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c:ABSBSTRACT

In a perturbative calculation we show that no new guadri-
linear counterterms are necessary to define the Federbush Model if
one imposes gauge symmetry of first kind and asymptotic vy° iﬁvari—_
ance. A subtraction scheme satisfying these conditions is cons-
tructed and renormalization_group properties of the Green func-

tions are analysed.



model

1) INTRODUCTION

Historically, the Federbush Model was proposed in 1961

as a prototype of a solvable field theoretical model involving

(1)

massive spinors . It is a two dimensional model with a Lagran-

gian density given by

L= 5 (210" % v- mpous)+ ge (v @vYe,)  (1.1)
3‘61 ] 5 37373 pv 1t v et v2 .
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where the indices j=1 or 2 denote the fermion field type.

The original formulation was made more rigorous after
(2)

the work of A.S.Wightman in 1963 . More recently there has been

some controversy about the perturbative caracterization of the

(3,4r5); The basic question is that, as graphs with four

‘external fermion lines are superficially logarithmically divergent,

counterterms having forms different of thosé already present in
(1.1) (e.g. (Wlwl)(wzwz))could be necéssary in order to_define
finite Green functions, However if, due to some asymptetic
symmetry, there is a cancellation of the divergences of the various
graphs involved then counterterms are not necessary. The existence
of such cancellations, up to second order in g, has been shown_in.
references 4 and 5.

In this cdmmunication we will show that in any order
of perturbation the model (1.1) can be unambiguously caracterized
by just imposing asymptotic v® invariance. If this is done the
only quadrilinear counterterms necessary are those needed to make
both vector currents conserved.

Furthermore, we will construct a modified BPHZ subtrac-
tion scheme preserving such symmetry and show that the resulting
Green's functions obey a renormalization group eguation of the

usual form. The paper is organized as follows:



In Section 2 we prove that no new quadrilinear counterterms are -
necessary if the'Vector-burrents are conserved and asymptotic y°>
invariance is -imposed,., In Section 3.we construct renormalized
Green's functions and derive Ward-identities -for the axial -currents
explicitly satisfying the requirements of Section 2. Finally,in . :
Section 4,we discuss renormalization:group aspects related to ..

the approach used.

2) - ASYMPTOTIC -v° INVARIANCE AND CANCELLATION;OF“DIVERGENCES_

In this section we will. prove the main result mentioned
in the introduction:  suppose that: the ‘basic interaction in (1.1)
. e 2 MLV e A M M - C
can be wrlten-as.geﬂv 31.32 where gl".and 32_-are renormalized . -
versions of therfieldtcurrents;Wtiwl and wzyywz,qhavinguthe
properties .
i U .U.
1. both jl and j2 are conserved

2. their curls asymptotically wvanishe, i.e.

PRI IA TR e Mo i)
and 3°j, >0 as M; and: My +0.
then no new guadrilinear counterterms are necessary.

"To proof this result we idntroduce the graphical notation
of fig.l. A generic graph contributing to the. proper four point
function has the structure shown in fig.2. Let g be the momentum
through the indicated wavy line. Now we use the identity

v ~U Y -~V
"V = (@"q’ - "g) /g’ | | (2.1)
and transfer the g% (resp. %U') factor from the line to the vertex

V and apply current conservation (resp. asymptotic y® invariance) .



We ‘will obtain graphs that have the same structure as before but
with V replaced by a soft vertex (in the case of the rotational

of the vector current) besides the usual contributions (fig.3)
‘that come from: the fact ‘that we'are cdonsidering proper time ordered
functions. In the vertex V of fig.3 there ‘is no-more the momentum
factor. - It is therefore clear that the result-is-ultravioclet’
finite if the necessary subtractions for the two point functions.
have been done.

The above discussion shows how one should do in order-
to construct a’gréph by graph subtraction scheme without ‘inducing.
quadrilinear counterterms: The subtractions for proper graphs.
with four external fermion lines must be done at the value =zero

of the masses Ml and~M2. Possible infrared divergences of the . -

subtraction terms can be eliminated if one replaces "V by
) | LT
¥V 4" - - In the next section this procedure will be used
2,2
= .

to explicitly construct the desired subtraction scheme.

3) GREEN FUNCTIONS AND THE SUBTRACTION SCHEME

The observations made at the end of the previous section
" lead us to define the following effective Lagrangian density for

the Federbush-model*



The finite counterterms:al and a

to fix the physical mass of the fields vy

5 were added in order

1 and w2 at the values

M1 and M2, respectively.
We adopt the graphical notation of fig..l. By power
counting the degree of superficial divergence of a proper graph

is given by

o ,.
a(y) =2 -5% -2 -B (3.

where;NY;= n? of external fermion lines of v
_ B# = n? of external wavy lines of v
AY = n? of vertices of type;al and_az in v

Without the_iqsertioﬁ_Qf_the.coqﬁfertgyms.(i.eQHAT=Qi the graphs
to be subtracted are.then N | | o |

1. Fermion self-energy graphs, ¢(y)=1

..+ 2,.Vertex functions of the curgentsgwith two external

fermion lines (see fig.4), §(y}=0 . |

3. Proper functions of: two currents (fig.5), 6(y);q

4. Four point proper functions, §(y)=0

Let IG be the unsubtracted Feynman integrand associated
with the graph G. In order to construct the subtracted Feynman
integrand we first substitute;IG_by:EG which is obtained from.
Ia by replacing the a”“.facﬁqr;associated,with.a wavy line in

which flows the momentum g by

IR g2

N (3.3)
g? - 82 + ie (g2+s2)

The renormalized integrand assodiated'with-IG is then
given by the forest formula

Rg =5, X= w - "WsenI o . (3.0

G
Uer Y



where ¢V s a generalized Taylor operator defined as follows:
a) Td(Y) is the Taylor operator of order d(y)=0 in

the external momenta p' of v and in MY at pY=0 and M'= { if v

is the graph of fig.6.

a(y)

b)) For the remaining graphs r "ig a Taylor operator

of order d(y) in pY, MI, Mé at pY=O, MI=M;=0 and, besides, in the

last subtraction of AN S g replaced by u.

SY is a substitution operator writing the variables of
A ¢ v in terms of those of ¥; Sc-does the ‘additional job of
seﬁting's=0 and of replacing u -either by M, or M, accordingly
the type of current in fig. 6. ¢

Notice that at s =0 the "propagator" of the wavy line
bééémesqu/q2+ieaz. S0 thdﬁ'iﬁﬁﬁhe-limiﬁ e+0 fé tehdéﬁfOfﬁéiiy'
o I, - i e N ;

We remark that the proposed subtraction scheme does
not create infrared divergences. Some of the subtractions are
done at s'= 0 and M =0 but the last subtractions, which if done®
at s7=0 and MY=0 would lead to infrared divergences, are actually
done at sY=u.

The scheme so constructed is ‘a simple modification of
those employed in ref.6 and both " ultraviolet and infrared finite-
ness can be proven using similar arguments of those references.

In the same way as we did in section 2 we can prove that
the subtractions fof the proper four point functions are actually

redundant. To verify this we write the contribution of order n as

‘Y - X (1-.9)E

o - T c.'Ba (3.5)

where, RG is defined by the forest formula but without the sub-
' i S

traction associated with the graph’Gi. Note that Gi has the struec-

ture shown in fig. 7. As before, we apply the identity



to the line indicated linking Vl to Vy. We obtain a sum of graphs
where & in vV, is substituted by 2MY® or appears, in a factorized

form, the contribution of a 'graph which vanishes at P; =M, =0.
i G

In both cases the application of the laSt”SUHtraCtion1ép¢fatori1vf
gives zero,

Another interesting property concerns to graphs that
have two closed fermichwlbdpsfiinked.by at least one wavy line.
Iﬂﬂﬁhis case the graph will not contribute. This can be seen by
the same reasoning as above. We simply use (3.6) to one of the
lines linking the +two closed loops and apply current:conservation.

Green's functions containing nprmal products NG.(ei) '

1

§. <2 , where Si'ﬁ (operator dimension of 6 + number.of mass . . .
i - . - L

parameters in Bi) , are defined by (3.4) but using

N

P - By - C(2-8 |
dy) = 2. 5= Ay _Byi;_fggw (2-6.) JEE Q_;(sﬁjﬁg

The axial currents, Nﬂ}iqu5w£]satisfy Ward identities

which can be derived in the usual way. : With the notation

Nl N2
X = ££1 wl(xi)w(yil ;E;:;Z(%j)wz(wj),f'

we have, for example

31:{ <TN1D"1Y'”Y_§¢1-.] (x)X > = i_‘,T{Z.Nz[w]_ ._(fiﬂfMi):Fb-l]_(X), +

+ N[0S @MDY ] 60+ 2 N M by, J G IX =



= 20 TN [ B voy J0 x> = 218, KON (B0 (K> -

N
1
- X {(ﬁ(x—x )w +6(x—yi)y;T }<rx> (3.8)

1 l _ Xy i

Observing that theﬁonlyjdifﬁerence.between:NQIMlﬁly5¢l];

and M;N, @1“ v, Jcomes from the subtraction for the graph of fig.8, .

we can write

21 NyfhpwvPe )= 2iMN [zpl'y ¢l]+ a 3"Ny (wyrtuy)

a’= -'g/w

Now, by .using : sl
3“<TN1[wéyﬁ¢2](x)X> = j%i{(s(wa o= 8 (x-2, )}<TX> foo (3.1?)
and (3.9) in (3.8) we obtain
3; (TN1[$1YUY5‘P1] (X)LX> = 2j_'"(M:l_a']_)<TNl W’l“{slf)'l] (x)X» +
+ a = {(6(x—w Y =8 (x-2, )} <IX> -

i=1

:E} (6 (x=x,)y> +78(x-y) 5T'§TX§ i
- i=l{ E Ty, Yy "yi}-._- ' (3.11)

Note the mild form (proportional to the divergence of

the vector current of the vy field) of the éﬁdmélbus.terﬁ.”:lf;
instead of the proposed scheme, we had employed the usual BPHZ
procedure(7), we would get a hard breaking of ‘the axial currents

conservation,

(3.9)



4) THE RENORMALIZATION GROUP EQUATION

The Green's functions defined in the previous section
satisfy a renormalization group equation which can be derived

by using the following differential vertex operations (D.V.O.s)(a):

.
It

1t /?___.XN; Pyesd 0 21y f[d Wy 9595 )

Il

= S L s-1z wD
"3 " fdzx.lfz[a_uv Gyyioy) Gprte T

The operators 4, and Z\ are not independent. 'I‘heii:
only dlfference is due to the subtractlons for the subgraphs of
flg 9 However a stralghtforward calculatlon shows that the
sum of these subtractlons is actually zero, and we have.

RIS (N, ,N,) —_— N, ,NL) Do R
1772 _ 1772 :
My by T T byt o 4
Using (4 1) and (4. 2) we can derlve, in the usual way,

the relatlons

(N N, . (w

N, S5y ey
= (& -a 172 (4.3)

N = (42i (gl_ai) Al. +g A3) T
NN da, ~ sa, (N ,N,)
e s Y W L 4.9

'Besides,(4.3) and (4.4) we also have
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where A,, 8§, and Y are power series in the coupling constant g.
ool 5 (Np,N)
u-r receives

Equation (4.5) is obtalned by noting that
contrlbutlons only of the subtraction terms and that 5
i) Renormalization parts correspondlng to contributions

from the proper function of two currents dormt contrlbute.' This
follows because the:graph of ﬁig,_ﬁmdoesrrthdepehd on , and graphs
of this type of higher order will haﬁe olosed ferﬁion?ioops linked
by at 1east one wavy llne and, as argued before, they 1dent1cally
vanish. e S - o

h:_ii) The subtractlons for proper graphs w1th four external
fermlon lrnes cancel among themselves. :

Thus the only oontrlbutlons for gf- come from subtractions

for the vertex and fermion's.self energyugr:phs. Concerning the
self energy graphs observe that they dormt give cohtributions to
DVO's of the type‘/dsz(¢y y) or -/52xN [@YUYSB w](x) To see
this con51der, for example, p0351ble contributions to4)%2xN[¢Y w](x)

coming from graphs of the type shown in fig.(10) (in this case

the diagram must be of order odd in g) These arise from the
23 g b ot opa-
~subtraction term M I p=M=0 ° Now if o acts on the propa

3y M
2—_*“2
gators outside the fermion loop we obtain zero (as result of vector
and axial vector current conservatlon applied to any of the vertices
in the loop). On the other hand 1f %ﬁ is applied in the lines .~
of the fermion loop the result is also zero srnce now the loop

will have an odd number of gamma matrlces and the trace gives Zero

{(graphs of this type with insertion of mass counterterms will not



.11,

contribute by the same argument). o

Thatufﬁ[ﬁyuysauw Jd?x do not give contribution to %% can
be seen most easily by choosing the routing of the external momentum
so that it does not flow throughout the 1inés of the fermion loop
and applying the same reasoning aé.before.

Using (4.3), (4.4) and (4.5} we can write the renorma-
lization group equation:

(N, /N,)

a a : N ‘
b=+~ -Nt, -N )T =0 s (4.6)
ou . 117 V22

The proof of (4.6) is_standard(s)

. We follow the usual
argument: by substituting (4.3), (4.4) and (4.5) in (4.6) and

equating to zero the coefficient of each DVO we get

da.

) : :
nA + 0 —= + (M-a,) 1. =0
) S 8g 1 "1 1 :
aé2
0g
u61 - Tl.= 0

by +o+ g (Tl + T2) =0 _ (4.7)

The last three equations can be used to determine T T, and ©,

1" 2
To show that the first two equations are then identically satis-
fied we use the fact that F(2,0) . = 0. and F(p’g) =0 .
gy _ Faa pe, A

80 that



12,

A 8 _ (2,0) -
L 51 o] 39 2Ti] T | = 0
. ﬁ= 1 |

(4.8)

3 i - (0,2)

[uau +: g _21:2] T . 0
B=M,
and therefore

c, Ay P(Z'O)l e, Alz_r(Z'O) =0
(4.9)

Cl'lﬁli'P(O'Z)} roe e, TP =0

S § <o O | =M,

where Cl and C, are the left hand side of the first two equations
in (4.7), respectively. As the determinant of the coefficients
in (4.9) is different from zero, then necessarily Cl=02=0.

The renormalization group equation (4.6) shows that,
although our scheme employs an auxialiarily mass u, the value
taken by ¢ is irrelevant in the sense that changes in this
parameter can be absorved in coupling constant and wave function.

renormalizations.
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FIGURE CAPTIONS

1)

2)

3)

4)..

5)

7)

8)

9)

Feynman rules: continuous line represents the fermion propagator
of type j. , the wavy line represents the "propagator" e’V
General structure for the four point function.:

_ . e g
Here the indicated wavy line has a momentum:factor = " orx
2
- q

o

Q
N

Generic_graph:for_the vertex function of the current_with two

. external fermion line.
Proper functions of two currents. . -

In thisérépﬁ"éﬁe fermion mass is not modified by the action of

the subtraction operator.
The bubble représents poéSiblé contfibutidns to the WaVyhiineﬂ
"propagator" (the two fermion lines at V2 do not give further

contributions to the propagator).
Only contribution to the anomaly of the axial current.

Fermion loop with a mass insertion.

710) A contribution to the fermion self energy.
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