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ABSTRACT

' We prove a form of refilection positivity in planes contain-

ing sites for a class of quantum latticé'systems. TwO applications

'to typlcal models are glven' a proof of phase transitlon of ferro-

magnetlc type by the method of infrared bounas for the Fisher-sta—:
bilized Ising antiferromagnet in an external magnetic field with
parallel and transverse components, and a proof of a phase transi-
tion of antiferromagnetic type for the same model with no stabili-
zation by a suitable version of the Peierls argument, We also

discuss the spherical model in an appendix.
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1. INTRODUCTION AND SUMMARY

In a pionesr paper ([1]), Frohlich, Simon and Spencer proved
for the first time the existence of phase transitions for classical
lattice systems with continuous symmetry. Their method was fﬁrther
generalized to include a class of quantum lattice systems by Dyson,
Lieb and Simon ([2]) and later abstracted and generalized to include |
proofs of phase transitions for both classical and guantum latticé 
systems by Fréhlich, Israel, Lieb and Simon ([4])._.In the latter,
the property of reflection positivity (RP) was most clearly isolated
as a central element of both. the proofs employing the method of: ”
infrared bounds ([1],[%],[53), as well as those which involve gene-
ralized versions of the Peiérls argumenf_([Bj,[A],[S]). o

In many applicationsggis reguired to be in planes befwegn g
lattice sites ([l],[z]). In references ([3]) and especially ([5]);.

applications were considered which require RP in planes containing

sites. As remarked in (5], this seems tb pose the unfortunate
limitation that guantum systems are not allowed. In this paper

we consider, however, a class of quantum lattice_systems requiring
RP in planes containing sites, which involve typically a trans- |
verse maghetic field. Although somewhat restricted,.this class

illustrates a method which might be of wider range of application,

‘and some of the results obtained seem to be of interest, in

particular the characterization of intervals of variation of thé
several parameters involved where the phase transition.is of _  _
ferromagnetic (sect. 3) or antiferromagnetic (sect. 4) type; |
"The paper is organized as follows. In sect. 2 we_pro#e
our main result, which is a form of RP in planes containing {or

not) lattice sites for a class of models (theorem 2.1). The

method of proof may be very roughly described as rendering the

system "classical" by use of the Trotter product formula, together



with a choice of convenient intefmediate stétes(alternatively,
path space methods similar to [6] could have been used).
| In sectlons 3 and 4 we illustrate ‘the results through a

.typical model; namely,'the'FiSher—stabilized Ising antiferromagnet
([5]) in an‘external'magnetic field with both parallel and trans-
verse components.- In sect. 3 we employ the method of infrared =
.bounds, whiéh gives ué'cohditions on the varioﬁs'paraﬁéters'such
that the pﬁasé transitions be of fetfomégheﬁié type (pfopdsition
3-1 and corollaries). In this section we also employ the "classi-
cal version" of the model for the purpose of proving'some inequa-
lities along the lines of ref. {6] ﬁhich'are necessary for the
proof. The motlvatlon for 1nequa11t1es of this type stems from
the similar structure of the spherlcal model with external parallel
field, which is discussed for cdmpletehess in an appendix. 1In
secf. 4 we sketch the proof of a phase transition of antiferromag-—
netic type for the model without stabilization, using a version

of the Peierls argument developped in ([31) and ([51).

5. REFLECTION POSITIVITY OF PLANES CONTAINING SITES: REAL QUANTUM

SYSTEMS

' The notation and terminology of this section follows with
minor modifications the one addptéd:in'f4].' Let Ol be a real
algebra with unit which in our applications will be typically

A
non-abelian, and let 0L be an abelian sub-algebra of OL. Given
‘a linear functional on Ul: A —{a), with <]l>o =1 and HE OL
we define: | ' ' ' '

O = (e e e

N o o - e
we suppose Ol contains two sub=-algebras Ul+and OL and a real’

linear morphism O on Ok}J.OLL.(the smallest sub-algebra of (Jl



containing both Ol, and OL ) such that:
REFTCRIE S
'l'c)- < 9 A?} 5 <A>o v A&O’l -
o A Ao e
a) | B(OL”-: Cﬂ;{_ where
' A : JRRR
A, = 0L N oL

tif

Definition 2-1: A real linear functional (. > on Ul in called
Ol - reflection positive iff

Al o s

e A IR S A T TY | U R LS TIP
for all A& UL+ . < > is called (l-generalized reflection

positive iff

AR - AR %0 —_
" for all Ai"’ Sy A'n,(: OL+ . [

Remark 2-=1:

1) It is important to notice that we do not assume 01+;=,
and OL_to commute with each other and this is the reason why we
consider this‘restr}cted form of reflectionxpositivity.

2) Since '01 is abelian,'<f;5>' is Ul—reflection position
iff <‘. > is SL ~generalized reflection positive. []

1t follows Erom the above definitions Q}])thif if
-H= B+ GBA+ 62:,1C¢'9(C0)' with B, ¢, € 0Oi, them

< .\>H is Ul-regiection positive. The aim of the following

discussion is to extend this result, allowing B tq'be_certain



. A
operators in 01+ rather t’har_l_ in. OL

e I
We will consider the case where Ol is.the algebra of

observables of a quantum system composed-of_threeiqurts“_that
is, its Hilbert space of states ¥ is given by. &$= 3&_®}EO®J€+
where JB+ and ¥_ are isomorphic, and J’{)':b ¥, are all finite
dimensional. (',TL i.s the algebra of all _real operators on 3{

O'I__‘, is the algebra gene'rlatecll by a'il ..'og.ierato'rs J.n Ul of the forin
1 AR (under the decompos:Ltlon R ®é’t @«}Q ). S:ane O'L is

the linear span of operators of the form A®B ®C e is will

defined by

I

If <A>o = T\"?& A /T'"ae i ’ tl}en p_ropirti_es a), b) .and ¢) listed

'abo.ve are trivially verlflced. Let UL be a commutative sub-
A

algebra of 01 UL @ _and_ _[ﬁ,: 01 V) m . Then property
d} is also fulfllled | o T | |

In order to state the main result of this section we 1n- '.
tr_oduce further the sub.-a'lgebr'é'. ﬁ+ as the set of elements in O'I_+
of the form 1 ®1a, B3=0 d?) and o)

0

in. Ulof the form I®A®L. Then bﬁo = ﬁo M

as the set of operators
A

A bounded operator A ©0 2 GHilbert space Y is called
positivity preserving with respect to a basis 1[ LP“} 71n }e CAEE.
(%, A L.)» =20 foratt - nam z4d.

Theorem 2.1: Let B & (64_..-',' Bo.e 860 and € 0 for all t > 0O

be a positivity preserving operator in Ro with respect to a basis
: : A

.o IE

LPW }n21 wich diagonalizes (K")O

A H = B+ OR +E3 +ZC 9C+D+9D (2.5)

v=i
A .
. with Cl;---.’.D- € UL ~then < > cis Dl*- reflection positive. ..




5.
Proof:. Let {‘_33 L'P @LP @LPH_ S A= (n..a__“_o,:’.%) }:_be a-basis

‘which diagonalizes _UL . .We first notice that if V= B+ OB+ B,

then
+ Vv

( ﬂ-)zb L e \:.\?ﬁ,)= bt (VL_,WL_) btﬁno.mo) b (H’-Fim-i—) (2.6).

B ' th,
it B, P @) e b5 (o) - (8 < @0 )
Moreover if _Ho: ZC el + D‘i'. eb then .

(8, M) B W) s

where the function FVL can be written in the form

R) = TR Genl) BGew)

-+ We may further suppose the matrix elements (Q A\.\.) )to be real .
for all A € 0l , since Ol is an algebra of real operators.

Using Trotter product formula we have then.
<A B (e >= Tr Al e =

— Q\Qm Tr— A BLA) (e s eﬂ\//kL l (2.9

From (2.6), (2.7) and (2.8) we__g.et_. '_

Te AeA) [e ™ &V )L

) uz* (R A BA) [ S lk W )=

- 2 aly ) aleg, nd) PR b el el
ant ot . | - e

oF e, ) B ) () b (nf ).
b*aao.mbwh ny) =
Z. Z . \3: (.VLO-)VLO).. \gt(n,o,n) g (VL V\_)]

— - A kK
v no)“%rwno (2.10)

o



where the first summation signwzz'refers'to the sums we get by
, : L
using K times' formula (2.8) and the %. are functions of the type

| .
R IO jv (i w! )b (w2} RS LU

R —

i e

W "
f'.- | "" '¥°& (ﬂb:ﬁk&_) k>:Lniin;;

\

In the above expressions t= '““'” and

0, n) = (@, ©9D0, “A Py ®£P_ )H,@é%

By taking the limit K-- oo we get

NCEDED NS

Remark 2-2:

1) The assumptions of the theo.r.e'm' imply the possib'i’\lity of
having a path space formulatioh for the abelian algebra Ol (see
reference [il]') which is implicit in the proof through the use of"
Trotter's formula. Therefore the systems considered are under
some aspects "classical" ones.

2) The pos51blllty of having reflection p051t1v1ty for subw

@#lgebras of quantum systems is mentloned in [3] and [5] . [1 |

Remark 2;3: The typical application of the above result for

gquantum spin systems is the following. Let the Hamiltonian of

quantum spin system be of the form: -

Heo= Ho o + Vy

A—-— '-O)A
where _ HO A : Z | j(R) 8\3 (R) - . . (2.11b)
and Vi = - a Z S (x) | | (2.11c)

X €A

: L ) . o . : P
In the above SL(K); v=423 x € ACZ are spin operator:

(2.11a)



- ] |
=y - = S, ) = S(S+h)

L=

(s, s W T= 1 g SO By

and, for R C AN |
ESD (jQ) - -T‘- ES¢ L)<)_

e R
A 3

1f Ol is the algebra generated by S, (R), RCA ana - >H is
A s _ : e
Ol -reflection positive with reflections on a plane ‘Tt; contai-

ning (or not) sites of the lattice then { . ;L is also 6i ~reflec—
tion positive with respect to the same reflection operation. (No-
tice that for planes not containing sites gur result would fol}ow _
from the general theory of reflection positivity as developed in
[4] ‘without having to restrict to the abelian sub—algebraﬁi,).
As examples of the above structure we mention antiferromagnets._
of the type discussed in this paper, Firogov-Sinai model (EBK)_.
“with a transverse external field, Ising model in triangular |
lattices with a transverse external field.

Our results also applylto a quantum version of the anhar-

monie crystal extending the results of [3] for the classical ver-

sion. This will be the sybject of a subsequent paper. ‘]
3. INFRARED BOUNDS

As a typical example requiring the theory of section 2, -
we shall treat in this section and the néxt the Fisher-stabilized
Ising antiferromagnet ({5]) in a magnetic field with both a parallel
and a transverse component. In contrast to ([S]), the "next-nearest
neighbour" interaction is taken for simplicity to be along lattice

lines. The Hamiltonian is given by (2-11), with
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+3 20 45 R Lx,yj R0 ‘nearest neighbours (]x-y]=l)
J(R) =< — & <O _i¥ R=\x,y1, %,y next-nearest neighboﬁrs along

A a latticezline (}x—y\=2)
—h < O L& R:‘\X}
' (3.1)
zero otherwise
The sign of a is irrelévant, fnd we shali'take a0 in {(2-1lc¢).
Due to the nonzero parallel field h, mrgeneralized reflection posi-
tivity (henceforth RP for short) holds only in ?iéﬁéé;cbﬁtaining sites.
The proof in theorem 2.1 throﬁgh the Trbtﬁer prodﬁct”formuié is used
here in.a two—féld way, bOthﬁtﬁrough the results of Sec£ion 2 and
for the pﬁrpbsélbf‘proving certain inequalities. The létter are used
to obtain bounds on éxpectation—valueé of certain operators, which
seem difficult to get by other means. (See lemma 3~l);:+in'the present
model, and in the ?irbgov—Sinai with transverse field mentiohed in
remark 2-3, these expectation Valuéé'éié'not identically Zero; due to.
the absence of the symmetry 83(x)¥>453(xj. The symmetry-breaking
interactions in these models“are just those -responsible for the lack
of RP in planes between sités, so that these féétﬁres are intimately
related. o
By“theorem 2.1 aﬁd thé.methods of ([2}) énd ([4]) we obtaiﬁ
the infrared bound | o | | | o
A * A *
(S, S,(p). < ‘ L pEN
b = _ P#C (3.2
2p € B,y (p) '
where A* is the lattice dual to A‘(see, e.g., 20D,
_ : )
'_'Ez(p')?—z : (1= a.g;"'iﬂ'-")'
T Lomys o : S

= = = T 500




and the Duhamel two—point'function is defined by

‘ - x{a»H ~(4- x)@*‘ |
(A.,B)Dz — 57 gdx Tr (e _. Ae o B)
' Tr e
(with H=H 5T Wé havé, on the other hand, the sum rule
> 5 S.pp)yy =1
/\ PQ/\* < (}P) 3 )\:)> | (3.‘._:3)_

The connection between (3.2) and (3.3) is realized by the Bruch-.

Falk 1nequa11ty ([7]) (redlscovered in [2])

___(A*fA)D 5 g A EH A]D
L (A AR 4 L (KA + AR

where £ is the function from Y(D,Da) to [C)Wi:)f@efined;implicitly'
by _ ‘ - L

tanh x.

f(x tanh x) = 7

The function £ is monotone decreasing ([?]). An easy consequence
of the latter property (theorem 2.2 of [?] ) is the fact that if

b 2g £ (c/4g) with'b,g,c 20 and b<b_, c <c_, then

g 5 gy where

o % Ce % .
?o - _2__ ._._('_C_o_\og) | coth (450) LB
Now, ) '/H\* | ' ) - " B o
LSI) TR, Syp])= 482 s (0
XEN -
and so
C=p S TH SN aap=c, o,
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Therefore, from (3.2)? (3,4), (3.5) and the BruchfFalk inequality

we have

X0 %(PO {

2€ E,(p

—-YC"’*‘“ (b 2atE,()"]
bR p#O

(3.6)

If we set L T o >
| LA . |
sh= < <, (o) 5 (o)> ;\\ {5,007
we obtain from (3.3) and (3.6) the inequality -

A ) )
sty L2 Teoth ¢
© T A peo [ € B, L\»J U:’L“" t?“’)) E

PEN ) S - (3.7)

Define, now, the quantities

..%JUA = —/\\—' <(é\5k0) —_ < %3(0)>)2> :

s, @F
AN

(3.8)
: . | _ .lL_ o —k h’ A
q (8, hyo) = _ an ((5 Vaz + W )
{2+ W !
(3.9)

T =

LAY A E:“ ;jﬁ_ CLP _ |
QZ'“') g F 2 E?_ ( (‘2‘“')1) S P " v "‘"_"'"‘"'.’""“"
2 P) ) 23 |

(3.10)

wheré E$p.35 {;’“: Uf] Co
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Q(n&- S  f. = o o . (3.11)

ifg €< J

We shall prove this lemma at ‘the end of this section. . Assuming . ..
it for: the moment, we are ready to prove the main result of this ..

section: . -

Proposition 3.1: Model defined by (2.11) and (3.1) has a phase.

transition characterized by
Sy > o - o - | (3.12)

in the region of parameters (@ , &, h,&) defined by'the inequalities"'

t > Va RNV

2¢€ E,(p)

v.

< 4 - 9 (6, h}_a.) ;

313y
D< €< 3 R et T

Proof: It follows from (3.7), (3.8) and lemma 3.1 (which is true

provided (3.14) holds) that
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A _ | _ A2 ] oth] 8 (2atE,p
st oz | %((s,h,a,) A ﬁ,io,\' 26[2(\") c %a ?)J

Taking the limit A-+t in the above inequality, we see that (3.12)
will be satisfied if (3.13) is assumed. B

Remark 3.l: The integral in the l.h.s. of (3.13) is finite if »2=3.

as the inequality ({2))

gcﬁﬂ,x < 7%~ + A - (3.15) .

shows. []

Remark 3.2: The same estimate (3.13), with g=0, ¢ - J, Ez(p)wEi(p)=
W

szi(l—cospj) may be applied to the Ising mcdel with transverse field

and nearest-neighbour interactions of strength J considered in-[@],f

leading to an improvement of the estimates found there. [|

: _ , I
Corollary 3.1: TInequality (3.12) is true if ﬁf?‘§é » where '@;::Esc_

is the unique solution of

fe ot — % ‘ ; .‘E w2 ;.C)
QZ"U S [2&5@3 ot U‘B(ZM ak ] (3.16)

provided (3.14) holds and, in addition:

g(g, h,a) £

(3.17)

and

T(a g) = \ joL‘)F & o ﬁ{ A (3.18)
CZW@V.B o2& Esz)

Above X is an arbitrary number such that O<x< A,

»

Proof: Using inequality (3.15) together with the dominated conver-
gence theqrem_(fpr'DZﬁ) we see that the l.h.s. of (3.16) increases
monotonicélly fr§m ,; e to (l*d.-I(a,E.)lés-Qvaries from O.tolaé}
Hence, there will be a unigque solhtion of (3.16) if and only ifu

and only if (3.18) holds. The final assertion follows then
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from (3.13) and (3.17). @

Corollary 3.2: Inequality (3.12) holds if, in addition to. (3.14)

and (3.17), the following inequality holds:

\Fé' T+ — TO) < i-w -
e | S Gay

Proof: By (3:13), (3.17) and~(3;15);2(3;12) holds _if'

AN o o
v g\(i P X_ —X PRV +_ﬂ <A
@Tﬂ 2t E (\>) B (24t E,(p)* --

(3.20)
By the Schwartz inequality _ :
A T o Yy | o
(2/“’)”& (L\) \ - <\ e NIk) |
2e E,0() - £ (3.21)

B

e

and (3.19) follows from (3.20) and (3.21). E

Remark 3.3: Condition (3.17) is satisfied in particular if

h

Q=

independently of (5. []

Remark 3.4: Proposition 3.1 is of interest because it prov1des

conditions .on the (% a,h E) such that the phase tranSLtlon be of

ferramagnetic type. Indeed (3. 12) 1nv01ves fluctuatlons of the

magnetization and not of the staggered magnetlzatlon, as we should

expect for an antiferromagnetic system. It is therefore in some
sense complementaryfto_the result obtained in the next section by
the Peierls argument (which also holds for & =0).[:} | |

N We now prove lemma (3.1). The proof is based on inequali-

ties introduced in ref. Eﬁt!and the FKG inequality,([?]).
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Hamiltonian- (3.1) may be written RO _ o
H = 413 p S, (x) Syv) = W Z Sy (x) —
A i x-yl=1 . _‘Ké/\
~ £ Z_ S.<) 830 — a Z S, (X)
| < Ax-yl=2 ' XEA -

Let A be the sublattice containing LO} and B its complement with

ol
respect to .2 . By a rotation of T around the l-axis of the.

spins in BNA , H, is transformed to
i

He= — % 3 2 S(x)s(y)__z h(x)S(x)_

-yl=1 : KEA
£ 2 S (%) Ss (3’) GLZ SJ (x)
< ix-yl=2 XEN

where h(.) is an alternating {stagéered) magnetic field:

kb i x € A
() = % o « € |
b b oxew
" Let now |

A 00

1

H/\ j:__'-'.‘\‘ _ )\ S Z -S_\a_, (O) ;SQ, (X) +
' \x\__ 1

e T 5,00) S

[l

and < > denote the expectatlon value in the G:Lbbs state de—
fined by H kﬂ

_ an A
In partlcular, < - > OlS the G:Lbbs state deflned by HI\ and

< >>\ ) is the etate defJ.ned by H (1) ' where the spln at
x=0 is "decoﬁpled“' from ltS nelghbours By theorem 2.1,

s.(0)> = Xim S0 1)>
R (3.21)

where < S kO', i)>>\ is the 'expectation vélue of the nclassical® -

spin variable S(0,1) corresponding to 83(0) in the Ising model in
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_(§>+‘l) dimensions which-résults from the proof of theorem.Z;l for
fhis case (k being the:index_codnfing-the humber_of iteracfions in
the Trotter product forﬁﬁla, as in (2.9))5 'For'expiiCit'formulas,
see, e.g., ref. [bdi . The only explicit result we shéll need
concerns the.signof the coupling constant in;the;~()3+ lj;ﬁh di-
mension ([6]): |

N A Qo% {:aw‘\a (@a/k)

k (3.22)

.whére k is the same index above.
Lemma 3.2: a) SHVL < A Lx)> g%wx \&Lx) |
AEERE T .”_. e \f>‘€ \_C> 1-1 P
b) 13[ €< j -
< S%L’()> -G < < ~)3(X>>>\ A | (3.23a)

§oxenan,

) ! _ ‘
{5300 e =2 {Ss LX)>}\:

| (3.23Db)
fox € BNOA
Further
{35 (x > = 0O tauh (B Vaianl?) <
| T Vet e |

= sgn \(L(’( %(5 h, a) A3.24)
‘Proof: Part a) follows from (3.21) and well-known results for
the classical Ising model. | |

As for part b) we have, ¥ )\ Kk
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d <S@I_i_-.).->>.\ @:Y 2o {<Sk@ IE ”> )

A | oixi=d

—<s(o A)>“" < (0,1) S, 1)> 1
Z [<S(O 1) Q(x i)> = <g(o 1)>

(k)
cde(o ) s(x, 7
0,1 st DY
- G.23)
For any A € [O,{],thé?ﬁ-body iqteractions in the abéﬁe igiﬁg‘.'

model (N_Z22) are ferfdmagnetic for sufficiently large k, because

of (3.22). The FKG ineguality ([9])'therefore applies and we obtain

<s(01) sX 4)>(;0 = < gco,a)>(:)_<,-s(><,_;«)>(K’

A (3.26)

and by part a)

{s(0,)> » o R (3.27)

Putting (3.26) and (3.27) into (3.25) yields

TP < b (- Koy T

E LS Y RE {1 E<S(o o>y Y }
Lson > |

where EEy is the number of néarest (and next nearest) feighbours

of a lattice point in Y dimensions. By part a) and translation
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invariance (with simultaneous change of sgnh(x))

<Q(;<n> g < D> =€ w0

XEANA XEBNA (3.29)

By (3.28) and (3.29):

d<sco ) SRR
Ao ~ < - Zy (3—é)u—“% )<§
< O o | |

if. & < . This holds for any (sufficiently large) k,

hence. also in the limit k —»c. The proof of (3.23b) is identical. f

Proof. of lemma 3.1

e Z <5(><)>

A Lxe Aann

< gleh,al)
by (3.23) and (3.24). E

Remark 3.5: As remarked in the introduction, iﬁeéualities'df'the'””

above type were suggested to dé.by inspection of the similar
structure of the spherical model, which we discuss for complete-

nesg 1in an appendix. []
4, PETIERLS ARGUMENT
This section is very descriptive, beéause we only verify the

assumptions necessary to apply the general results of ({3]) and (|5])

We consider as typical example the same model (IIXI-1) but with
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& =(O . BApart from a constant, the Hamiltonian may be written:

Ha= Th 2 S00S:50) - h > =09 -
| =t REN

-a 2 S, () | (4.1)
KEN
At each site X éuZ?V:fet” F)tQK) be the orthoéonal projection ope-
ratbrs, which'pfojec£'0n£o the subspaCes of states {i:jh. at X
with S\g (X )_\i*)x:t\t)x. By combining the methods of ref.erences
([3]) and ([5]), the following result may be proved:
.PrOposi‘tion 4.1: Le'.t.' “a,\ < 3 Then there exist (< ESCC)-)<°° and
© o<a(T)cwosuch that, if B> B (Tand A < A,(T) the

following inequality holds:
PP PF Moy > < (42

Remark : AsfihE(YSX); (4.2) implies the é#iéfence of more than
one equilibrium state. A

Proof: The ﬁroof follows from the method of ref. [3]_(as applied
to the quantum antiferromagnet) together with the general Ré
result of section .2, and the following reﬁérks. “Aé'in'([31) we
use asqontgyg_gfggmgpﬁ but:nowrq;aw_qogtou;Sgbetween nearest
neighbourzspipsw;f ;hey_hgve”tﬁg same sign. .The_releVapt'"unif

versal projection" V) is of the form

+ ] F

| T (N=8, M=4)

or ( + — - )
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(compare ([3]), pg 241). Let &, (aJ be the ground state energy

of H , and define (in close analogy to [3}, pg. 256)

B =z a2 5 K)

- L XEA ‘
H/\ N B/\ .
/-\A:_f Hi - eo (.a,:‘{)

Again here'.ing < a,/\ by the variational pr1n01ple. In ana-

logy to ([3], (3.24), =3 256), define

S = e’ -e(a= 4) +VLA/\

where G?.Dié = éo (CL:O) . Then ([3}], pg.257)

P/\) = ik spec (P/\ H/\ Pl\) — ep(cL:U
is the minimal ﬁv\-energylof any.state in FR HL and satisfies:

£2(P) -5 2 (2T -wA) A

(4.3)

To prove (4.3), it suffices to recall ([5]).that, if jhl*(.] the
grouna state of P4i\ is doubly degenerate,..obtained hy'periodizing
the block (i--) , and also by translating the resulting state

by one unit. With the above result the proof is straight- forward
along the lines of \:3_1 E | R |

Remark 4.1: In contrast w1th Prop051t10n 3. l the result of the

prev1ous proposition is typical. of an antlferromagnetlc phase

transition (see remark 3.2). []
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APPENDIX

The Spherical Model With Staggered External Field.

A Motivating Exemples

Some results of section 3 (Lemma 3.1 for instance) were
motivgted_by thg_following analogy of the spherical model in the
presence of a staggered externai field. ”. o |

In a finite volume A C 2 we consider a classical
"spin" varlable d)b( 6}"? at each 'site X é’A\ For siﬁplicity we
‘take A to be the hypercube A=\-Lal, 0,---,L}. The energy H (d’)

of a configuration 4) A —|R is given by:
@)= (4,8 T E) () e

where

a) the "lattice laplacean" A~ is given by

"_(fi\¢_><>f>:_2_d>t>< 3 [hlere,)- (xe)] 2

L=

The €; L:4,-;; V belng the unit vectors in the 1-th dlrectlon
of QZ , with translations defined by per10d1c1ty in /\
b) the scalar product (.,.) 1s deflned by

(t.9) =7 o g’,(x)».

for any .F, q A — C
&) h-_ A — \R‘ is the external field:

Ls @ven

x i OCLA.

L

+h of X e A, e,

b (%) = {-—n o ."’

\-" Xe/\OJuC

‘Nltﬁ >(

«
1

(A.4)
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d) the "chemical potential" L :}AAL@'M) < O - is
introduced in order to handle the_spherical'constraint, i.e.

FLA(ﬁ'LL) solves the equati?n ‘f . L o
- <i(q), d)):%; — < - | s ' .:' '.; (A.5)

where <: jz\ refers to the expectation value in the Gibbs "
state defined by l%A at inverse temperatu?e' & .

For ¥ A€ we define its Fourier transform

A

()= L 5 & f(x)

\.}P1 xEA S . . (2.6)

The hamiltonian- }”\.féads then:

: . A e A 7
M@= 2 [wid-p ] ¢ () _ij(k)"""" (2.7)

k € X
PR M,
where  a) UOU() Z (4 - Co‘c’k ) - (A.8)
‘ L= :
#*
and . CP (K) denotes the complex . conjugate of d)(k);-

and so Cb(k) é)(‘

Since only gaussian integrations are involved the
correlation functions can be obtained explicitly from the two-
point functions

W b broy = L kxw |
A2 Twl-pd (a.9)

boTbmy - L L WA
| 206 w@ep Alwm-




' The sum rule A.E can then be written as:

< ®(0) dp(O)>A = 4= (4"{@(&54#}’—“#
p— __
kéi;ﬁ; 2—[ﬂﬂik)~}m ]

I
AN
T
& AN

Therefore in the thermodynamic limit

Rom L N 5 .rﬁ: AN
b Choho,

A—o»

ifr __._U_Ll__. - _,__\h\___ <
2 wlm) Avj_ |

and | g j[ EE' | :K | Ckv
{5> (») S -'owm

U

Since

<<IS(O)> =0
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(A.10)

(a.11)

(A.12)

- (A.13)

(A.12) implies long-range order. The existence of spontaneous

(unifdrm) magnetization in: this: case can be obtained:egplicitly Dol

as for instance in [EZiE or from the general theorems of E3].
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