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A SIMPLE WAY TO SOLVING THE HYDROGEN ATOM PROBLEM

I. Kimel ..

Instituto de Fisica, Universidade de S3o Paulo

ABSTRACT

The eigenvalues and eigenfunctioné for the hydrogen
atom Schrddinger equation can be easily obtained after factorizing
that equation in appropriate ways. The resulting factors resenble.
the creation and annihilation operators.that Dirac introduced for.

the harmonic oscillator. .
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I. INTRODUCTION

The standard way:df:solving the hydrogen atom problem
consists in relating its Schrédinger equation to associated Legendre
and Laguerre equation. Thus, the wave functions can be written in
terms of the corresponding polynomial solutionsl,

In this paper, I present a different approach to the
hydrogen problem. This approach is, in some ways, similar to Dirac's
treatment of the harmonic oscillator problem by means of the creation
and annihilation (or rising and lowering) operatorsz. There, the
oscillator Schrddinger equation is factorized in terms of these
operators which can also be used to generate the wave functions.

For the hydrogen-like atom, the equivalent of Dirac’'s
method was lacking. This is remedied in the present péper where I

show how to treat the hydrogen atom without recourse to previous -

‘knowledge of Legendré‘or Laguerre associated (or otherwise) equations.

Here also, the Schrbdinger equation for an hydrogen-
like atom is factorized in terms of operators that generate all the
wave functions. This is done for both the angular and radial parts

which are treated, respectively, in sections ITI and III.

II. ANGULAR MOMENTUM

The first part of this section contains a totaly
conventional presentation of orbital angular momentum in gquantum
mechanics and is only included for the sake of completeness. Then,
starting with Eg. (9}, I show how to obtain very easily one of the
spherical harmonics of a multiplet. From it, all the other spherical
harmonics can be generated.

In spherical coordinates (r,8,¢) the three independent

angular momentum operators can be chosen as™ :

L =1 * iL =+h o*1¢ (1-5?6— + i cot 0 (1)
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and

with the commutation relations

CBondoHino Boad-gn .

The operator for the angular momentum sqﬁare

: _ 1 : - |
LS = 5 (L+L_ + L_L+) + LZ . {4)

commutes with any one of the components of L . Let us single out

LZ and call YBm the simultanecus eigenfunctions of LZ and L?

according to
L Y
Z

L (8:0) =‘EmYm(9r¢) | . (5)
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and

2 _ 42 A PR 1 32]
L Yo, (8:9) f [sin 5 56 (51N 0Tg) * ST E 36Z) Yem

£ BY, (0,0) (6)

It follows that

‘ _ imé
Y m(er¢) = &

B

PBm(e) ’ | (7)

where m 1is an integer and P_, (68) has to be a solution of

Bm
fsin eﬂi%sin Ji) + Bsin? @ - m2] P, (B) =0 . (8)
L 30 36 2m

Looking for a simple way of solving this equation, let us try to




factor it out as

N R T o
[s:m.eae+mcos@][81n9§-§+c-mCOSBJPBm =
= C [sin® 55 + m cos 8] PBm(G) . (9)

It is easy to see that Eq; (8) can be written in the form (9) for a

particular m=M such that

B o= MM+1) | (10)
a llowing for any nonvanishing constant C . In this special case,
PBM(B) 'being a solution of
(sin®-= - M cos6) P, =0 (11)
39 BM !
can be readily obtained as
P_(8) = N_sin' 0 (12)
BM M ’

where NM is a normalization factor.
From the commutators in Egs. (3) it immediately
follows that L, and L_ are rising and lowering operators and it

is easy to verify that

L, PBM(B) =0 p _ (13)

‘which leads us to the conclusion that M=% , maximum eigenvalue of
Lz/ﬁ . Then, from Eg. (10), B=L(%+1l) which makes it convenient
to change labels as follows:

YBm(ﬁ) + Y@m(e) . (14)
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The highest eigenfunction Y 6f.the £ multiplet is, according to

Egs. (7) and (12),

Y,,(6,4) =N et gin® g

L
' 1/2 ‘
L + ‘ i . v -

(-1) (2% zi)<22)2 el£¢ 51n£ 8 ' - {15)
where the value of N2 was Calculated by normalizing YM on the
unit sphere and adopting the (—l)g sign convention3.

The rest is simple, all the other Y. are obtained

by repeated operations with L_ , i.e.,

N
e fm=1)
Yz(m-l)(e) B T L

(8,4) ¥, () | (16)

4

£

followed by normalizations.

III. HYDROGEN-LIKE ATOMS

Here, we go on to solve the problem of hydrogen-like
atoms in a very simple way that does not require series expanéions
or having to look up Laguerre polynomials in a book.

a The Schrddinger egquation for.an hydrogen~like atom

. . : . ' . 1
-~ is, in spherical coordinates™,

h? 1 g? L2 Ze?
T2y r arz t + 2ur? r I’bnSLnrl(j:'e'd))
= Eoum wngm(r,e,¢) ’ (17)

where (-e) and (%Ze) are the charges of the electron and the

nucleus, u is the réduced mass, En%m are the energy eigenvalues
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‘which , in principle, depend on 2-,m and, pOSSibiyL'On other quan-

tum numbers designated collectively by n .

If we separaté the wave function as

anRm(rrer‘b) = Rnﬂ,(_r) Yﬂ,m_(_e'd)) r RIIQ, = r Nn.ﬂ,.ul’lﬂ,(r) , (18)

‘and solve the angular part as in section II we end up with

_ [;rz . rZ :f..aor Unz(r} = €. Unﬁ(r). ’ | | (19)
iﬁ which
a = (h?*/me?) , e? = -2y Eng%hz .

O 7 ng

The normalization conditions

'. 2 2 : _ 2 2 - R
J ;[an(r)] r® dr = N o J [Ung’,(r)] dr = 1 (21)
0 0

fix the value of the constants N in - (8).

ng
'For a particular eigenvalue f#=) such that

e? = Zz/aé(A+l)2 , | (22)

Eq. (19) can be rewritten as

a A+l A+l

d
(a-f €_Y + -'-"—“'r )(a? + Y T ) Un)\(r)
. a A+l
= Y=g gE -8y —;-) Unh(#) v {23)
where vy 1is any constant but €y In such a case, UnA(r) is a

solution of




d A+l S Lo ‘

@ * 77T I = e Yyt 2
and has to be of the form
A+l TERT

Unk(r) % r e N B -; | | (25)

Let us go back to Eg. (19) and notice that it can be

written in the form

(4. _ & @_+1} [d A g | |
'l_dr a_(2+1) o la Y a, (a+1) ~ r':| U () =

= &Eﬂ,— ggf%%ﬁjﬂ Unﬁ‘r) . (26)
The factors

Aoyl = [&% - ao(?HlT + Q'-ltl] ' | (27)
- and

By = [“;E ¥ ao(iﬂ_) - R:ﬂ . (28)

will play a very important role in the following. They are, respec-—
tively, lowering and rising operators as we will soon see.
In Eq. (26) we have.the equation for the Un% eigen-
- function. The équation for Un(£+l) {(one more unit for angular
momentum) is simply obtaiﬁed by reversing the factors on the left

hand side of Eq. (26), namely

ZZ

By Povl Ynppen) T [En(m-l) T aZ () 2] Up(es1)  ° (29)

On the other hand, Eq. (26) multiplied on the left by BQ yields




¢8_-

By Bgyy By Uyp = l}nl a2 (2+1) 5] By Une v (30)

while multiplication of Eg. (29) on the left with Ao gives

ZZ

Bor1 B P Yngean) T [En(SHl) - aé(£+1)2] Age1 Un(esny - 03U

A comparison between Egs. (26) and (31) and bwtween .

Egs. (29) and (30) shows two things: (1) ¢ = the

n(e+1) ~ ‘ng ’

eigenvalue does not change when we go from one & to another in the

same n multiplet; (2) we must have

- |4 _ 2z & - _
A, Ung(r) = J:dr a? + r] ") Un(l_l) (32)
and
BR Ung(r) = Un(2,+l) (r) . (33)

That is, Ag and Bﬁ are, as promised, lowering and rising operators.
Applying B, of Eg. (28) for =X on the eigenfunction

U of Eq. (25), we see that

ni

U (@) =0 . | (34)

"X appearing in Eqs. (22)~(26) is then, the maximum value of % in

the n multiplét4. It is convenient to relate the label n to A

by n=i+l , in terms of which, from Egs. (20) and (22), we have

5 2 L3
e = Lo E = —-p=—S— | 0.< 8 < (n-1) . (35)
noa n 2h? n?®

All the Unl functions belonging to the same multiplet

can be derived by repeated application of the operator AR on the
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function (25). Let me take as an example the M .shell with n=3

and .a maximum_g2=2; and,jaccprdiﬁg;to Egs. . (25). and-: (35),

r
The next lowest function is

Mﬁé}l(r)dz_ﬂz.u3;ﬁ QIIé%?-'?§¥+%)mr3”euzr/3ao:"

_ 5 _ 2Zr 2 ~Zr/3a, B - o '. _
- 4 (4 3a ) r e. L . ro . I " o ‘_(37)..
~and the lowest_is5
U, (r) = Ay u;s,
=2 (- L+ D (-2 gz TP %
o 3.
5 242 -
-2 (6 - 4Zr + 4 Z2r ) Zr/saq ) (38)
) 984
The corresponding radial wave functions Rnﬁ are these,times 'r
c .

and the appropriate NnQ .
It is easy to see that the radial guantum numbers
n£=(n—£—l) are equal to the number of nodes of the radial wave

functions.

IV. CONCLUDING REMAREKS

A new method for solving the quantum-mechanical
hydrogen atom problem was presented. As compared to the traditional

one, this method has the virtue of providing a simple way of

H, L(r) = ! eEE/88 gy
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constructing the wave functions.

The method resembles Ditac's freatment of the harmonic
oscillator in terms of annihilation (a) and creation (a+) operators.
Here also, one can construct lowerihg (Az)“éﬁ&:riSing (BR) operators
that connect different wave functighs. But, unlike the harmonic
oscillator a and a¥ operators, Ag and Eé'.only feléte'”
eigenfunctions belonging tq thg game 0 multiplet (same energy).

The highest eigénfuﬁétion in a muitiplét ié
obtained by solving a trivial first order differential equation that
follows when Schrddinger equation is factorized in a suitable way.
Then, successive operations withl AQ generate the rest of the wave

functions,
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With Egs. (22)-(25) I wanted to show an interesting way of
deriving the highest radial eigenfunction of a multiplet. It
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A, is defined for 1 <2 <(n-1), while B, for 0<% < (n-1).
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After working out some wave functions by her (or him)-self the

' reader might wish to compare results with L. Pauling and E.B.

Wilson, "Introduction to Quantum Mechanics" (McGraw-Hill, New

York, 1935), pp. 133-136.






