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1. INTRODUCTION

Among the'différent-isoVecterumOdeS'df'excitation, only
the giant electric dipole (GED} resonance with quantum*numbers*“'i-
m?l,*c=0;'k=l,. r=l-and'Uf=0 is well established*, Additional =
information:onlnuclearfcollectiVe excitation may be obtained from ::
the study of the charge exchange modes: (t=l, uT=il) using reaction
processes such as {(p,n) (3He,t),;(w+,w°), etc., and the .correspond-
ing:charge conjugate processes.

In a nucleus with N=Z, the ground state isospin is T0=0

-and -the charge exchange modes arezrelated-to.the?(r=l;uf=0) - exci-
tation by.isobaric-invariance; 'As é cbnsequence;
1)

‘1) .:the vibrational frequencies are given by thé simple relation

E(T=l;UT=il) = E(T=1;UT=O) - UTAECOUl o (L)

where AECoul is the Coulomb energy displacement, 'and

ii) the transition strengths, for a given multipole operater M(),t=1,

11T) 7

|<If=A,Tfﬁl|fMﬂl,f=l)|HIiﬂ)ﬂﬁf0>|z

_ S(R;T-—-__lnil_) : B:(_}\IT=_1)_ =

D3
o (1.2)"

‘are independent of uf.--Here, the matrix elément. is.reduced both
in spin and isospin.

. In nuclei with T >>l the situation is entirely different

* The notation i¢ the =ama &s inref. 1). The guantum numbers «,
g,7,Tand p stand for the orbital angular momentum, the spin, the
total angular momentum (¥=&+§), the isospin and the third compo-
nent of the isospin respectively. Throught this paper; the un-’
nécessary guantum numbers-will be always amitted. - ' :



—
even in the zeroth order approximation. The neutron. excess, Or

equivalently, the Pauli principle, causes a reduction in the

T « P

number of proton hole-neutron particle excitations and a simulta-
neous increase of-excitations of the type:neutron hole-proton ‘ §
particle. Furthermore, a particle-hole operator acting on:the
ground state of a nucleus with.To#O. may give rise to states: with .
isospin T=T0+l, T=TO, To+l and3T=TO—l, de Tc+1.f0r uT=l,-u%m0 and
u%:—l,-respectively. Both the energies and the transition:strengths
depend now on the orientation of the corresponding states in isos-
pace.

The first forbidden charge exchange collective excitations

(x=1;0=0, 1;1=0,1,2;7t=Lyn =+1) in the lead region, were discussed -

theoreticaly in ref. 2)., Experimental evidences on these states as

well as on allowed Gamow-Teller (GT) mode (x=0;o=l;i=ljt=l;u_=-1) ‘
208

in Bi were also reported quite recently3)

The nucleus which has more attention received, with respect
to the charge-exchange collective states, ekperimentally is 20zr, .
A GT resonance has been observed in the 29Zr(p,n)?Nb reaction at
incident proton ehefgiés of 35 and 45 MeV by Doering et ai?’. The
resonance is centered around .an energy of 14.4 MeV in °0Nb and
has é full width Qf §,2:MeV*;' 'éﬁbéeQﬁeﬂﬁ'lgozr(3He,tf9°Nb experi-

ments at 130 MeV in Julich°’®) 5)

and at 80 MeV in Grenoble have
confirmed these results although in the latter experiment the reso-
nance peak appears to be split- into two cOmpqnents,'onéfofjwh;ch‘at
14.1 MeV is of GT type and the other at 16.6 MeV:of unknown multi-:
polarity.  Particularly interesting is the (*He,t) experimeﬁt of

7)

Galonsky and the Julich group6' since they observed for the first

time another broad bump at 25.4 MeV excitation energy. The new bump

* -All the energies are measured with respect to the ground state
of 20%2r, which is 6.9 MeV.more bound  than the ground state
cf °9%ONDb.



is as strongly populated as the one at 14.4 MeV. Since no.angular
distribution could be measured for this peak questlons were raised

about its nature. Galonsky et al6 7)

discussed two p0351b111t1es,
:namely that it could be elther a giant vector dlpole (GVD) ex01ta—
tion (K-l,c~0,h—l,r—1,u =~l) or the lsobarlc analog of the glant
magnetic dipole (GMD} resonance in 90er), whose quantum numbers
are =0 ¢=1,r=1l,1=1, o =0. They ruled out,.however, the first
possibility because of energy considerations. Finally, quite
recently a new (p,n) - experiment was performed at the Indiana

9)

University Cycloton with the following results:

ii two GT states with isospin T¥4.and T=5 have been observed at
15.6 and 20.3 MeV, respectlvely, with the cross sectlon ratlo
1: 8.3, and

ii) a GVD state was tentatively identified at an'excitation energy

of 24.8+0.6 MeV.
A few theoretical results on the charge exchange collec~
tive states in °2r have been presented recently by Osterfeld and
the author of the present paperlO),

The aim of this work is twofold:

1) to point out a simple way of estimating the energies and the

distribution of the. transition strengths for the charge-exchange

.. collective states, and
2) to perform numerical estimates for the GT and GVD modes in 2ONb

and confront them with existing experimental results.

As the GED and GVD (GMD and GT) modes differ only in the

projection of isospin Vo in what follows. both will be labeled only

by the quantum number o=0 (o=1) ..




2. THECRY

2. l) Tran51tlon Strengths‘
| The total tran51tlon strength for a glven multlpolarlty A

and the orlentatlon in 1sospace W, is defined_as

S{x,p_) =% 4(x,T,u_) , ' - (2.1)
ST (DR _ . . . o .

where
(A, Tyu, )—(’I' T, 1u |T T +u 213(1 T) _ _ o (2.2)

are the partial transition strengths to different members. of thé:
isospin triplet, and

| <I =3,T =T ]||M()\11)I|!I"'OT—T>|2
B(.*"T’?..f_f e (2.3)

(21+ D (Zr+ D

are the transition probabilities reduced both in angular momentum

and isospin.

In the weak coupllng model discussed by Fallieros et allu

the B(),T) values are independent of T and the relatlve eXC1tation'
strengths for different final states are given simply by the geome-
trical factor (Clebsch-Gordon coefficients) displayed in relation
(2.2). Such an approximation is, however, only valid when the

neutron orbitals from the neutron excess region do not participate

in the excitation process; the corresponding phonon is considered

to be a definite entity and rotates freely in isospin spacelz).

A simple way to estimate the unperturbed strengths S(O)

13)

(A’“T) is based on the use of the recipe of Macfarlane and

14)

French (monopole sum rule). After dividing convenientely the

shell model orbitals into the filled (f), the valence (v) and empty



S g
(e) orbitals, and in such a way that no transition of the type v»v

or fre is possible,one has

. - ._ 1+1ﬁ:| . ‘QNPIM-) N
5 () =t x| I o= 1552
T 6(2x+1) v [ (23,+1) e ©
h g R
N> e |
+ E< Il MO =1 2 (2.4
(gjv+l)

Here, the single particle matrix.elements are reduced with respeét
to both spin and iéobafiéfépiﬁ;s-Ng(ﬁ%jﬁ“isltﬁéwégéectation value,
in the target state, of the number of active particles for the
excitation (r=l,u%)“whilef< Ng(u{)ﬁ denotes the corresponding mean
number of holes.

Knowihgzthe'tbtal strehgﬁhs S(uT), the B(T) - values and
the partial strengths A(T,uT) are obtained from expressions (2.2)

and (2.3)*. Explicitely,

= + = =
A({T T0 l,uT 1) B(T To+l)

S _ (2.5a)
= S(“1=l) - :

4 (T=T +1,n =0) = B(TP=T +1)
© T © (2.5b)

S S(pT;ij;

é(T;?Ofur 0) _B{T TQ)

{

1
T +1
o}

S(UT=0) - S(utzl);

*  The guantum number ) is omitted.



| A(T=To¥l;u£=—i) = - 'B(T=TO+1)
(2TO+1)(TO+1). 0
{2.5d)
B 1
= . S(UT=1)"
(2?0+1)(¢o+l) : '
_ = 1
A(T=T ,u_==1) = —=— B(T=T )
o T T +1 o
= _..JZ.... S(uT=0) - 1 S(U,r:l) »
To T (T +1)
(o] O
A(T=T L0 =-1) = 2 B(T=T -1)
&)
_ — _ 1l . PO
- © | o (2.58)
et 5y =1) .
Smgar 1) 0 T
(0] (o]

One should notice that due to the Pauli principle
S{u ==1) 2 8(y =0) 2 S(y_=1) (2.6)
T T ° T

and consequentely,

=p -1} 2 = z =
B(T=P -1} = B(T=T_) =~ B(T=T_+1) (2.7)

This means that the strengthé(%ﬂ%+lﬂu=m is reduced with respect
the strength 4(T=To,uT=0) not only by Fhe geometrical suppression
factor l/TO, but also by the dynamiéél gupﬁréssion factor B(T=TO+1)/
B(T=To). A similar comment is pertinentfor the three T=—l partial
strengths, - :

The total unperturbed strengths are related as



-7=-

25 =0y = s = #5002
T ‘ T
while for the o¢=0 mode the relation holdsl)

= - . = B - 2 i
S(uT._l) S__(_uT l}._.To/w <r 2n:eXC; (2.9)

where <r2; ox is the mean square radius in the neutron excess

.

region.

2.1 HNuclear Model N

The energies of -the collectiveJStates will be
estimated at the expense of using a very schematic force of the
form

i

Ho= -5y uzT M+(—r=1,uT.)'M(?-r--'al',u.f)f" R (2.10)

where x is the coupling constant and

g(i)f:U (i)b for.c=l modes
(2.11)

r, ?I(i)r (i) for o=0 modes . .

Furthermore, a,degehérate_:modelifOr the single~
particle energies is assumed. Then the unperturbed energies of

a state with isospin T and the third componentyoﬁmigggpin.MTaTofp?

readl)

Vlm

(T,UT) = g + ;K [T(T+l) —'Td(To+l)—2] -'”fAECdui

e(0) (2.12)

where & represents the average;single-particle,exqitation energy

and Vl is the symmetry potential (Vl = 100 MeV) .

In the Tamm-Dancoff approximation (TDA). the transi-



G-

tion strengths are'not'affeCted by:the“reéiduai interaction

(A(T,uT)EA(O)(T,ﬁT)) while the perturbed excitation energies are
.given by Ve ceidaiers mes ebhom o 00 e

ety = e ruy s o (2.13)
or explicitly

e{T=T +1l,u =1) = ¢ + U - E_ -FXB(O) (T=T+l) :

o "¢ o “Coul e} S
= - (0}
Q(T=TO+1'UT_0)- = g + UO+XB (T=To+l)
U e i
e(T=T_ sy =0) = ¢ - 59- +xB(0) (T=T )
TR N o ST TR P (2.14)
- =-1) = (0) e
~_¢£T—To+lqug”LL = Eoh UgtAB L g XB (T=To+1).. .
o}
_ 1Y = - o O (0)
YT=T _,¥u_= 1) & - T +AE 1 TXB (T—-To)
Tofl _ (0)

Q‘TsTo'lf“ ==1):= e = T QQ,T.AECCHI+XB (=T _-1)

where
VlTo
,qo =_ . s (2.15)
Characterlzlng the dlfference between the strengths
( )(u'—l) and S( ) —1) by the parameter v
S(O) (u=i'l) =i ( ) (I—l =0)) (1+\J) ST (2.16)

the energy eplittings 7 i

D(T=T +1) = o(T=T +1,u =0) = o(T=T ,u =0)
= oT=T_+1,u =-1)- O_(T—TO,HT=-1) (2.17a)
and
" 'D'(T'-_-TO—]_)- g g(T:TC;';"pT='-1) - Q.(T=To-l.,]_tr=-l) ' (2.17b)

take a very simple form " i



where

T +1
D(T=T +1) = -2 _ g (2.18a)
o .
T
(o]
D(T=T_-1)= U | | (2.18b)
0 =u, - xv 5% ~0) L ay

In the random phase approximation (RPA) the unpertur-

bed excitation energies for given orientation in the isospace L

are written as

or

' E(O)(uT)'

corresponding e

where

in (2.17a) and

il

E(O)(u )

' (0) ..
. é(TOTO;uTITO.To+uT)e (Tyu,) (2.20)

(2.20")

it

e+ u (U -8B )

'After introducing the residual interaction the

nergies and transition strengths readl)

m

EG=0) = K = [c (¢ + 228 u=on]%2 (2212

S(u =0) = e S(O)(uT=O)K;1 (2.21b)

E(uTmil) = K.+ UT(U_AECOU.].) (2.210)

S(UT=§:1) = S(D) [(€+X\JZS(O) (uT=0))K—1-—uT\)] C(2.214)
. . 1

K = [ Ké.+ (va(O)(uT=O))2] é.. (2.22)

In the RPA the isospin energy splittings, defined

{2.17b) are given by

T +1

D(T=TO+1) = (U+K—Ko) - (2.23a)

T
o]
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and -
' 2T +3

D(T=T =1) = U - {(K~K ) (2.23b)
o] O

2T -1
o]

As K>KO it means that while the energy differeﬁcét
D(T=T§+1) is increased by the'groﬁna~s£até éorreiétions associated
with the coupling between the uT=+l and uT=—1 particle-hole excita-
‘tions, thé“sﬁliting'D(TﬁTé;i).isﬁaeéreaSe&Tbyﬂfhé:same effect.
It should be ﬁﬁﬁd.”thé£EWhéﬁ.‘$¢Yﬁﬁfk the éuéﬁfity. .
(0)

s =1 - st =-1) =0 =1 - sl -

(2.24)

is constant. This is an important difference with respect to the
=0 case, where the osciilator sum_E(uT=O) S(uT=0) = ES(UT=0) is
constant_and;thus.S(uT=0) decreases as y Jgrows..

-~ In order to estimate in the RPA the energies Q(T,UT)
of the different isospin components, for a given mode of excitatidn
ir=l,uT), it will be assumed that a relation similar to (2.16a)

also holds for the perturbed energies, namely that
= + .
E(uT) '}:E‘ (ToToluT|TO,TO ].IT) Q(T,UT) {(2.25)

Then, combining this last expression with the relations

e (T=T +1,, =+1} = ¢(T=T +1,y =0) z AE
° ° coul (2.26)
= : I - = g == = -+ -
e(T=T _,u ==1) = e(T=T_,u =0) + AE, .
which arise from the isobaric invariance, one has
e(T=T_+1,u_=1) = E(u_=1) o
' (2.27)

{

e(T=T0+l,uT=0) E(uT=l) + AE

Coul




e(T=1,,u.=0) = z& [ (T +LIE(u =0)=E(u,=1)-0E

e(T=T +1,p =) =E (u_=1) +24E

- -1y L [ =0 - _
Q(TfTof”r‘_l’f To:[gTo+l)E(yrfp?_E(prl)f:”

: ;il_
Coulj

°.

Coul

(2.27)
+(Tg~D AE ] L

1
e(T=T -1,y _=-1}) = —emee [ (2T _+1) [T E(pu_=-1)-
° K T (27-1) © [ o 7
e 0
= E(u =0) ] +B(u =1)-(2T_-1)4E,_ 1.

Analogously' the partial transition strengths A(T,p%)'are:obtaihed

from the total transition strengths S(u;) by making use of the

relations (2.5).

3. NUMERICAL ESTIMATES

In evaluating the strengths S(uT) for the ¢ =0 modes

we assume that in the ground state of 2%y all the levels up to and

including the lg9/2 subshell are occupied by neutrons, and that for

protons the lc_:;g/2 level is completely empty. Futhermore, if the

radial wave-functions are approximated by those of an harmonic

from (2.4) we obtain

oscillator,

s, =1y = 8o
T

(u_=0) = 135 Sy (3.1)

(uT=—l) = 190

) 1V : :
in units of b?/4w, where b=1—‘e.__/6 fm=2.12 fm is the length parameter.

The relations (2.4) then lead to the result (in the same units) -

(T=6,uT=l)=80

5(0)(T=6}uT=0)=40/3

(T=5, 4 =0)=365/3 - (3.2)
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59 (r=6,u_=-1)=40/33
59 (7=5,1 _=-1)=803/33 (3.2)

4(0)(T=4,uT=—1)#1809/11'

For the diséussion of the o=1 modes we will assume that the wave
function of the target state.is 6f'£hé form

- .;._ P - o
12%2r;0 > a|(2pl/2) 0> + b (lg9/2) 0>

with a2+b?=1, Furthermore, we consider only ‘the 199/2+lg7/2 single-

-particle transition, as it is the most relevant one with respect

to the available experimental 1nformat10n3 7).__The expressions
. (2.4) and (2.5) give now
(0) b2z o
=1) = 2= M
5 (nT ) 15
o (0) 5+b2 >
= = M
5 (u_ 0) 30
(0) 1.2
=— = = M
S (uT l} 3
and
_ 2
5(0) (T=6’u =l) = _b._...._ M2
P 1
2
50 (1=6,, =0) = B m2
T 90
R e 2. Lo . o . . ; .
4(0)(T=5,u'=0)'= 15422 2 (3.5)
T 90 L _ o
2
6(0)(T=6,u =-1) = b M2
N 990 .
)_'3(0) (T=5,, =-1) = A9=2b< Mz. :
’ 450 |

(0) 9(55-p2) 2

- — M
1650

(T=4,u =-1)

* Ags we do not consider the tran51t10n 1lg +1g the sum rule for
9/2 " 9/2

for the o=1 mode
S(u 1) S(u —*1) = N-Z

1s clearly not fulfllled
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where
M=t 1 g 1] (e=0,0=1,x=1,-=1)||11lg,,,>
JE 9/2 ! ! 7/2
= _ /Te0 .
<199/2l|c|11g7/2>—-//u3~ (3.6)

The.single-particle strengths given by (3.5) were also derived in
ref,]@) but in a more complicated way. There one first constructs
the complete shell-model basis with good isospin for the final
states, which means to include two-particles-two-holes configuta-
tions for the u;=0 excitations and the configurations of the type
two-particles—-two-holes and three-particles-three-holes for the
p£=—l mode. After having done this one evaluates the single par-
ticle transition probabilities for the operator (k=0,0=1,x=1,7=1)
between the final states’ |I -l ,T"4 5,6> and the initial states
given by (3.3). ' : '

For the ¢ =0 particle-hole energies. the usual estimatel’

=

®

<
I

9.15 Mev (3.7

will be employed. The corresponding_energy for the o=1 mode was

obtained from experimental data, namely

£ #_3(197/2) - e(lgg/z)
(3.8)

Sn(eozr) i Sn{Blzr) + E(lg7/2) - E(st/z)

(11.98 - 7.20 + 2.84 - 0.10)MeV = 7.62 MeV

H

where the symbol S stands for the neutron separatlon energyls)”.

and 5(13) are contr01d 51ngle-part1cle energles as measured in the

90zr(d,p) reaction study17). For the coupling constant we w1ll

use the estimates given in ref.l):

y = —i. = 3.64 VA 7 £m %= 0.201 Mev fm™’
) S I :
(<r2>= %(I.ZA'é }2£n?)., . (3.9)



-14-
for the o=0 mode, and

x = 40/A MeV = 0.44 MeV | (3.10)

for the ¢=0 mode.
Finally, the COuldmb-energy diplaéement was taken
- be_. o - S S

CBEL o,y T AB + E (IR

it

(6.9 + 5.1) MeV =12.0 MeV (3.1

where AB is the difference in binding energykbspWesp.theug;qqnd

16)

states of 20%r and °0Nb and E,(IA) is the excitation energy

of the isobaric analog state in %%Zr, as measured in ref. 5).

It should be noted that the above result for AEGoul agrees
with the one obtained from the Eermi-gas expression for the
7) |

Coulomb energy, namely ’,

5 z2e2 | WA
E = = 1 - 5¢ —) /3
Coul 5 'R & 1677
5T 221
. 0,70_%r,]1 - 0.762" 7 |mev (3.12)
A3 L -!
-
(R, = 1.25 A% £m; A * 40)

Numer1cal results for ex01tatlon energles and tran51tlon
strengths are llsted in Table l The locatlons of the séi .
resonances are also shown in flg .i. R | -
3.1 Ef}__ffg_,deé |
As the ground state.corrslations are very small.
in this case, the TDA and RPA give very similar results.
Therefors,.ss wiil concsrn oufselves only with ths first one.
Both the energies and the transition_strengths are almost in-
dependent of the amplitude of the |(Zgg/2)20> - configuration

in the ground state wave-function of %%2Zr, except, of course
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for the uT=1 component which does not exist when b=0.

On the basis of the present theoretical estimate,
the o=1 resonance with isospin T=5 in 90zr should be located at
an excitation energy of 8 MeV. However only 15% of theipqssible
c=l.strength has been found in this energy region, by means of
high resolution, inelastic electron Scattering experimentslo).

. +
The transition strength ratio between the 1"=1"

states with isospin T=5 and T=4 in %0Nb is

4 (T=5,u_=-1) 4 (T=4,u =-1) =_(}f %).: 9(1- %5—,2‘). (3_71_3)
and consequentely alwadys of the order of 1:9. "~ This popula-
tion ratio contradictsa11“=l+, T=5 assignment for resonance at
25.4 MeV, since the 20zr (3He,t) experiments) gives equal
population for the known Iw=4+, T=5 state at 15.4 MeV and the bump
seen at 25.4 MeV. In addition, in the-experiment-the two bumps
are separated by = 10 MeV, while our estimate for D (T=4) is oniy
4.3 MeV. The presént theoretical estimates for the'o=i.statess
agree, both in the éross section ratic and the excitation energies,

with the recent experiment of Goodman et al?);

When the amplitude b#0 there is also a Iw%l+, T=6
state in 9°Nb. Its transition strength;'hOWever,'is'always'very'

weak in comparison with that of the I“=l+, T=4 state, namely,

3_

5(7=6,u =-1) 24 (T=4,p_=-1) = 3=

2, _b3 oy |
b ..9(1 55) (3.14)

otherwise, one could think of determining the amplitudé b by measur-
ing this ratio. A more favorable case for measuring this amplitude

is the transition strength ratio between I“=1+, T¥5 and I"=1+, T=6

states in °° 2r given by the relation




-1l16-—

5(T=6,u_=0) :4 (T=5,u _=0) = b?: (15+2b2) (3.15)

3.2) o=0 modes

The ground state correlations are quiteiimportaf
for 0=0 modes of excitations. As a conseguence, in the RPA the-
locations of all 1 states are. appreciably lower and the corres-—
ponding transition strengths significantly weaker than in the. -
TDA.

The theoretical estimate, within th; RPA, of the
excitation energy Q(T¥5,uT#O)=15;7 MeV, agrees well with the mea-
sured value which is centred at around 16.7 MeVzO).~
There are a few experimental evidences that the

energy difference D(T=6) is of the form (2.16a)-with21)

i
U = (55 + 15) KQ - MeV

which for %9Zr gives D(T=6)=(3.7 + 1.0) MeV. Our estimate is
significantly smaller.  It should_be menticoned, howewver, that the
guantity D(T=To+l) depends in a very sensitive way on the mean:.
square radius in the excessiregion{ _Namely,:ﬁhe relation (2.19)

may be rewritten in_the_form“_

V. T - «r?

. § _ _ .
U = 9 (1 - . _D.BXC., (3.17)

A : 2 <r2>
Assuming that <_r2>n__exc = <r?> , as was done in ref. 22), one

would have agreement with (3.16), but then the sum rule (2.9)

would not be fulfilled any more. With the harmonic oscillator
1/
3

wave functions <r’> = 5.5 A

= 24.65 fm?2 while from
n.exi{c. . : : s

(3.9) <r?>= 17.35 fm”.
The theoretical estimate, within the RPA, for the
energy e(T=4,uT=—l)=26.8 MeV, is only a few MeV higher that the

third peak observed at (24,8:0.6) MeV in the °CZr(p,n)?INb reac--
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9) 5) ~

tion yor that of the second bump seen by Galonsky et al at £25.4
MeV and suggested to be a Iﬁ=1+,.T=5 state.
It should be very difficult to observe experimen-

tally the z?=;f, T=5 resonance as it lies very close to its T=4

partner and as its strength is relatively weak.

FIGURE CAPTION

Fig. 1 - Estiﬁéted excitation.éneréies of the o=0
charge-exchange resonances.in 90zr. The thigkneéé.
of the lines that begin_in_the ground.state 6f |
0gy re?resent the fransition strengths. Tﬁe éymbél
T_ staﬁds for.the isospin leering operator ﬁhiéh |

connects the isobaric analog states.



TABLE 1 - Theoretical estimates for the excitation energies, mea-
sured with respéct to the ground state of 2%%r and
‘transition stréngths of the o=1 and 6=0 charge-exchange

resonances in %9%r, evaluated according to the TDA and’

RPA approaches.

18-

o=1
TDA RPA - TDA RPA
b2=0| b%=0.5 [b?=0| b2=0.5 -
S(ﬁTzl) : 0 | HG.SQI b}n d:4§:T 28.52 .11,54
S (u_=0) 2.96| 3.26 |2.55| 2.77 | 48.14 27.27
S(y_=-1) 5.93 5.93 5793 5.79 57.76 50.78
E(ﬁ%=l) -1 1.3 - 1.3 | 8.4 6.2
E(y_=0) 8.8 | 9.0 [8.7 8.9 | 18.8  16.2
E(p_=-1) 16.6| 16.6 |16.6| 16.5 | 20.1  26.9
5(T=6,u_=1) 0 0.59 | 0 0.43 | 28.52 11.54
5(T=6,u_=0) 0 0.10 | © 0.07 | 4.75  1.92
4(T=5,u =0) |2.96| 3.16 (2.55| 2.70 | 43.39  25.35
5(T=6,u_=-1) | 0 0.01 | o 0.01 | 0.43  ©0.17
s(r=5,4 =-1) [0.59| 0.63 [0.51| 0.54 | 8.68  5.07
s(T=4,u =-1)5.33| 5.28 |5.42| 5.24 | 58.65 45.51
e (T=6,4_=1) - 1.3 - 1.3 | 8.4 6.2
e (T=6,u_=0) - 13.3 | - 13.3 | 20.4  18.2
2 (T=5,u_=0) |8.0 8.1 |8.0 7.9 | 18.5  15.7
e (T=6,4 =-1)| - 25.3 | - 25.3 | 32.4  30.2
e(r=5,y ==1) [20.0| 20.1 |20.0| 19.9 | 30.5  27.7
e(T=4,y =-1) |15.7| 15.7 {15.7| 15.7 | 28.9  26.8
. |
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