, approximately, for the off-shell effects by using the
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simple OESA for the wave function (or amplitude) as an input inhomogenous

term in an integral equation'whpse kernel contains the off-shell parts of
the channel function. if is further hOped“that itefati#e, and'thérefore.léss
time—consuming,'solutiéﬁé'of this equétioﬁ would suffice to briﬁg the.resﬁité.'
closer to fhe.éxact Quantum mechanical or éémiéiassical'results. In é future

publication we shall present an account of our endeavor mentioned above.

IV. DISCUSSION AND CONCLUSION

In this paper we have discussed the consequences of adopting the on-
energy-shell approximation for the channel Green's function in the coupled
channels description of multiple Coulomb_exciﬁation,in heavy ion collisions.
Our wofk in this paper is a natural extension of the results reported in the
first part (I) of this series which dealt with sub-barrier elastic scattering.
Although in the present paper we have improved upon:our treatment in I of .the
energy loss in the different excitation processes, the overall qualitative:
behavior of our results differ considerably from“tﬁose of the exact quantum
mechanical and semiclassical treatments. This shortcoming of our approximations -
is certainly a consequence of our neglect of all off-shell effects. These
off-shell effects manifest themselves in the nonseparable form of the r-
and ' dependenceiof the channel Green's function. : It is hoped, however;-‘
that by isolating the separable part of the channel Green's function and
calculating the corresponding wave function and amplitude, a simple estimates
of the inelastic cross section at sub-barrier energies become:available.
Furthermore, such an OESA wave function might serve as an-input*inhomogendus

part in an integral equation whose kernel contains the principal value of




11

the Green's function. It is our expectation that iterative and less time
cohsuming solutions of such‘anﬁintegrai equa;ion could be obtained which 
would contain most of the off-shell effects and thus would give comparable
results to those obtained from exact quaﬁtUm mechanical and semiclassical
treatments. In the third part of this seriess'we shall present the results
of our program above as well as develop a method for including nuclear ex-

citations.

APPENDIX I

In this appendix we derive the recursion relation, Eq. (12), and in our
calculation. Our aim is to calculate the matrix elgpment - <Ii(1+i§)"1[0> = g5
First we write

(1 +10) &= %y R . (Ifl).

We now define the projec@ion operator PI'which.projects onfq the I-state.
We also define P, and P, which project onto-the'spéce spanned by all states
with spin smaller than I and larger than I, respectively. Since the quadru-
pole nature of the coupiing requires that P, ghP> =P CP, =0 we, therefore,

have for I #£ 0

1.y

(1+1Cpy) gy +Crg +iCpg, =0
(1+1i §>>] g, * i C>I gp ® 0 i SR (1.3)
(1+35C) g +iCqe= S0 N | | (I.4)

Solving (I.3) and (I.4) for g, and g, and substituting into Eq. (I.2) and -

I
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solving for g, we obtain

. . . —l -1
gr = -1 [1+1 Cyp * CI<(1+1C<<) <I I>(1+1 C, ) >I]- .
4 | (1.5)
Cre(¥i € ) 7 8y
in theISpeéiai case of I = 0 we have P; C =0 and 8 = 0. Therefore,
(1+1iCyy) g, =-iCog *+1 (I.6)
1+icC.)eg, = =i C>0 g, (I.7)
Solving for g, We obtain
g =[1+icC +C (1 +1iC )_1 C. }-1 1 : (1.8)
0 00 0> >> >0 = : T
Since the operator (1 + i C<<]" appearing in Eq. (I.5) acts only in the < -

subspace we can rewrite it in terms of operators acting in smaller sub-spaces.
Specifically since the maximum spin in the < - subspace is I-2, we have for .
A

<I-2'1(1 + 1 E<é)fl | 0> EﬂIAZ. the following

AT B )
812 = 1+ 1C 512 1 <(1 1007 Cpnl

(1+1icC )

Cee ¢ (1.9)

[-1 I 2< 10

where < implies smaller than I-2. Defining now the matrix element RI.

. . -1
R. = -i CI<(1 + 1C<<) (I.10)

I 6IO

with < implying smaller than I. We can combine (I.9) and (I1.10) into one

equation namely.



i3

-1

-1
- e C1 2 12 % Croac(* 1 CQT Cp 17 R, (1)

I I-

Eq. (I.11} is to be solved with the. "boundary condition' R,= 1, and the,

matrix element g; is obtained from Eq. (I.5) which are rewritten as

) . :, : _1 - .
gy = [1+1 CII | (1+1 C<<) <I (1+1C>>) >I] X RI (1.12)
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FIGURE CAPTIONS

Fig. 1 The sub-barrier elastic cross section, normalized to o

for the system 4OAr + 238U at E

R’

lab = 240 MeV Plotted vs. B

Also shown is the inelastic cross section o

CM*
2+°

, O, and o

Fig. 2 The inelastic angular distributions Ogpr © g+ 10+ -

6+

Fig. 3 The inelastic angular dlstrlbutlons 01242 %144+° %16+ and 018+
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