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Recebido em

"A large class of classical and quantum systems exhibit phase
transitions of the same nature of those observed in the Free _Bpée"Gas
and in the Spherical Model". This statement is discussed in an intro-

ductory manner,

"Uma classe ampla de sistemas classicos e quanticos exibe tran-
‘sicao de fase de mesma natureza daquelas observadas no Gas de Bose Livre
e no Madelo Esférico". Apresentamos uma discussao introdutoria dessa pro-
pos i¢ao. - '

1. INTRODUCTION

The purpose of this.paper~isuto.show how, from the study of two
motivating examples: the Free Bose ‘Gas and the Spherical Model, it ispos-
sible to abstract some general features of. the phase. transitions associa-
ted to a large class of classical and quantum systems. These models refer
to quite different physical situations (the Free Bose Gas ‘describes quan-
tum particles, the Spherical Model incorporates some features of classi-
cal ferromagnets or classical lattice gases). In spite of that, there are
striking similarities In their behavior, specially with re~_=,|3ect”""to'E the

associated phase transitions. The common features we want to stress are:

al Their Gaussian nature, which accounts for their expl feit .
solvability and for a specific behavior of the two-point functions p{p)

around p = 0; and

* partial financial support by CNPq.



b) The Sum Rules, which in the - Free Bose Gas corresponds to
the density constraint and in the spherical model to the ‘''sphericity"

constraint.

In v 3 3 dimensions and at low enough temperatures, a) and b)
combine, in both models, to produce a ''condensate' of zero momentum or a

spontaneous symmetry breakdown.

Great progress has been achieved in the theory of phase transi-
tions and spontaneous symmetry breakdown after the pioneering work' of
Frohlich, Simon and Spencer [1, FSS] who realized that features a) and b),
in the form of 1nequa7ztzee could be found in a large class of models. In
partlcular they showed that the N—vector mode (¥=1 s the Isnng model,

~—2 is the plane rotator and = 3 is the classical Helsenberg model)ln vz 3
dtmen5|ons have a phase tranSItlon and prov:ded lower bounds for their

critical temperatures after proving:

_a') Goussian Domination: the two point function p(p) of = these
models are, for p # 0, dominated by the two point function of the spheri-

cal model (Infrared bound)

b') Sum Rules, which just express the fact that

- = =l|,
62:olg,+...+om.cm 1, ¥

As in the Free Bose Gas and in- the Spherical Modelat low enough
temperatures, a') and b') combine again to produce a ''condensate'' of zero

momentum or a sSpontaneous magnetization.

The lower bounds in. the critical temperature are excellent when.
compared to values which are considered to be exact: for N=1 (I5|ng) the
errors is 14%, for #=3 (Heisenberg) 9% and as_N_%hw (spherical model ! )

At is exact.

Extensions 6fnfﬁe§ehideas, techniqueé and results have been ob-
tained by Dyson,Lieb and SimonZ In particular they prove phase transitions
and estimate critical temperatures for the x~y model and for the quantum
Helsenberg antiferromagnet in v 3 3 dimensions (but not for the Helisenberg

fbrromagnet as erroneously annouced in the original version). By another



point of view, quantum systems have been also analysed by Driessler, Lan-
dau, Perez and Perez-Wrezinski3***3 where, for a class of systems, the

problem is reduced to a classical one after "euclideanization'.

The crucial Infrared Bound is, both for quantuh and classical
systems, a consequence of a positivity condition known as Reflection Posi=-
tivity. This property allows the introduction of a scalar product in the
space of observables and Gaussian Domination follows from the assoclated
Schwarz inequality. The general theory of Reflection Positivity and Gaus-
sian Domination Is developed in the series_.of:papers6 by FnShIich,lsrae],

Lieb and Simon.

We are not going.to prove a') here we will rather restrict our-
selves to understanding its content and exemplify its applications. The-
refore this paper may be viewed as an ihtrddUctiQn ahd'could'sérve as a
guide;énd an appetizer to the reading of the original.papers qubted above.
The material presented originatea from a series of lécturESLon these to-
pics held at different places. It is a pleasure to thank Ricardo Schor for
suggesting its publication. We thank also W.Wreszinsk! for -a: careful re-

vision of the manuscript and for stimulating discussions.

2. THE FREE BOSE GAS

Let us consider a gas at a fixed density p and temper atures B8
of non ihterécting ﬁarticies 6beyihg the Bose. Einstein stétistics, en-
closed in a volume A€ RY. If we take A to be a cubic box A = [—%—, + %—]v
with periodic boundary'cdnditions+, the Hamiltonian HA'FS giveﬁ by

H, = ) é}\* En(k) - u]a*(k)a(k)

- [ @ L @) () - @) (2.1)
A .

* This choice of the boundary conditions is just a matter of convenien-

ce.:



where: -

o : _ 2w -
=Ry k) ke = T mg, ng €7 T (2.2)

b) - v{x) and ¥*(x) satisfy the canonical commutation rules

ey, VY] = 8(x-y)

(2. 3a)
&Mdﬂ, w(y)] -0 = [ﬁ*(x), w*(y)] o e

The Fourier transforms of y(x) and $¥(%)

alk) = 2 Jd\’m_q,_(g;) e'_ik-”' - IR
| ‘/"T_ A o o (2..3b)

satisfy the canonical commutation relations:

la(x), a*(x*)] St

(2. 3¢0)
fak), alk")]

0 = [a*(x), a*(k)]
| c) wlk) = —i-is the energy of a free particle of momentum ;and

| d} the ''chemical potential' u is introduced as wusual in the
grand-canonicéi ensemble, in order to adjust the density p of the sys~
tem, that is, u is a function “A(p) defined implicitly by the equation:

<N>A

- -1
PETE TR

) <a* (k) q(k)}A _ (2.4)
6 g :f R .

where the symbol <;4>A means the expectation value of the observable 4 In

the Gibbs state at given inverse temperature B:

3 —BHA;
_Trde
It ——————-_BHA (2.5 )
Tr e

<A >



A standard computation yields the well-known result:

. ~ ,I * : : S L .I: L : S !
k,u) = Kya(k)s>, = ‘ (2.6)
DA( ,u) ' <q ( )d( ) A T eB[m(k) "]J] -

and therefore the "sum rule' (2.4) reads:

.

1
o, (w) = ¥ e k) = %
A ke a* A A e ax exp Blw(k)-u]-1
' 2.7
The'fuhctions pA(k,u)'have the following properties:
a) o (k) >0, (&, ') >0 (2.8)
if 0>u>q!
b) pA(k,.u)_ ——— ] o - R T (2.9)
o= a
f | wtoo 1
pA(k’") — 3 » K #0
c) e B -1 (20
N ] } R e o L Lot K
pA(Oiu) "K > 3]
e“s'u -1 w40

d) pA(u) is convex.

Therefore at fixed B > 0 and p.> 0 and for all A finite there

is unique solution

of the density condition (sum rule) (2.7).%

* From a), b) and ¢} listed above, the function pA(u) = (%,u) has

Z
ke a* Pa
a graph looking like the plot of figure 1.



Defining .

0, (1) = 0,(k, w,(0)) o (2.12)
we obtain from (2.11) and (2.5)
Hm%&)¥0 if k£ O C(2.13)
A>r =
and
0(0) = 1im o.(0) = lim - ! (2.13b)
foo A o D exp[FBuA(p)]-I

For a comprehensiQe discusssion of the thermothamfc 1imff of the Free
Bose Gas see references[9] and [11].

On the other hand, from (2.7)

1 o :
ppl0) =0 -5 % ————— (2.14)
A A rep X Blu(k) = uA(p)] -1
 k#£0 o
'whicH in the thermodinamfcszhftlﬂ + o reads
1 v, O |
p(0} =p - J d'k (2.15)
(2m)" exp Blw(k) - u(p)] -1
where p(0) = 1im DA(U) and plp) = 1im uA(p).
Aseo f->eo
“"Now, for w g 0 from (2.8)
1 J v ] ] ' ]
d'k — ¢ p__(B) = [‘ &k ——
(2m” B [w(%) -u] -1 max - (2m)¥ ) 'eBm(k) -1
(2,16)
and, : :



if andonly if v 313,(f),_

From (2.15), (2 16) and (2.17) we then conclude: p(0) >0 if
P> pmax(B)’ i.e there is a macroscoplc occupatuon ‘of the zero-energy sta-

te which is the phenomenon of Bose-Einstein condensation.
The occurrence of condensation is connected with the sponta-
neous breakdown of the gauge symmetry, that is, the invariance of Hy un-

der the transformation

a(k) ——————ﬁ;é a(k)

| o (2.18)
a*(k) — & “% og*(k)
To show that link we conslder the Hamiltonian' -
Tzt b0n] a*@al + /8 @40 +a@]
* * _ML
= 1 Ju®-ula*(®)alk) + [w -u]{[a (0) + =]
k€n o [w( ) u]
k #_0
X [a(ﬂ) + —T-)—u]} - A2A - (2]9)

Introducing new variables

“alk), bR = a*(R) i k£ O

L b(k) =
and
T p(0) = al0) + WA ;'3*(0j'= a*(ﬂ):+_.kff]
| w(0)-u w{0) -u

(*) In fact, the 51ngular1ty of th3|r1tegrand in (2 16) at k=0 Is lnte-
' grable if and only If - s 3, since eBw(k) 0 (m(k)) 0(k2) as k > 0

and v
J 2k <w 16 v33.
[kls1 &



which also satisfy the canonical commutation rules (2.3) we obtain:

L

BEAEY AL E  ATC N LI R

and we are back to the ortglnal problem The two point functlon is there-

fore’ glven by

<a*(k) a(k)>A - 1 ’ k #0 Tome
exp Bluw(k) -u] -1
: ' (2.20)
_ ] A2A
<a*(0) al0)>, ST, Rl
and the sum rule (2.4) reads . ..
A 1 1 1 | o
— = —_— += —- ’ e =p (2.2})
u? A e Bu . 1 A % C P Bﬂn(k)“u] -1 .

k#0

Because of the extra term<l§ (as compared to (2.7)), the. solu-

tion u,(x,p) of (2.21) for AA0 remains strictly negative even in the li=

mit . A o o

Az + a’r ! = : (2.22)
p2 {2V I Ale®@-u] °

On the other hand, the one point functions are given by:

]

v 1 A
WOy =g )y WD = O
el (2.23)
1 Y = L cal0)s) =
< (0)>, = ¢ ), <\b(m)>A dxw = T *“(0)"1\ O

where we used in the flrst equallty sngn, the invarlance under . transla-

tions. In the thermodynam:c limit



p(0)> = <«p*(0)> = 2 L s (202h)
| u(x,o)

From”(i:ZZjHWé'get then

ep*(0)><p(0)> = p - dp - S AR LS TS B T
Co{2m)¥ _J o E éﬂlw(k)-u(l,p)] F ]:.‘u(x,p); ,

and so even when X + 0 (after having taken the 1Im.A.+ ® }):

l<p (0)>]2 = J<(0)>]2 =p = o__(8)> 0

ifp> pmax(B). That is the symmetry is not restored by taking X »0 after
taking A > . S '



3. THE SPHERICAL MODEL -

In 1952, Berlin and Kac’ introduced 2 model which incorporated
some features of the Ising model and had the advantage of being explicl-
tly solvable in all dimensions. The model was: conned “Spherlcal“ because

of its kynematics which can be descrlbed as follows.

tn a finite volume A in a v-dimensional cubic lattlce,l e.rczY
we consider c!assucai Uspin'' variables ¢(x) € R at each site 2z € A . For
simplicity we will take A to be the hypercube A= { L,. 0,..., + L }v

The variables ¢{x) are however constrained by the condition

Ly g@-1 G

Therefore a configuration ¢ of this system is a function ¢: A =+ R and
can be viewed as a point in the surface of a A dimensional sphere of ra-
dius VA as opposed to the Ising model, where #{x) = %1 and whose confi-

gurations are the vertices of hypercube of side 2 in A dimensions.

The energy HA(¢) with periodic boundary conditions of a confi-

guration is given by

7,(¢) = (¢ [- -3- - ule) = é ¢ (x) [(-a-u) ¢] () (3.2)
A _

xr
where:

a) the "lattice laplacean'' A is given by
A v
(-80) ()= 24() - § [z + e;) = ¢lz - ei)] (3.3)
=1

the e, i=1,...,v being the unit vectors in the i-th direction. In (3.3)

we used periodic boundary conditions in A.
b) the scalar product (f , g) is defined by

(Ff,q9 = ) Tla glx) (3.4)
xz €A ,



and .

c} the '‘chemical potencial' y = UA(S)*TS introduced -in order. to
handle the spherical constraint (3.1) in the same way we treated the den-
sity condition of the free Bose gas (grand-canonical ensemble!) i.e.uA(B)
solves the equation i

%<(¢,¢)>A=-}g 1 <eRa)> =1 e (3.5)

x €A
whe_rg‘<.>A refers to the expectation value in the Gibbs' state defined by

HA at inverse temperature B

[( 1 aen wo o-2#@
<F>A = z €A — | (3.6)

Flrdp () o~ BE()

The Fourier transFormation.f ‘of a function F ='A +C is defi-

ned by
) =L T ST gy O (3.7)
Ae€pr :
for p € A* = {p ='i%%T , 2z €A}, that is F = A* + C.

The Hamiltonian (3.2) is ”diagonalized'.l by Fourier transforming

of the configurations:

) = 1 o]0k (3.8)
k € A*

where

a).w( k)=

LI‘MC

(1-cos k;) . | - _ | (3.9)

7=1

b) #*(%k) denotes the complex conjugate of $(k), and from the
reality of ¢(x) it follows that e

o* (k) = &(-k) - | (3.10)



The model is solvable, since the computation of its correlation
functions -involvesonly: GaUSsian-integrals.Thetwopolnt,function
<¢*(k)¢(k) y for instance is given by:

1

<) dk)>, = ——— S (3.10)
: B [w(k) -u]
The "sum rule" (3.5) can be rewritten as
% Y <R > = (3a2)

k € A¥

where we ysed the fact that ké A% f(k)@(k) é A ?QQ)g(x). Therefore
T === (3.13)

As in section 2, for all finite A there is a unique solution
u,(8)<0 of (3.13). (Verify that the function f; (u) in the left hand side
satisfies: a) £, (u) > £,(u") if0 >u>u';b) fA(li)E“t:_;:"* 0 and:c)
f1(3)§_373 @, d) £,(.) {s convex.

In the thermodynamic limit, we have

o(0) =1im g <GHOFO>, =

=1 - 1im ]
Ao kEA* 28wl ) - uA(B)I
RED
o -] _ [ % L
(2m) " g, 28[u() - u(8)]
where B, [ T, +w] and p(g) = 1im uA(B) ..NAQ, fﬁr' H(B) g 0
] I dv(k) < I J ) d\,k = I:(\)); : (3.]5)
2V I B 2u(k) S

2@ - w(®]  (2mY



and so

Notice that T(v) < o Iff v 3 3§'Thfé fmp}ies that for 8 > 7(v), v 3 3 we

have

p(0) > O | (3.17)

i.e. there is '"condensation' in the zero energy mode.

The occurence of “condensation” in the spherical model 1Is, as
‘nn the free Bose gas connected ‘with the exlstence of spontaneous magne-
“tizat:on "To see’ that, let us lntroduce an “uniform external F1e1d h,

considering the new Hamiltonian

P =g(8)-n T el =
x € A

=H,(¢) - /K% 3(0) =

o : : 2
- 1 -lirw e - [w('o)-u]EMO)j__-j—--————_ i } (319
k #0 B 2 [w(0) -u]
k € A*
R .
4w (0) -u]

1f we introduce;newieariablesfw(m) given by :

1

Br) = ¢(k) , & #£0

Y SRR R
2[@ ﬁ]

we are back foithe originqi;p;oslehf*'

1

k3 ‘
i, (o) + =850 . (320

4Lp(0) ]

The two point function of the ¢ variables are then given.by:‘



1

1
<HR(K)S(K) >y = & ———— KA D
MBS Tty -]
(3.21)
R2A
<4*(0)'9(0) >, = - L
YU o] (0 -u]?
The sum rute reads then
n? 1 ! T

—_ 1 ———— (3.22)
h[b(ﬂ)fujz f.?_”k_eA*aﬂgEQ(k)ip] _ _

Due to. the extra term on the left hand 5|de of (3 22) ‘the uni-

.que, solution uA(B ) <0 remains struct]y negatlve even |n the.. 1tm|t &*»
ifk#0:

e owGH FaeN <0 G
In this limit (3.22) reads
2 : AY)
ey -u(e,ml? B Y 2wl - mesm]

since from (3.21) we have

[ ‘ * . L .hz e oy
Hm L <*@)8(0)> = T
e ¥ 4w (0) -]

On the other hand, the one point function is given by

<¢(0)>A = %- I <e(0)> = L <$(0)> =+ h : ﬁgﬁ.zs)

€A i A w0y <y (e,

‘where again, we used translation invariance.
- In the thermodynamic limit

m(h) = lim <¢(0)> = h (3.26)

J A 2[w(0) - u(g,n)]




and so from {3.2h)

; J i i X - (3.27)
(2m) 2 -B,z;[w(k) - u(g,n] '

v

n(m?2 = 1 -4

Therefore, since-u(B,hl_+:0_as h + 0 (so as to keep (3.24) . va-
1id) if B >.B, = I{v) we have

m(0)2 =1 - I(v) .  . L : (3.28i

that is the spontaneous magnetization squared Is equal to the '"density of
condensate" p{8) given by (3.14). It is important to keep in mind that
for 8 > B8, = I{v), p{0) # 0 if we first set # = 0 and then take the limit
A >wo Ifwe first fix % #0, take the limit A = = and then the 1imit 2>
we get p{0) =0 by the remark following (3.24). For m(k) it is just the
opposite: if we first take A finite and set 7 = 0 then m(0}) = 0.

L4, THE N-VECTOR MODEL

This model for ¥ % 2 is a genérélization of thé Ising model

(W=1). At each lattice site x € 72V we have a continuous "'spin'' variable
¢ (x) =_(¢ ($),.7f,_N(x))_€ RV subject to the constraint .
RICEEI IR NOLEES BN R )

7 =1

That is a configuration of the system in a finite volume A = {-L,..., N

is'a function ¢ = A ~» SN-] where SN-I is the sphere of radius 1 in RN.
The Hamiltonian is the usual Ising Hamiltonian:
B = (6 -5 9 (1.2)
A s 2 *

where the lattice Iaplacean,:and the scalar product (, ) are as defined
in §3. '

A “sum rule" is trivially obtained from (4.1):

=

T =1 T emz=1 T i =1 w3
ke A¥* .

xBA



Notice that (4.3), in contradistinction to (3.5), holds without

taking expectation value.

As is well known this model is not explicitly solvable inv 3 2
dimensions the only exception being the case ¥=1, v=2 (two dimensional
Ising model). Numerical calculations however, suggested the existence of
phase transitions with spontaneous breakdown of the 0(N) symmetry for v33
and ¥ 3 2. The existence of phase transitions in the lsing model, ¥ =1,
v 2 3 follows from Griffiths' inequalities. For ¥ 2 2, v £ 2 no sponta-
neous breakdown of a continuous symmetry for short-range finteractions is
possible, by a theorem of Dobrushin and Shlosmanl?. (Another result ~of

Mermin and Wagner® forbids spontaneous magnetization). -

The central results of FSS [1] is the estimate

) s zp (0 Lo e
where:
1) ¥ is a function
At A > RY _
x> hlx)e RN
and

2) ZA(h) is the partition function of a modified N-vectof modei
obtained after the replacement in the Hamiltonian (4.1) of ¢(z) by
olx) + A(x), x G A; f.e.

z,(%) = J{ 1 8(6%(x) -1)delx) } expl-8d, (4+R)}  (4.5)
. x€hA _ _

Since

H(o+ 1) =8,00) + (7, - 80) + (A -5 (4.6)

we can rewrite (4.4) in the form

S A :
WA e, (o n)

< 1 ' (5.7)

-(h:@¢)

< g

> g e - (4.8)



1f in (4.8) we replace % by A and consider the Taylor -expansion
in A of both members we have.

1= A «(R0)> + A2 <(B-08) (h,-bd)> € 1 402 (h, =5 k) (5.9)
since, by translation invariance

<hags = ) (-8R (=) <o(z)> S ) (<) =0 .

x € A | x € A
Therefore:
C1F we take
1 tp.m Ap.oy .
kj(x)—TE_(e +e )GJ-,,: , d= 1,000,V (&.11)
we get
G.)* $p)> e ——  pg 0 (ha2)
¢ ¢ 28E(p) s
and summing over Z = 1,..,,V
o & N | .
<¢*(p) - $(p) > ¢ (4.13)
L o '2BE(p) "

This is the so:called:Infrared Bound which expresses the“pheho-
:menon of gaussian domination. In:order to.:understand - this nomenclature
“compare (4.13):with the exact two-point function (3.10) of the (gaussian)
spherical model. {The factor N in (4.13) accounts for the number of com-
- ponents of ¢ ). '

If Qe now combihe, a§ we did in § 2 and.?n“§ 2 ,:thgi:sym_rule
(4.3) and the Infrared bound (4.13) we have: . -

A* 2BE(p)
0

B _."_(u_._u.) |

A p
p

T <0 a0 31 -

@y~

and in the thermodynamic limit

o(0) = 1im +<4*(0)6(0)> 3 1 - ¥ 1(v) (4.15)
Ases A B



with T{v) given by {3.15).

From (4.15) we see that if v 3 3 and

8> 8, - NIY) < (h.16)

then
p(0) >0

i.e. then is condensation.

: The relation between condensation and spontaneous magnetization
Is In this case more subtle than in the previous examples. However in2
then is a proof (a generalization of an argument by Grjff;hs) of the re-

fation

m(0)2 3 p(0) ~ (4.17)

The method requires v ¥ 3, slnce v £ 2 we have I(v) = e, Howe-
ver If suitable long range Interactions are allowed then, it is possible
to prove with the same technuque to prove. phase transittons also for
v = ‘ 2. e
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