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ABSTRACT

We propose a description of collective states
in self-conjugate nuclei,'both odd-odd and even-even, in terms
of an interacting isoscalar p-boson model. Within this model,
two limiting cases can be identified with the anharmonic vi-
‘brator and axial rotor limits 6f the classical geometrical

description.




The interacting boson model (IBM) has been
very successful in describinq'collective states in nucleil).
In this model one ‘may describe the low-energy collective mo-
tion in the even-even nuclei as excitation of an interacting-
boson system which consists mainly s-bosons and d-bosons. It
is the purpose of this letter to communicate the possibility
'of extending this elegant model to include isospin and thus
widening its applications even to light nuclei, both odd-odd
and even-even.

In‘IBM;:the”s~boébn and d-boson c¢an be con-
sidered as typifying the correlated nucleon péirs coupled to
"~ angular momentum zerco and two as a result of the pairwise in-
teractions among the valence nucleons outside of a core. For
example, the interaction between the nucleous in the s-boson
can be thought of as pairing type. 1In view of the two existing
components of pairing correlations in nuclei, namely, T=1
pairing and T=0 pairing, we are proposing a possible interpre-
tation of both odd-odd and even-even nuclei as a mixture of
isovector bosons, with angular mdmentum I=0 and with L=2, and
isoscalar bosons with L=1. It has been long established in

2)

- the literature that isovector pairing is the dominant com-
ponent in medium and heavy nuclei in comparison with isdscalar
pairing and that the reverse is true for light nuclei. This
seems to suggest that, for the light nuclei, one can deal

- mainly with the system of the isoscalar p-bosons and then per-
form the refinements by letting the system interact with the

rest, namely, the isovector sd-bosons.

In the following, we will show that even 1in
this simple interacting p-boson model we can identify the two
limiting cases.with the anharmonic vibrator and axial rotor
limits of the classical geometrical description for the self-
conjugate nuclei, both odd-odd and even-even. The transitibn
between these two limits emerges naturally from the model. The
results for !°F and 2'Ne calculated in one of the limits seem
to reproduce roughly well the experimental trends of the data.

This demonstrates in an encouraging way that the model might




be useful. An interesting feature of the present model is
in the proposal that the entire variety of observed spectra
would emerge from a complete calculation with a set of di?f

person-type equations.

To begin with, we claim that a number of
states can be generated in self-conjugate nuclei as states of
a system of N isoscalar p-bosons occupying M distinet levels in
_isospin space. The operator which creates. such a boson in the
"vfth level will be denoted as P:v, where pu=-1,0,1. If we

uv=P:v]0> as providing us a basis

regard the boson-states, ¢
‘for the representation of the U(3)xU(M), then N-boson states
can be classified according to the irreducible product repre-
sentations of this group and its subgroups. The irreducible
-representations of U(3) are fully characterized by the Young
diagrams which contain at most 3 rows while those cf U (M)
~contain at most M rows. In order that the total wave
function should be totally symmetric, we reguire the Young
diagrams for both U(3) and U(M) to have the same shape [1].
It follows that [A] contains at most 3 rows for M>3 and has

at most' M rows for M<3.

We now consider first the strong coupling li-
mit where the two-body interactions among bosons are much
larger than the energy splittings. This is a standard group-
‘theoretical problem. The method of solution is due tofhcdﬁ).

If two p~bosons interact with each other, their in-
teraction energy can assume only three values according to
the three possible values of their angular momentum. There-
fore by a convenient choice of three constants a,b, and
¢, it is always possible to express their interaction energy

by the formula:
a+bP1112+C£1'E2 (1)

where P%z is the exchange operator acting upon the angular




‘momentum coordinate only and i; -fz is the scalar product
of the angular momenta of the two bosons. The energy of a

state of ‘a system of bosons in the strong coupling limit will
then be:. :

E = <N;[A]IM| £ (a+bPLi.+cfif.)_|N;[}\'llM> _ - (2)
R e J S e :
“‘where
D = oz o)) (u'lpz...;j'N';LM)%“ (%o et 0> (3)
: ' fUle---uN - ' Tk=l u=l - “k :

: o After the evaluation of the average value  of
‘E-P?._ in the state (3) with the SU, functions

i<j
urA}(U1U2"'UN; LM) , we finally arrive at a closed form for

| the energy:

Eg_N(I;"D at £ 00 00mL)4hz (123) s (A5=5) o3 LI+ (4)

The constants a,b and ¢ here will be treated
‘as our free parameters and are connected with the two boson in-

teractions in the following way:

=34 <p’D|v| p*D>+(p?P| v| pP3}

b=%<p2DIV!p2D>- —%—<p"PIVI PP+ —%—-<pZSIVIp‘ZS>
=L <p™D|v| pD>-<p?s | v] p6) (5)

The allowable values of L in (4) for[A]={A\1A2A3]| are given by
IFK,K“"]. ,K+2, - .Kmax(}\l‘_“kz ,)\42—)\3) K#O

= IHaX(AJ_")\z,?\z-}\;g) ’ ITIaX(Al")\z,.)\z—)\g)—z,...l, or 0 EK=0 (6)




with the integer K taking values

Remin(Ar=Az,Ap-As) ,min(iy =Xy ,Ap=As)~2,...,1 or 0 7

The spectrum of Eq. (4) for chosen a,b, and c¢
for '°F and ?°Ne are shown inFig.l and Fig.2. Here we take
the ground state of “He as the vacuum, and add 7 p-bosons and
8 p-bosons to reach the nuclei of interest. The model repro -
duces roughly well the experimental trends of the energy 1evels.
Out of 44 levels up to 11 MeV in '°F, the model roughly covers
33 of them. The K=1 band builded on the observed 1.7-MeV 1+
state is known to be dominated by configurations outside s-d
shell, predominantly of a four-particle-two-hole (4p-2h) nature.
Within the model this band can be assigned with the permutation
symmetry [61] and it reproduces well the results of a projected
Hartee~Fock calculation based on a strong coupling mOdel4). We
~also assign certain symmetries for the negative-parity bands in
'®F which are again beyond the (2s,1d)? descriptions. Here we
assume one of our p-bosons carrying negative parity. This can
be thought of as due to the odd orbital angular momentum of the
two nucleons which are supposed to form a p-boson. The results
for *°Ne are also encouraging. We assign the symmetries [24]
and [422] to the bands of an eight-particle-four-hole nature.
| Although, within the model, the band with f422] - symmetry is
cut off at 2t level, the 10.8-MeV 4" state ié still reproduced
well by the 10.85 MeV 47 member of the [44] - band.Furthermore,
in order to extend the supposed [422] - band, there seems to be
a need to incorporate f-bosons into the model. It is also in-
teresting to note that the two sets of parameters a,b, and c

for the two nuclei are quite close to each other.

Quadrupole transitions can be calculated by
taking matrix elements of the gquadrupole operator betweéen the
eigenstates (3). The guadrupole operator is a generator of U;,

ug, with k=2, where uk are given by

BN |
Z.<1u1u'|llkq>(~l)l H P:vP—u'v
o

(8)




with k=0,1,2. Formulas for these matrix elements can be

derived using the methods described by Ellietts).

For the fully-symmetric states and the states with
the [N-1 1] - symmetry, we have

(L+K+2)‘ (LHR+1) (L-K+2) (L—'K.-I‘-l‘). £({M] L) (9)
(L+1) (L+2) (21+3) (20+5)

B(E 2;1+2+2)=%

“where
e )\1‘)\2—.]'- }\2")\3 L, . A
£( [KLL):fXT:X;;£1§—(l1-Az+ 5— HL43) 21 Az eL=evep.
A=Az +1l-L Az=Az ‘
e (¥ ————— H43) 3 ), —L=odd (10)

Ay =hotLH 2

Table 1 shows that within the ground-state band
of 2%Ne, our B(E2)'s,according to (9), reproduce’ quite.well
- the experimental trend that B(E2) strengths increase from 2-+0
-to 4-2, and then turn around to decrease monotonically=ﬂ“33ju*
'Mottelson-geemetrical model6) giﬁes, on the other hand, monotonically in=
creasing B(E2) strengths as one proceeds upward through the
j2+0,4+2,6+4 and 8-+6 trahsitions. The E2 transitions between

the members of the K=1 band of !®F were also obtained and
compared with the Bohr-Mottelson velues. It remains to be seen whether

" similar effects of the cutoff factor due to the finite par-

ticle number could be observed experimentally.

So far we have seen that our model produces ro-
tational-like spectra for a certain choice of the parameters
‘'such as boson energies and two-body matrix elements. We now
show that, as these parameters change, the model should span
' the‘entire variety of observed spectra. This is done not by
solving the Schrddinger ecuation for our model Hamiltonian
directly. Instead, wewotild rather deal with a set of alge-

braic coupled equations.

In order to arrive at such equations, we should




borrow some idea £from the well known TDA treatment of the
T=1 paring correlations. In that approximation , the equa-
tions that govern the T=1, J=0 boson states are given by:

' 1 M Q.
R i=1,2,3...N
g . i 2:ngi e f
. (11)
N
E= Z'Ei
i=1

where g, ﬁj and Qj are the paring strength, single particle

energies and pair degeneracies. If we introduce the anhar -
monic effects to better the results toward the exact solutions
we will get a new set of equations instead of (11) as is

shown in Ref. 8:

1 ki5 M %
+ 7 — =7 5= s i=l,2,.-.N

g 5 EE o I ]
N

E= I E, {(12)
=1 1

kj = W-3)+T(TH1) ) N(N-1)  for (]

The newly introduced constants kij play the role
as the interaction energy between the i-th boson and j-th boson.
When kij=0, Egs. (12) reduce to (11), that of a system of

independent TDA, T=1l, J=0 bosons. It should be remarked that
Egs. (12) are derived from the exact solution of the Schrddinger
equation for an isovector pairing system. The physical signifi-
cance behind these equations is then clear. They provide a pic-
ture of a svstem of bosons interacting in a more complicated
manner than that of IBM, The constants kij represent the average
behavior of such interactions. It is interesting to remark in

'passing that the present interacting boson picture has an imme-




diate link with the hoson expansion approach’ .

The applications of these ideas to our iso+
scalar p-boson model are thén. straight forward, simply
exchanging the role of angular momentum and isospin in the T=1,
J=0 bosons.

Without touching the microscopic foundations
of the present model, we propose the following set of egua -
tions similar to (12) to govern our boson states from which

the entire variety of observed spectra would emerge:

s,.. M D ‘

st s —— o, 3m,2,.N

o3 o vAl v
N .

B 1 E, _ : - (13)
i= - |

where the constants y, My and Dv are now treated as free pa-
rameters. We take the constants Sij as the average of the

calculated interaction energy between i-th boson and j-th

boson from (4):

5,4 fq’(Nl_—D_l)“ (3400 1=1) A (1p=3) #23 (A3-5) }
+ o {L(LH1-2N) } _ (14)

N(N-1)

For the states with|[N|- symmetry and the choice
of the parameters: a+tb=c, Sij#c(N(N~3)+L(L+l))/N(N—l), the
same form as kij in (12).

It is interesting to see that if we set Dv=0’
qv=0 and X=1,the energy E in (13) can be evaluated analytically

and it reproduces exactly the rotational-like spectra (4).

It the other limit where the energy spacings




between the levels are much larger than all interaction

terms, one can expand E in (13) into a power series in Si'

3
by using the téchnique of Ref. 8: -
E=fN € + % b, {aN{N-1) +b[ A1 (A =1) 425 (A5=3) +A5 (A3=5) ]
oYY g R e e e T
se[L@+l) -2 3% s

where E\) are the bosqn energies and N\)thé occupation mmbers at y-th
level. The coefficients @Qcan_be expressed analytically in
terms of~N\)a.’rid the other free parameters. Since the energy in (15)
is in the form of A+BL(L+1)+CLZ%(L+1)2%+..., we are thus led to
a description of our system in terms of a rotation-vibration

picture.

In conclusion, we believe that a description of
éollective states for the self-conjugate nuclei in terms of a
isoscalar p-boson model might be appropriate, especially in
the above mentioned two limiting cases. For the other va-
riety of observed spectra, a solution of the coupled eguation

(13) may be needed.

We wish to thank Prof. M. Hussein for stimu -

lating discussions and helpful comments.
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FIGURE CAPTIONS:

Fig. 1. Comparison between‘experimenté17!f(thin lines) and

Fig.

. Comparison between experimental

theoretical (thick lines) spectrum in !'®F. The pa-
rameters in the theoretical spectrum are a=0.37 MeV,
b=-0.28 MeV, c=0.36 MeV. T

7)

(thin lines) ahdJ

_ﬁheqretical (thick. lines) spectrum in 2°Ne. The pa-

rframeters,in the theoretical spectrum are a=0.45 Mev,

b=-0.33 MeV, c=0.43 MeV.

‘TABLE CAPTIONS:

Table 1. B(E2) strengths involving the lowest X=0 band in

2'Ne and the k=1 band in '°F. The listed B(E2)'s

are in Weisskopf unit.
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TABLE ~ 1

tne [)=f8] |3

B(E2) from:

B(E2) from:

BM

TBM Exp BM IBM Exp
20.3 |20.3+1 [20.3 | 3 19 19:3| 19
125.8 2242 29 5 23.5 | 2816 30.2
21.8 20+3 32 7 15.11| 2 2| 34.1
13 1443 [33.5 | 4 26.3 | 1746 26.4
6 25.3 | 2 2| 32.6

- 14 -




