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Abstract

In QCD in perturbative theory, for the inclusive cross-
section for the scattering of two coloured particles, we identify
graphs which contribute to the general leading order (g [&xs In )\)n
and we sum these contributions ( A is the IR cut-off). The work is

done in the Coulomb gauge; an appendix discusses the Feynman gauge.

( 1980)




1. Introduction

In previous papers [1, 2y 3, 4 ) it has been shown that
the Bloch~Nordsieck mechanism for the Caﬁcellation of soft (IR) di
vergences in perturbation theory does not work in QCD when there
are two coloured particles (colour-averaged) in the initial state.
The uncancelled IR divergence which has been c¢alculated is that of
lowest order, 0(; InA, where K is the coupling strength (32/47{)
and M is some IR cut-off. In the preseént paper, we try to identi-
fy and sum all leading order uncancelled IR divergences. These are

of order 0(5( X g In A )n . One reason for doing this, is to see

whether the infinity becomes a zero when the series is summed (as
it does, for example, with the virtual IR divergences in QED). We
discuss this question in Section 4. Of course, we cannot give a
conclusive answer, because we sum only the leading divergences.

In most of this paper we use the Coulomb gauge in the
rest system of one of the initial particles, because we found in
reference [ 3;] that it shortened the work. We also find that the
Coulomb gauge gives more physical insight than the Feynman gauge.
However, we include an Appendix tA) showing how the Feynman gauge
can be used to demonstrate directly the non-cancellation of IR di~
vergences, as was dpne in the Coulomb gauge in Section 2 of refer~
ence[}l,This work has been briefly reported in reference[_al .

Ih {_3'] we used the simple example

q+ g —% Y* +(soft gluons) (1)
because it is the simplest process with two coloured particles in
the initial state. However, the arguments used in [ 1) and [ 4]
strongly suggest that the non~cancelling divergences are a proper-
ty of the initial state alone. Then, we can as easily study the
more general reaction '

g + @ —>(final state including soft gluons ) - (2)
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where g and Q@ are two coloured particles, with non-zeroc mass, which
we call "quarks" for short. We can allow g and Q to belong tc dif=-
fereﬁt representations of the colour group,'with matrix generators
t o and To (a= 1y...V, where ¥ is the order of the group). This
also provides a useful check on the results, since the complete
answer must be symmetric under the interchange Tﬂeiijn, although
the gauge we use (the Coulomb gauge in the rest frame of Q) destroys
the syﬁmetry in individual terms.

For purely technical reasons, we use dimensional IR reg-
ularization with space~time dimension 4-+VL. The IR cut—off mention~-
ed is related to N by |

71-1: - In A + (finite terms) (3)
We express our results in terms of the laboratory frame speed/ﬁ

related to the centre~of-mass energy squared, s, by

2 - .

— = .._.ES__- - ’ (
1-p [zmz 1] 1)
The Casimir invariant of the adjoint representation is C.: _
fabe fabt = O 9n (3)

where fabc. are the structure constants.

We shall also need a notation for the "hard" part of the
Feynman graphs, which in the simplest case is just the Born approx-
imation (for a definition of "hard" in this context, see [1] and
[4]). Let the "hard" amplitude be M

H

Ho= M My 6)

Here a sum over final colours 1s understood, but not over initial

, and define

ones, s0 that H is a matrix in the direct product of the represen-:

tation spaces of g and Q. (Spins are irrelevant in the eikonal ap=- .
proximation, which we always assume to be valid. This approximation
is discussed in [1] ,[_SJ ~and [ 4) ).

With all this notation, we may state our result :
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2 Ta (£.T H) Cg (/;1-1) F(p) 5(@ pci'(_ﬁ) ot () X
% eXp ]:-71-1 C’G T—‘(/B) J’lfi% q;i(f%‘)l 0(5(%)]

Here (8)
- pod -1 1+ ) — '
F(p)= (2p) Im(—ﬁ_,_,__/5 1

is a function appearing in QED IR divergences, M is an arbitrary

(?7)

unit of mass appearing in renormalization, and CXSL%) is the run-
ning coupling~strength. To be consistent with our leading-logarithm
calculation, c&sly%) ought to be written in leading-logarithm ap~

proximation

Loy L%U = [0( (,uﬂ 51‘ CG '1[ i)yL A (9)

In Section 4, we discuss the result (7) and find its lim~
iting behaviour under a set of particular assumptions. We make
some remarks about the physical significance of the non-cancelling
iR divergences. Section 2 is about what we call "ladder® diagrams,
which give (7) without the running coupling constant (i.e., with
X {w) and fxs(gq) each replaced by a constant value ®g in (7)).
Section 3 is about renormalization graphs, which we argue, make the
coupling constant run., Although this result is not rigorously prov-
ed, we give some general lines of the argument, and examine a few
illustrative cases in detail.

The main guiding idea we use in identifying the leading
divergences is the principle of what we will call '"nested divergen-
ces", We explain this by a simple example. Suppose thére is an inte-
gral over the 1engths,tii and k;, of two three~momenta. Let
_ky (10)

k2 '

In order to get a leading, doubly logarithmic IR divergence the

u ~ integral must diverge at u = O and the v -~ integral must di-
verge at v = 0 or co, let us say, v = 0 . In order to calculate

" the coefficient of the double~logarithm, we may put v = 0 under
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the u = ihtegral. This is equivalent to neglecting 121 compared
with -k,a in those denominators which depend upon k’i and k._a, pro=-
vided that we restrict the ranges of integration by R,< R, .

In order to obtain a leading divergence in this way, it
is necessary that the subdiagram obtained by omitting all lines
which depend only on lzi should itself be IR divergent (when its
external lines are on=shell). In such a case we shall describe this
subdiagram as being nested inside the complete diagram.‘Similarly,
the diagram made up of the lines which depend on kd only (the above
subdiagram being reduced to a "blob") is also divergent by itself.

This principle is certainly well supported by experience
with real and virtual IR divergences separately. In our case, where
we are concerned with IR divergences that remain after some cancel-~
lation between real and virtual, we should, perhaps, use it with
some caution. In Appendix B we describe an example in which we have
tested it, and in which it is found to work.

In Figure (1a) we show a typical diagram that contributes
to order 09;'2_1, as in reférences [1, 2, 3,i+]. One way of gen~
erating higher order leading diagrams is to.nest subdivergences
into the verticeé of Figure (l1a). . .If they are nested into the guarkm=
gluon vertices, we obtain the renormalization graphs of Section 3.
If the subdiagram is nested at the effective vertex of the "hard
blob" (where four quark lines meet in Figure (1a)), we obtain a
sort of ladder structure which is included among the skeleton dia-
grams of Section 2. Alternatively, Figure (1a) may itself be nested
inside an IR divergent diagram, such as Figures (1b) and (1ic¢), at |
the "hard blob" vertex. This too leads to diagrams of the "1adderﬁ
type. Of course, Figures (1b) and (1c) themselves cancel with other
diagrams, but, when (a) is nested inside them, non-cancelling dia-

grams result.
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2. Ladder Diagrams

As explained at the end of the last section, all ladder
diagrams have nested in them somewhere one of the CX§27[4 graphs
discussed in reference [3] ; 80 it is convenient to define a short-
ened graphical notation for such diagrams. The sum of all such vir-
tual graphs will be denoted as in Figure (2a), and real graphs as
in Figure (2b).

We begin by considering the class of diagrams shown in
" Figure (3). Here the nesting is according to the ordering of the

three~vector magnitudes
!

. i Iz . ’ — 7
kp<< ky  <<... R ; k., <<k, 4<<... k<< k)k.<<}zn<<:..(.ﬁlz)i
If we write '

R = Rz (1-u0) (12)
then u is controlled by the ordering'(11), but v 1is free. In
the nesting approximation, the integrals in Figure (3) almost fac=-
torize: the angular integrations and the v-integration completely
factorize, and the u~integration and the integrations over the mag-
nitudes of the other three~vectors factorize except that their lim~
its are interrelated by the inequalities (11). A simple example to
illustrate this is worked out in Appendix B.

The v -integration and the angular integrations forlB and

pem——

5. give the same function encountered in references[1,,__4] :

2, -1 ' .
2 (BT 1) Fp) (13)
where F is defined in (8). The angular integration for any of the

other l1l+m+n three-vectors in Figure (3 ) gives simply

1 2 . |
E‘!(____J dx LX) o 2% Fp) (14)
.2”, __1 (i__ﬂx)

[ L )
The virtual integrations over k&f"' hﬂ, give Jjust the same thing

as the real ones, but with opposite sign, since the integrations

/)
over hdo (i=1,...1) may be done by closing the contour in the
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upper-half-space where the only pole is the one from the gluon

propégator.

The integrals over the magnitude of the three-momenta

-1 dley. . Akl Abky.. . ok, dki... dk'y de x

* ('Qui-u RYy Ry .o ky, b,'i,__h'n)"i*"l o R (15)
over the region

Ryp<hky <...<k’y <D ,

2
and over u give . .
|
|
!
|

Ry <Ry y<ovih, << Rpc oo ke

This region is obtained from (11) with the addition of an arbitrary
upper=-1imit /N which separates "soft" from "hard". Summing (15)

over 1, m for fixed l+m =N , we gét

it i ' w i -4
(1)l gy Rl i (R kR k]
over <ky,<.. ki< A s mchky<. . R <A (18)
The integral (1?) is equal to
My m
- —1+2Pz " ~N- |
Sl E R PR B (19)

The colour matrix trace associated with Figure (3) is

l‘/\’&tc‘}.““t'—xtf—f" tcetaw"'-’tmi L}X}}} IXta' B (20)
X -tbh....tbi H_tba'_tb‘n t} t‘a’ .«-tq_m}
The first thing to check is that the relatlonshlp between the col-

our matrices in Figure (2b), that was used in references[ 1...4 ],
is not disturbed bf the addicional colour matices in (20). This is
S0, because the relevant matrices'tg_ and‘tg_in (20) are separated

in the trace (20) only by a multiple of the unit matrix, because

Tt te :C% T | (21)

whare C:% is the Casimir invariant for the representation associa-
ted with q . This fact justifies our treating the sum of diagrams
in Figure (2b) as a unit.

Introducing the coefficient from (19) in front of (20)

we get
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v A4 4
CUT ST v T e
—_ : 22
X ]ﬂ“tial‘“ftqn-twu““-tai t'j-_tbn*”—tbiF{tbf'“tbhk( )
‘The sum over n, N for fixed n+ N = M gives
C ) .
-imi e T hte, ot [ T0ET, e, e, ) cJ HYy= = oy
Mo+ 4

L (-Lt¢,) T At . T HY

We can now verify (7) for the special case Cti,)—-()( (IL)-

= CK5 3 f*-in To do this, note that the M-th term in the expansion

of the exponentlal is

A d+2
Mf MM f do w7 (" - ut)” (24)
in agreement w1th (19) and (23). The other factors @p to an overall
factor of 2) in (7) are supplied by (13) and M powers of (14).
As mentioned above, there is a check on (23) that it is

symmetric under tc—-)"_ralthough the individual terms in (20) are not.

In Figure (3), we have included one set of renormalization

graphs: self-energy parts on the external guark lines of the "raln-
bow'" form. To leading order, this set is in fact equivalent to all
self-energy parts on the external quark lines. To see this, observe
that the leading IR divergences of the rainbow graphs exponentiate.

to give

'pr'[--%? % ;%-T:(ﬂ)] ' ' (25)

as is clear from the ordering of the kz in (15) and (16), and the
‘tCC in (20). On the other hand, (25) is known [ 5 ] to be the
complete leading result from self-energy parts on external lines.
The complete contribution is given by the inverse of the function
R which is determined by the behaviour of the one-particle irre-
ducible selfe~energy Z’k near massg-shell: Z*E%) = R (%) ( f—ﬂ,/“i‘ m ) .

¥
The functioni% is obtained by differentiating Zz with respect to

the momentum and taking the on-shell matrix elements of the result-

ing expression. As a consequence.of the Ward ldentities, the set of
diagrams contributing to R obtained this way have, to leading order,

precisely the "rainbow" structure considered above.
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Next we consider Figure (4), which is like Figure (3),
except that it contains Figure (2a) not Figure (2b). The reason is
firstly that the ordering of the momenta is exactly the same as in
(16), and secondly that the angular and v -integration for the
sub-graph Figure (2a) gives the same as Figure (2b) with the same
sign (see reference [_3]). Thus, the contribution from Figure (3)
is just doubled, providing the factor 2 in (7).

The final step in this chapter is to show that the addi-
tion of further Coulomb exchanges to Figure (3) or (4) does not gi-
ve leading contributions. Rather than try to draw a general diagram,

we consider a typical example in Figure (5), in which the ordering

is
ok Ry < ky
lqi<le2'<k3<{b‘s}<u<le6<{ ., } (26)

Apart from the integrals over the magnitudes of the IQL and over u,
the‘diagram factorizes into independent angular integrations in the
nesting approximation.

If there were no real gluons emitted, but only the Coulomb
exchanges, the right-hand side of the diagram would provide essen-
tially the same IR divergent phase-factor as in QED: o

Je,,acp[ tT_Jd,x——vLif}: e,xp[ x . TJ3 YL ] (27)
-1 px-rE

(this is true in the ladder approximation and is also, in fact, ex~
act in the pure Couiomb case). This phase-factor is exactly cancel-~
led by its complex-conjugate, which comes from Coulomb exchanges in
the left-hand side of the graph.

The point about diagrams like Figure (5) is that essen~
tially the same cancellation occurs, even in the presence of the |
real gluons. Imagine the real gluon momenta (and u ) being held fix-
ed while the Coulomb line integrations are done. Take the‘blockS'of
Coulomb momenta in (26), i.e., the block kﬂ kﬁ, the block hg,‘ﬁg;

the block k; , ks, kg , where each block is separated from the



- 10 -

others by a real gluon. Consider the set of graphs generated from
Figure (5) by moving the Coulomb lines in any one block from one

- gide of the graph to the other, but keeping them in the same posi=-
tion in (26) relative to the real gluons. For example, there will
be graphs in which qu and kﬁ-appear together on the same side of
the graph, but always between 123 and M Then we assert that can-
cellation takes place within such sets of graphs, just as in the
pure Coulomb case. The only differences from the pure Coulomb case
(in the ladder approximation) concern the constraints (26) and the
order of colour-matrix multiplication. The constraints (26) are ir=-
relevant, since they affect each graph of a set in the same way.

As far as colour-matrices go, passing from one graph of a set to
another means altering the position of a matrix 1?.7—. We can imag-
ine T.T moved to its new position either by passing round the edge
of the graph (using the fact that there is a trace) or by passing
through the "hard blob" at the center of the graph. In either case,
t.7T 4is moved through a product of matrices forming a colour in-
variant. For example, moving |Q5-to the right-hand side of Figure
(5),.next to kq, means moving *::r the other side of the.product
'td_thT)zf?u . If we moved it through the center, we would en~
counter tx 't?/_.; (t.'T)ZH(f-T)-&p to{ , which is also an invariant
since H is invariant. But ({;Qﬂ;i;) commutes with any invariant,
and so therefore does T.T. Thus,‘tfr can be moved to its new posi-

tion with no change.



%, Renormalization Graphs

In this section,we add, to fhe ladder graphs of Figure
(3), UV divergent.sub—graphs (other than the self~energy parts on
external gquark lines, which we already included in Figure (3)). We
argue that these graphs account for the appearance of the running
constant in (7). We first give a general argument why this should
happen, and then illustrate the detailed mechanism with a few exam-
ples of renormalization sub~graphs of order oXg only. Thus the work
in this section is by no means rigorous or complete.

The general argument for our claim is as follows. If we
use dimensional regularization and minimal substraction [6?], every
UV divergent graph gives, after substraction, a ékgfb dependence,
where‘fb is the arbitrary mass unit introduced in the process. This
must be the logarithm of the ratic of /A to either a guark mass or
to one of the soft gluon momenta. If it is the 1a£ter, we get the
running coupling constant as in (7). (If the renormalization graph
is on one of the lines or vertices of Figure (2), it does not matter
whether we have Ink or énk , since they both scale to zero as
m an, which is what appears in (7)).

It remains to try to decide which of the gﬁfodependence
does not appear as Z@Li}7ﬁn§) (where m is a guark maés). A plausible
answer to this question is that it is the part of the renormaliza-
tion sub-graphé which depends upon.C%;but which is independent of

(28 and (:cz’ since it is this part which occurs in a pure Yang-
Mills theory, without any quafks.

We now turn to the examination of a few simple cases. We
begin with renormalization graphs associated with the Coulomb lines
in Figure (2), since this is much the simplest case. Examples of
relevant sub-graphs are shown in Figure (6). The self~energy parts

in (6a) provide a factor
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-7 % Ce I T (28)

( ko is always zero in these graphs, because the contour integra-
tion in the lower half-plane picks up the pole at ko:=C), see re= 1
ference | 3]), for it is well-known that for Coulomb lines the |
self-energy parts give the complete coupling constant renormaliza-
tion [7].

It is perhaps worthwhile to see how the other graphs in
Figure (6) cancel. For fixed, non=zero L% ], the vertex-parts are
IR convergent but contain &mfb',terms. The coefficient of these
terms may be determined by setting ’k = O and finding the conse-
guent IR divergence (for instance, by using dimensgional IR regular=-

ization with an upper cut-off /A ). It is then easy to check that

the (:Q- parts of (b) and (e) cancel (this is a consequence of the
QED Ward identity) and the (:6‘parts of (b) and (d) cancel. Graph
(¢) (and the reflected graph) give zero because the vertex is pro=-
portional to | B.{.
Next we consider the renormalization graphs associated
with a real transverse gluon, as in Figure (7). Graphs (c) and (d)
are straightforward. They are IR convergent (for §¥+JQ off=shell
but kE:O) and give a contribution
PL( L oot Cq L[ k] (29)

which may be determined by the method used for the Coulomb graphs.

The remaining graphs are more complicated, since they are
IR divergent for~s% on-shell, even for non-zero lk.l. However, these
. fad

IR divergences cancel when (a) and (b) are combined and the sum gives

-2 g Cp Ak, (30)
127C
The same thing happens with graphs (e)...(1). Details are given in

Appendix C. The result is a contribution
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-E[F(p) + 2] s Cg n| ks (31)
Taking into account a factor of 2 which arises when considering
.also the corrections on the other end of the gluons, we see that
expressions (29), (30) and (31) combine to give precisely a similar
factor to equation (28).

Thus we have verified the appearance of the running cou=-
pling constant in (7), up to one~loop order. Note that the blobs
defined in Figure (2) acquire two corrections (28), one from the
Coulomb line and one from the transverse line. This is as it should
be because CKS(;~) , corresponding to these subgraphs, occurs squared
in (7).

In the foregoing, we have not actually checked the renor-
malization of the three-gluon vertices in Figure (2). However, we
expect them to work out correctly, since no guark mass is involved.
This is further supported by an analysis in the axial gauge (see Ap-
pendix D) where we can verify the appearance of the running coupling

constant to all orders.

4. Discussion

Here we comment on the signifiéance of formula (7), as
far as we are able. We emphasize that it is derived in the leading
logarithm approximation only, so any inferences from it are only
tentative.

For immediate practical purposes, the most important fea-
ture of (7) is factor (p—-i- 1)} which persists from the D(: cal-
culations [_1,...4 ]. This means that the IR divergences only affect
power corrections (higher-twist terms) in high-energy perturbative
QCD. It is noteworthy that, within such power correction terms, the
running coupling constant *g appears with a soft argument (u and

g in (7)) and not the characteristic hard momentum of the reaction.
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In evaluating the integrals in (7), we meet the problem
that, in the strict leading logarithm approximation (9), 0(5(}%)
becomes negative for small enough g, which presumably makes no
physical sense. We have therefore investigated equation (7) by gues~
sing the true behaviour of 0{5(%) as g~p0. This is a rather hybrid

approximation, but it is perhaps interesting to see what it gives.

We assume, for concreteness, that
-
Xg(q) = A g as g —0 (32)
where a.2 0. We can then set n= 0 straightaway in equation (7).

The integrals are convergent and give

2T (t.TH o T | w () + T
( V(P rCeFf/’)] (33)

a finite, non-zero result.

This expression is essentially non-perturbative. It con-
tains terms of order ™4 and 1 (for Q.;\_f 0) whereas equation (7)
is of order ch . Expression (33) is singular at f3==0, particular-
ly if a# 0. This probably‘indicates that the hybrid leading-loga-
rithm approximation we have used is applicable (if at all) away
from‘/B:‘O. It is interesting to remark that, if we rescalé
0{5.—$'(:,é1055, (23) becomes prdportional to C:éﬂ. (0f course,
this can also be seen directly from equation (7)) This implies, in
particular, that in Fhe large N-limit (in SU(N), Cisz N) the cor-

rections expressed by our result become very small.

We are grateful to M.L.Frenkel and P.V.Landshoff for
helpful discussions. J.F. acknowledges a grant from Conselho Nacio~
nal de Pesguisas (CNPg), and C.E.C. and M.T.T. thank the Fundagéo
de AmparoiéAPesquisa do Estado de Sao Paulo (FAPESP) for financial

support.
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Appendix A

The purpose of this appendix is to introduce a direct
method of caleculation, which stresses the reason for the existence
of a simple answer for the uncancelled IR divergences. In order to
understand how IR divergences can be present in reaction (1), let .

us compare it with the process:
a“* —» ¢ + ¢ + soft gluons - (A1)

where the gluéns are émitted from outgoing {massive) fermions. As.
shown in reference (8), the IR divergences in the process cancel
out, basically as a simple consequence of unitarity. Given this
fact, using the invariance of our theory under time-reversal, we

will transform (A1) in the following reaction:
g4 g + soft gluons — % * (A2)

which is more directly related to our process (1). In (A2), agaiﬁ,
the IR divergences will cancel, but note that the soft gluons are
absorbed by the incoming fermions, aslopposite to the reaction (1),
where they are emitted. As we will see, this difference is crucial
forjthe existence of uncancelled IR divergences in process (1).

Let us denote the graphs containing the absorbed (real)
gluons contributing to reaction (A2) by fea: and the graphs con~
taining the emitted gluons contributing to (1) by ?Qe. Furthermore,
we denote by V' the purely virtual graphs coniributing to the "elas~

tic" reaction g + g-» y'*. Then, as far as the IR divergences are

concerned, we can write:

R+ Vv =o0 | | (43)
for reaction (A2), whereas for the process (1) we have: |
R+ V =D (A4)

where D denotes the uncancelled IR divergences we are looking for.
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Taking the difference between these two equations, we obtain D as
follows:

R¢-R"=D | (45)
An immediate consequence of this equation is the cancellation of
the leading IR divergences. Tosee this, note that ﬁee differs from
ﬁ%“‘ by the direction of momenta of the real gluons. Using the |
eikonal approximation, it is easy to see by direct inspection of
the graphs that, by conveniently routing the direction of wvirtual
gluon momenta, Facb can be obtained directly from ;Ze just by chang-
ing the sign of all (€ in fhe fermion denominators. As is well
known, for the leading IR divergences, we can disregard these EEW

in which case we obtain at once that:
o \ fead leadd
(= O e
(RE-R™)™ _ D _, (46)

which holds to all orders in perturbation theory. In particular,
this is trivially true in second-order, where all IR divergences
are, by definition, leading.

However, for the next-to~leading IR divergences, which
appear first in fourth~order, we must be careful when considering
the effect of the difference of the sign of L& in the fermion pro-
pagators in Zze‘and FQOZILet us illustrate here this effect in
fourth-order where, in terms of the group, (:6’ and quark, (jg,

Casinir numbers, the cross~section has the form:

e Ta(T) {ACT + DCCe} (A7)

The abelian case has (.= 0 and is IR finite, which implies that [J

G
must be finite. Therefore, for our purposes, it is sufficient to

restrict ourselves to graphs contributing to D.
We begin by considering the abelian graph shown in Figu~
re (8a). For Zee, we perform the kw,-integration in the lower

half-plane using Cauchy's theorem, where we encounter poles coming

from gluon and quark propagators. Then, dropping the remaining (E
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since we can show that these do not contribute to the cross~sec=

tions, we obtain in order:

4 e pt (L B[4 (o kT e rk)T (k) (g k)
4 7 aamye J el k' |2 (pk) Lp-terk)](p k) "+

-4 -
4 (k\ ( b,jj-i g_b 2 L-i %,% p.é 3‘9 P le ‘P‘h';l
- by P- ( “~ - “2’] . - LY -~ ______)
2 Al A ——
%" Po %° %0 Po ‘10 Po Pas
N _ (48)
For K, which has the sign of ¢t € in the fermion denominators
opposite, we perform the ko ~integration in the upper half-plane.

The contribution from the gluon propagators is the same as above,
and cancels in (A5). On the other hand, the contribution coming

from the fermion pole has opposite sign, and, consequently, adds
in (A5) to the corresponding one in F{e. Since the Feynman gauge
is Lorentz invariant, we can calculate these contributions more

conveniently in the rest frame of the anti-quark fz::o. Adding now
also the contributions obtained from Figure (8a) by moving k. to

all possible places, we obtain for J)gj

3ty 3+iz ryq 2 " -4 _.
I - — iﬁ_ o k A k. W - AN ke = x
Do\, (l_ﬁ)gj |‘-l%'|.2 ( ~ )
A ' (49)
et (e _4
ey & —

1 !
Here © denotes the angle between Lz and fk and we have defined
A"

-1
Wz q, (3 %) . The integration over e gives:

T + ! ;
[ (i o) "N _node’ . —,.2;(_3 n 1S ._1)fo(7)

/
fbm@ -4 e 2,/5 1,/3 (4108)
Introducing new variables u and v via R= iﬁ%% y h':.%ifﬁdﬁl’
+ V .

we perform the rest of the integration which gives, in addition to

. -4
a factor proportional to /3 , the IR divergence:

L .
2
J -i’-—fﬁ LS. L (A10b)
o N
Together with (A10a),we then see that (A9) leads to
Do = =, = F(p £ (a11)

SI> P 2n
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where ﬁfcé)is the bremsstrahlung function defined in (8).
We now consider the contributions to‘I) y comihg. via
(A5) from the non=-abelian graphs shown in Figure (8b). After a lit-

tle calculation, we obtain:

b " 2 S Tt a) e (k- k)
L [T A - gl eeR) K .

(e gy TS| 80 STt}

Here, the § -functions in the first bracket arise from the ¢&

present in the gluon propagators, and it can be shown that, in the
dimensional regularization scheme, these functions will not actual~-
1y contribute to the cross-section. The § ~functions present in the.
second bracket arise from the (€ present in the fermion denominators.

Similarly, for the contribution to D coming from the nonQ
abelian graph in Figure (8c), we obtain the result:

4+ 3em : \

e J& ‘ i@i Lpig- (pglpl(2hehi)

4 i ; i, A S(Pk,)
k? (k+k) Pk %.w

(A13)

We will now perform the- k, -integrations in equations
(A12) and (A13) with the help of the J -functions. Since each term
involving these functions 1s separately Lorentz invariant, for con-
venience, we have calculated these terms in a suitable frame of re-
ference.

For the first term in (A12) involving > (%_.k,), we use
the rest frame of the quark q = 0. After performing the ko, -inte~
gration, we make l@' - h k- and then symmetrize under |

E,, E’-—m - % ,-éf. Next we perform angular integrations, using
the system of angular coordinates described in the Appendix of re-
ference [ 3] . We obtain (for simplicity of notation we put \g.\-_- k 5

\E)I: k! and cos® = x' )
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'L - S
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~ 2k
b+ 2 ko

) T

k(ﬁl“&a)

Making now the change of variables: k= %“—‘/ ’ kt:?t we ob~
+ Vv ol
tain after some calculation:
I - (1TL)‘f 1 [ 1 (&N i+_/3 _ i:l (A14D)
2 (qm)é g )_1 2 1-p

Consider now the part involving the (‘S[p A bk+ bk )] func'-
tion in (A12) and perform the R, -integration, using the rest fra=
me of the anti-~-quark P=0. Symmetrizing under the transformation

b,k - - %. ,‘kf , after a 1ittle calculation, we obtain:

LY N

24 1 A 3+, 1 2 ;e
 aTT fot b d k(luk‘))‘(zﬁ K + oc—»c,)x
(A15a)

o )7 k- _w})'i (k'*-k*)™?

But this contribution, apart from an overall constant factor, is

precisely the same as equation { (25) + (26)} of reference [1 J.

This has been evaluated explicitly in the Appendix of refepence[ij].

Using this fact, we obtain:

I S CY DL [ 1 ﬂmiiﬁ)_i] (415b)
2 (Ar) 4 ,ZIZ 1-p

Consider finally equation (A13) and perform, with the

help of the é'~function, the ka ~integration in the rest frame of

the anti-quark: P = 0. Using the same system of angular coordinates
~J .

as employed in (A14a), we perform angular integrations and obtain:

1A T
i Al ' y‘. ' lqi+2,l¢(.mq) a
(J_R) [ ) ]J J—E— (k. b.) JA{MLI’CLL{’ lq__‘_ _?_b" k}) (A16 )

o

/
where W denotes the angle between k and l% . We now symmetrize
n

explicitly under cosLV—4 -cos‘{ and perform the L‘—integration.

Then we define newvariables u and v via: k=L % and cos g‘,_u\/
1+V 2+ V)
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Integrating over u and v, we obtain for the part containing the

IR divergence the result:

(a,irt)e '(02;})9 ;;(/ [ 9_}3 (%%ﬁ ) - l) Hhen)

Adding now (A14b), (A15b) and (A16b), and considering

1
L

also the graphs obtained by exchanging pewoﬁ,in the diagrams con-
sidered above, we obtain for the contributions resulting from the

non=-abelian graphs:

Do = 2 (- 1) F( ) £ (A17)
8TC? /* 2y
We remark that there are also other graphs contributing equally to
FQe and ﬁfL, s0 that their contributions cancel in equation (AS5).
For instance, consider the fourth-order diagram containing a self- .
energy insertion on the (external) gluon line. In this case, due to
the fact that the self-energy is an even function of the external
momenta, it is easy to see that F{e = ﬁfL and therefore, these graphs
will not contribute to this order, Adding equations (A11) and (Ai?);
we find a simple result for the uncancelled IR divergences present
to fourth~order: :
o\éorn TJL('I) zC,%CG (jig__ )T—”(F)FIL{ o(é‘ (218)
Basically{this result arises as follows: after the can-~
cellation of the leading IR divergences in Rig— ZQG“, we are left
with the non~leading contributions in ;Ze'which have opposite signs
to the corresponding ones in f%al Consequently, these contributions
effectively add in R€ - RY, so that the uncancelled non~leading
IR result comes essentially from Fleﬂ But, F&e represents the
wcross~section for the emission of a real gluon, and precisely for
this reason, our answer is proportional to the bremsstrahlung proQ _

bability function.
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Appendix B

In this appendix we demonstrate that '"nesting'" works for

Figure (1d) by explicit calculation.

Figure (1d) gives a contribution (after inﬁegrating over

the time-component of the Coulomb propagator)

2 2
dox iy lx, L4 =X3)(4-x5) "
O{_i T (xpei&) (Xy p=1-LE) (B1)
A -1 i + 4
. JGUQ‘ dl, dk, A M _
(K + tey—ky +CE Y0+ eyt K, =k -b, e) (it K— ke -k -C8)
where _
=20 o2 Ta(Tatet tat,te)

Born obc

We have used polar coordinates and dimensional regularization
(4= 3~+'ﬂl). Further, since we are concerned only with leading
IR divergences, we can ignore the effect of dimensional regulariza-
tion on the angular integrations. |
Since our quarks are ma531ve, we can make the change of

varlables- la, - lQ (v=x sF) kz, -k (f_L-x55}under which (B1) becomes

JO‘LXOLMOLX;, {-x52)(L- ".z) j db dk;dk, IQQ i}l:.l kz—ﬁi (B2)
(xpveie)(4- x,“/a) (- X:,/j) (K/J'%ki+L‘E)(x/jl‘a"k{klﬂejlhﬁk‘)

where we have neglected those C & 's that we may safely do so. With

the notation
kssw v keEuw(i-v); k,=wli-w) (B3)

(which has the Jacobian u?ur) the radial integrations become
A 1 '
[a -1 2 L
johku,”“i}ow v - vy dw wlr (ow) T ()
\/xﬂ-—1+V+££ (w'vx/i-l- w’v-—iue)(:l-wv)

<O

o o
Expanding (1 -UJ‘)!"‘Jr N ana retaihing divergent terms (when n = 0)

only, the W ~integration becomes

A 29~ 4
S dr —wrh
(Wwvx B wy-1eL€)(1- wv) | (B5)
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This integral may be evaluated, to yield
- L . 00y) | (B6)
| N
Hence, the leading IR divergence of the graph is

4 - !
docdixgdix, (4-X) (L-x2) ( ABVL) A J dv vV (-
iy Cx(s-»Le)(i-xi/a')lCi—xz/s)" g L2y ) ovixp tLE) xy-3

Now consider the '"nesting" hypothesis. For this graph,

the hypothesis asserts that the leading IR divergence is contained
within the region of integration for which k,_'77 h: \‘14,. The con-

tribution from (B2) for this region is

3 A b k<< k B}
- d—)ﬁdxadfx-z(i'x:)(i'x:) Jd’l& knjij )ol:‘h. a@,l:a. leL : lQI.L__ (B3)
) .

3 (Xﬁ.m:;)(1-xi/s)2(1~xlp')*o o Xpk—kie
With the notation k-wv b,L: w (L-v) (which has the Jacobian
) the integral over k , 10-1 becomes
q.’Qz an -4 - -4 \
J-M W de v et (B9)
© _ o XBva4vy-~1+ LE

where < 1is some (arbitrary) constant (<< 1) used to implement

the restriction R, >¥ k, k, . Hence (B8) is

1 : d
o elxcbe iy (X000 ) JZ% SEr L G

-1 (xﬁ r ‘“‘E)(i"xs/l)z(i "?‘:./ﬂzo A XBviv-1+ LE
(4
However
L 1+,2vL I a —rO(lU (B11)

s0 the leading IR divergence of (B8) is the same as (B7), and does

not contain the arbitrary constant QL.
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Appendix C

Here we 1lllustrate the ideas of Section % on renormali-
zation graphs, conéidering in detail the graphs of Figure (7c...i)

For simplicity, we will introduce the integral operator
}}QE, corresponding to the graph in Figure (1a) with the understand-
ing that whatever it acts on replaces a p; within the integrand of
the two-loop integrations (which we will denote by k and k ).

Further, it will be understood that any extra colour structure in

the operand replaces either of the 'tOU's in the trace of the colour

matrices, which is then summed over repeated indices, as usual.
Thus, we write the contribution from Figure (7c¢) as (after
o _
integrating over hz’ by Cauchy):
o (% (4%}
‘ . —~ X _
A et ) £ whe  peplton)
O gk, (K,-k,KE) (v, - ky-le,~x€)

In a similar manner Figure (7g) yields

— 2 d«gh gbl(kz) Py (b:ﬁ" le,,)
LH [{Q,bc_t-t](lw) S LZ (D(_.l_ )_-'LE.)(’Q -IQ ) (Ca)

and Figure (7%)

S UAYY -
A functite ]‘LJ“‘ Skl py Chyk)
@) J 2ke (g v, ~hyk,-4€ Jbyth,)

Next consider Figure (7d). This must first be renormali-

(C3)

zed, as renormalization of this sort of graph introduces further IR

divergences. We use mass-shell substraction to obtain a contribution
3 o p2 2
R [ttt]_s hy b P
QDS ok,  (Kyohy-L8)(kyt Ky fo ke, LE)

This combines with (C1) to yield

2
Ao fave tot ] -4 jm pe f2(1-X,) .
Lfg, .‘f be b ] b)S (Vc.z*j/e,,-ba)(k'ﬁK.:_“ki"‘a'l'g)(@)

(Ch)
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which has the same colour structure as the other terms.

Figure (?e) has a contribution

abe tote (2m) (b;“g) (y-t,-L€) [(hi—k;)%Lf] (Céa)

where '
PN = Jf:( o) §57 (k) Pa o[ Sup gtk #87 (y2b)+ § (-2k)

. o (C6Db)
Since , We can put

Alky f,)pc + Blly,k,) /ef = (c6¢)
ik, ka-ke (k,-t.) k- (ke -k, )} ko [lﬂ Ll -k ) ke (los-p,) %]

=2 ¢ L - z

g k.2 (ks -k ) " DA N 7

The 12; ~integration is done by Cauchy (in the upper-half plane).
There are two poles, one from each gluon propagator. That due to |
the ( k&%' tE) propagator leads to an IR divergent integral for
that part of the numerator proportional to pé -

However, Figure (7h) has a contribution (after rearrang-
ing the trace of the colour matrices) |
- L Qa. _{Qbe ole ] j 43k, 1 :

Q)2 | 2k, 2k b,(1-to> PriE)

(exiey-horie)(los-ky-ce) NoChky b))
("LH‘"L*K'a—]ﬁg,“kﬁl;f)(lﬂﬁK&*ki-k;,‘*:’i)(k-a"ﬁ:_“"‘g) (c?)

This has also an IR divergence for that part of the numerator pro-

X

portional to ?¢ . Together these two divergent integals yield some-
thing of the form Jd‘b',z, k:i F(kz,) where F(0)= 0, i.e., the two
divergences cancel each other.

We note here that the diagram shown in Figure (7i) does
not contribute to the leading IR divergences. The sum of all graphs
in Figure (7), then, is IR finite, ,but may contribute to the lead=-

ing divergence if there are any ﬁAA.ktterms. We argue that since

L (k1) = ks 00
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if we set k, = 0 in our expressions after extending the IQ& ~inte~
grations to db= 3+ q’ spatial dimensions, the coefficient of jS
will be minus that of £mbki, at least to leading order.

(c2) and (03) then both yield

d. to
_(A.. [fa(%"(: t ] Jol k, 55_,‘“4;) PJ _
(.UL) ‘Zlo'j (Ky-le,-2€) (c8a)

The integral over ﬁzL must be of the form: (scalar function Off}a)Fé

80 we can replace (C8a) with

o &
_ A, X{%;t;, P ("L/‘% Py Pe O (k)

(514.)3 Pr Akl (uy- k,-ig) (c8o)

Using polar coordinates and retaining only ;zﬂiterms, this is

) bt _L : 1{(*' 1-X: |
a,[;(a.b 6 J CUL)"“F n Xa -l-(,Xl/?- i) (co)

In a similar manner, (C5) becomes

Lﬂat[f“baﬁéf:} j& (1-x.") B°

(& )1 l(xz_p-—i) (c10a)
which we integrate by parts
1
: )
/‘:ﬂq‘-’[fﬂtb‘;tbtc] 7 5 ! joﬁxl C‘oz)(z.)lﬁ (C10D)
(ar) ’[_’_L 2(x, p-1)

Lastly we must deal with Figures (7e) and {7h). The two IR divergent
terms are both seen to be zZero when kuf=0, due to the numerator '
(paying careful atténtion to the ki in the denominator). The re-
maining term from (7h) does not contribute to the leading divergen-
ce. To see this, we write this term out in fuiL dropping what LE 's
we may
de% Db’y 5 (k) pe k) Blhok,)

b‘zbfkf(i-m"f’) (Fc+:,g)(b(.+u_ I, -k -le”f-&;)(bcd-;"llt -k —lea_) (k "%,)
We symmetrize on ‘Q-av laand take the real part, obtainig

“ah fhy Ay ST (kL) by k] Bkyk)

bl i‘l%, (4 wﬂf) [(K-f(,&)—-(l(. i, /ei )‘] w,,_ L)(vc tle, - ky-ks)

(ciia)

€iie)
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Since we are considering massive quarks, we can make the change of
variables: k:. (1~ Xi[& Y—> Iqi; kz(i -><2_/3 )— la}_,to perform the radial
integrations (in which the leading IR divergence from the graph is

to be found) after dimensional regularization, which give

J&db Ay db, (& k, é;)y"
{(xﬁ.*-’cg)thl_(ki*-k‘z_yl](IQ._;L‘I'IQ&) | (C11.C)

with the notation k. =u( 1-w); k=uw (1-v) and k> wvwiwhich

has the Jacobean Mfur) this becomes

A L
[aw ot iJ Av der LYV wr2(4-u) Y
CX/A+L£)Z(1—w’)—w'?-

e
24

This is()(}{l) and so does not contribute to the leading divergence

(which is O (pfl)). This leaves us with just the following term
from (7e) :
o Cfuicl £ 2 (480 (2 k) otk by

L (27) % ff) (ky-kyo-2e) (£, -4€)%  (crza)

[ &)
The l{L ~integration is evaluated by Cauchy (notice the double po=-
pe) in the lower half-plane as usual. Then in polar coordinates and

after dimensional regularization, the leading divergence is

'é /qat'[{aécfbtc«]-—g’iz P(: .1;5 d’xl. XZP (x?-a" i) (l'XZ/))
(l‘ﬂ,) VL 'Z,(X.?_ﬁ-i)z'

integrated by parts gives

’(‘M“;[f‘”—"ef"tc] % pe — j dx, pr”ng-4ﬁx?_3
(@n)* (I 2(x, p-4) (c12¢)

The total contribution to the coefficient of.Jhmkﬁ, resulting from

(C12b)

the graphs of Figures (7¢)...(7i) is therefore

. N L 3
_Lﬂaé[j;bcib{;]% P 4 ‘fdxl‘%xj"'lﬂx& -

(DZK)L 3 XZ/J -4
- N (- A
(Aq. [ t.] p) (- 52 ot CG)

(C13)

(c11d)
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Appendix D

In this appendix we wish to present an analysis which
supports the appearance of the running coupling constant in-(?) to
all orders in perturbation theory. We will restrict ourselves to

the factor multiplying the exponential function. To this end, we

will use the axial gauge [ 9 ], where the Ward identities are sim=-
pler, which allows us to simplify the analysis. Of course, the cor-
rections represented by equation (7) should be gauge invariant, and,
indeed, using the methods described in appendix A, we have checked
explicitly in this gauge that the same answer (A18) is obtained.

The axial gauge is characterized by the gauge conditioh-

(=™
TQrLF%M,==O, where n, denotes a fixed four vector. In this gauge,

fu

the free gluon propagator is

Q 2
D,u,u (k)-_ 1 {5 . YI!MLD.V--f Nphpy oo 2 le,,} 1)
fxce L 1 m. k (n.R)?

Due to the absence of ghosts, the Ward identities are simple, being

similar to those encountered in QED. In particular, the quark-gluon-

quark irreducible vertex'T; (lQ’,P ) obeys the Ward identity

i 71 ) RN ! < '
'\ T, (kp) = 2 (k' +p) = 2 (p) (p2)
where zi denotes the self-energy of the guark. Furthermore, the ir-

reducible three~gluon vertex hx/351( k,,k.) satisfies the Ward

identity

T U k) = Ty (k) =TT (k) (55

where || y represents the gluon two-point function.

Consider now the diagrams represented in Figures (9a) and
(9b), which represent the effect of the inclusion of vertex and
self-energy corrections to the "bare" graphs shown in Figures (8a)

and (8b). Diagram (9¢) denotes the quark-gluon vertex. As a conse-

quence of the Ward identity (D2), the IR divergences in the graphs
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on the right-hand side will cancel, like it happens in QED. Of
course, this type of cancellation occurs in all orders, since (p2)
is valid to all orders. Similarly, as a conseqﬁence of the Ward
identity (D3), the IR divergences present in the three-gluon vertex
shown in Figure (9d4) will cancel at least to leading order..

Thus, we are finally left to consider the gluon self-
energy function. To leading order, it is given by the sum of the
geometric series shown in Figure(9e). With the help of (D1) it is

easy to verify that the leading contribution is given by

DL, = D%+ Do Tas DS N T [ e
v = Mp+' A y T = v
Here the function [ is determined by the relevant part of the re-

normalized one-~lcoop gluon self-energy
Uq) —\_(gocﬁlq, k., la./3) (D5a)

with -1 kS ] (D5b)
. 2 o C H )'-

With the help of this relatlon, we observe that the bracket in (D)

leads precisely to the leading~logarithm approximation of the run=~
ning coupling constant defined in (9).

0f course, similar corrections arising from thé‘gluon'
self-energy occur also on the giuon line kf » Which is scaled to
zero together with h by a common factor W , Therefore, the net ef-
fect of the leadlng corrections is to replace the factor )
Aats Lo w4 o) o9

occuring in (A418) by
A

| e
0
which gives precisely the coefficient of the exponentizl occuring

- 1+2 L '
T o T () (D7)

in equation (7).
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Figure Captions

a) Prototype non-leading IR divergent diagram of order 0(: )2-1.
To obtain the uncancelled divergence k and ki are scaled to
zero together - neither is nested inside the other; b) and c)
are IR divergent graphs which may be combined with a) by nest-
ing; d) Example of diagram obtained by nesting b) inside a).
Shortened notation for cg:. For the real graphs (b) the real -
gluon is absorbed somewhere on the other side of the graph.

A class of diagrams of the "ladder" type. Diagrams in which

the virtual gluons k;l (i=1,...1) appear on the right should
also be included, but this just cancels the factor % associat-
ed with the self-energy part on an external 1line. The hermitian
conjugate should also be added (i.e., the mirror image of the
above graph).

The skeleton diagrams are like Figure {3) but with Figure (2b)
replaced by Figure (2a).

Typical example of skeleton graph, containing Coulomb exchanges,
whose leading IR divergences cancel when taken together with

other graphs with thke Coulomdb lines in different places.

Examples of renormalization graphs associated with the Coulomb
line. The black box.in'a) includes all second-order self~energy
parts constructed from Coulomb and transverse gluons lines.
Renormalization graphs associated with a real gluon. The gluon
lines with small circles at their ends are supposed to be at~-
tached to a quark line on the other side of the graph.

Example of diagrams which contribute in the Feynman gauge via
(45) to process (1). The small circles represent the emission
of the virtual photon. The right~hand graphs denote the complex
conjugate of the left-hand ones, and the corresponding complex

conjugate diagrams are also to be added.
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- Fig.9 a) and b) Example of diagrams contributing in the axial gau-

ge to ﬁhe factor multiplying the exponential in (?);rc)'rek
presents the quark-gluon vertex, while d) denotes the three-
gluon vertex. Diagram d¢) defines the gluon self-energy, which

leads to the appearance of the running coupling constant.
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Figure 3
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