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 ABSTRACT

We study a layered Ising model with competing
interactions between hearest and next-nearest layers in the
presence of a magnetic field. The analysis is carried out in
the mean-field appréximation with one effective field for each
layef. The high-temperature region is studied analytically.
The A-surface, separating the parémagnetic and the modulated
phases, is bounded by two—lines of tricritical points which
join smoothly at the Lifshitz point and terminate at multi-
critical points, beyond which lines of critical and bicritical
endpoints are expected to appear. The magnetization structufe
near the A-surface can be described.as having an almost
sinusoidal oscillation, with the higher harmonic components
céntributing as perturbations. Both odd and even highef'
harmonic bomponents are present in non-zero figlds, and the
n-th harmonic component depends asympfotically on the n-th
power of the main harmonic-component. The low—temperature
region is studied qumerically. We construct T-H phase
diagrams, which exﬂibit a variety of modulated phases, for
various values of the ratio,ofAthg strength of the competing
interactions. Nuherical evidence of the devil's staircase
behavior is féund either as a function of temperature or

L

applied magnetic field.




I. INTRODUCTION

Considerable attention has in recent years been
devoted to the investigation of systems displaying modulated
ordered phases. Two aspects of these systems have particularly
attracted the attention of several WOrkers. First, the
proposal of a new multicritical point, the so-called Lifshitz
pointl ;, which divides the phase diagram into modulated,
disordered and uniformly ordered phases. Second, the renewed
interest in commensurate and incommensurate structuresz, which
occur in modulated phases, together with the problem of the
phase transitions associated with these structures.

An Ising model on a simple cubic lattice with
nearest neighbor ferromagnetic couplings, and next-nearest
neighbor competing antiferromagnetic cogpiings in a direction
parallel to a single lattice axis, is probably the simplest
magnetic spin model displaying a Lifshitz.point and a complex
modulated phase. For this reason, although having .been
proposed many years agoB, this hodel has been the object of
quite a substantial amount of theoretical work in the last few
years. The vicinity.of the Lifshitz point and the high |
temperature region of Lhe phase diagram in the T-p plane,
where T 1is the absolute temperatnrﬂ and p is the ratio of
competing exchange interactions, have been studied by
renormalization groupl’4
© and Monte Carlo techniquéSG. On the other hand, Monte Carlo
calculationsT, low~temperature series exPansiOnss, mean-field

calculations and soliton theoryg were used to study the low

. . o oo g 5
; high-temperature series expansions
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temperature modulated region., ¥From the experimental side, it
is appropriate to stress the physical relévance of this simple
model. For instance, éinde the early sixties similar models
have been-widely used to explain the sinusoidal ordering of
some rare earth meﬁals such as erbium3. More recently, the
complex succession Qf commensurate phases of CeSb as a
function of temperaturelo has been gqualitatively explained on
the basis of a clqsely related modelll. Also, it has very

| recently been indicatedlz, by measurements of the transverse
differential susceptibility in' MnP , that_this material
displays a uniaxial Lifshitz point belonging to the same
universality-cléss as the model considered here.

In this paper we study, within the nmean-field
approximation, the behavior of the above-mentioned Ising model
in the presence of an applied magnetic field. Our motivation
for this study was the well known fact.that the magnetic field
may change the nature of phase transitions in a fundamental
way, inducing the appearence of multicritical pdints, such as
tricritical points in metamagnetic systemslB. Also, the
response of various modulated phasesrto the applied field, and
the field dependence of the phase diagrams, is a matter of

intrinsic interest. Apart from these motivations, we believe
A : '

i

that from the experimental point of view magnetic fields play:
a very important role. For instance, finer.details of the |
modulated phases; e.g., the devil's staircase behgviorl1 ,
could be sought as a function of‘the applied magnetic field,

and we hope that a theoretical guidance, even though. in a -

mean-field approximation, will be useful.
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The~IAYOUt of this paper is as follows: In Sec.
II a precise definition of the model is given and relevant.
expressions in the laﬁer—byélayér méan;field approximation are '
derived. Soﬁe calculations in zero field are briefly présented
in Sec. IIXII. ih particular, expfessions for the A-lines and
the Lifshitz point, and an asymptotic expression for the first-
6rder transition line are obtained. The effects of the'higher
harmonic components of the magnetization near the modulated-
paramagnetic transition are discussed. 1In Sec. IV, devoted tb
the mean-field calculaﬁions in the presence of an_appiied
field, the expressions for the X-surface and the lines of
tricritical points are determined. Higher harmonic components.
of the magnetization are calculated and their effect on the
location of tricritical points is taken into account. The
stability of the tricritical points is inﬁestigated in Sec. V
within the framework of the Landau theory of phase transitions.
In Sec. VI, results of the numerical c¢alculations in the |
modulated phase are presented, and the main features of the
effect of an applied field on the varioué commensurate
sfructures are examined. In Appendix-A the mean-field
solutions of the model in zefo £ield are compared to the
phenomenological Landau expansion, and the influence of umklapp
termsg on the commensurate phaseslgsldiscussed. The ground
state of the model is discusseéd in Appendix B. In Appendix C |
the spherical version of the model is studied, andLit is showﬁ
that in thisg casé fio trieritiéal behavior 6¢éuréa Finally, .

some conclusions are presentéd in Sec. VII.



II. MEAN-FIELD EQUATIONS -

We consi&éf é spin-l/é Isihg modél 6n a simple
cubic lattice with'exchaﬁge interactions _Jo betWe?h nearest _7
neighbors in the XY plane, and competiné interactions Jl
and J2 between first and second neighbors respectively along

the =z direction (see Fig. 1). In the presence of an applied

field H the Hamiltonian may be written as

1 .
ﬂ C2 Z {Jo UX'Y'Z OXil'yilrz * Jl UXerZ UXrYrZil
X,YrZ
J2 Ox;y,z Gx,y,ziZ} - Z H Ux,y,z' ' (11.1)

Xy Y,2

where we take the lattice sPaéing equal to unit, and the sums
are over all lattice sites. For definiteness we assﬁme
periodic boundary conditions, with pefiod N , along the three
directions.

The mean-field expression for the Gibbs free-
energy G(T,H,N) of this system may be derived via the
Bogoliubov inequali?:y14 |

il
'

G < & = G + <Jf-ﬂ4 , (IT.2)
—_ o o o) B

. where

G = - kT &n { ¥ eXp(-Bﬂo')} , j (I1.3) -
{o} '



B =1/kT , ‘j{o' is any trial Hamiltonian, the sum is over spin
configurations, and the aVefagé' <f{—ﬁ:5> is taken with
respect to 4{0.' In order to obtain the'mean-field approxi-

mation, we consider the free trial Hamiltonian

K = - 3 n o , | ~ (11.4)

O zZ . X 2
XY, 1Y

where n, is a variational parameter associated with the layer

z . With this choice of jﬁo we have

& = = kT N2 1 4n [? cosh Bn%] -
2
1 .2 2
-3Vl |:4Jo'mz oM ) P, (mz—2+’“z+2’]
+ N ) (nz -H) m ' ! : (II.5)

Z

where the function m, s that is, the average magnetization
per spin in layer =z , is given by

m = tanh Bn - R _ 0 (11.6)
zZ z _ ‘

A

i

The mean-field approximation is obtained by minimizing the

right—hand side of Eg. (II.2) with respect to the variational
parameters n_ . Therefore, the mean-field Gibbs free—energyi

is

Gyp (T/H,N) = ¢ , e '.(I_I_..'I)“'.




with the parameters n, given by
 =H + + ( : ' |
nz H 4J6 m, Jl(mz—1'+#3+l) * Jé(mz-z * mz+2) ’ (I1.8)

Substituting Egs. (II.6} and (II.8) into Eq.

(I1.5) we may write the mean-field Gibbs free-energy in the

form
-3 _ KT
N GMF(T,H,N,{mZ}) = - kT fn 2 + 3: g {(l-+mz)
In(l+m ) + (1-m) hl(l—m)}n-i-z {40 m?  +
z Z 2 2N Z o z-

+ J, m {(m
zZ z

+
1 mo)t *td

-1 2 -2 z+2

H
mz(mZ +m_ )} = z m, , (I1.9)
where mz is given by the solution of the system of N
coupled equations |

mz = tanh B Eﬁ + 4J0 mz + Jl(mz_l-+mz+l) +

+ 3, (mz_z\t+mz+2)_| . (11.10)

: A _
It should be remarked that this sqt of eguations admits, in
general, more than one solution. In this case a physically

relevant solution must be found which gives the lowest value

La--

for the mean-field Gibbs free-energy (11.9}.
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III. MEAN-FIELD CALCULATIONS IN ZERO FIELD

For the sake of_dOmpleteness, and to emphaéize
some aspects of our calculatidﬁs; Qé present in this chapter
a few results in zero field, some of which have been obtained
by a number of authors. It is.wéll known that the model system
may undergo a second order phaSe transition from a paramagnetic
to a sinusoidally ordered phase with varying periodicity. For .
finite N the values of the wave vector g are limited to
the multipies of 2n/N due to the periodic boundary conditions.
To allow for commensurate as well as incommensurate perio-
dicities, we must take the thermodynamic limit N>« . In
this case, which will be considered in our work unless other-
wise stated, the wave vectors vafy continuously in the first

Brillouin zone.

A. The order-disorder transition lines,

The transition between the disordered (HE =0)
and the ordered (m25£0) phases can be determined very simply

. from Eqg. (II.10).’ For small m, we have

mz = B |:4Jo II\Z + Jl(mz_l+mz+l) + J2'(m2_2+m-z+2)] . (III.1)

A

|

If we introduce the Fourier cbmponehts of m, ,according to

no o= Im ei®® | . (III.2)

where the sum is over the first Brillouin zone (-m<gZ<m) ,

I



Eg. (III.1l) yields

v

-~

mq 2 B JI(g) m (I11.3)

q"
where

Jl@) = 47 %+ 2J cos q + 2J

1

5 COS 2qg . ' (r11.4) -

As we decrease the temperature of the system, Eg. (III.3) will -
begin to exhibit non-vanishing solutions for a critical value
of g which maximizes J(gq) . Thus, the transition temperature

is determined by

kT = max {J(@)} = Jl@) .. (I1I.5).
c c :
q
The ordered phases just below the transition temperature are
shown in the diagram of Fig. 2. The modulated phase'near the .
transition tgmperature is characterized by the wave vector

qq given by

 cos q, = -_Jl/432 .; : - o _ (ITI.6)
whereas .qc==0 in fhe ferromagnetic phase:and; Qe =T in the
metamagnetic phase. o

| In-this work we consider mainly the cése
1 >0 and: J, <0 . The expressions for the transition
lines from the disordered to the ordered phases‘in the T-p

JO,J

plane (see Fig. 3), where p==-—J2/Jl , follow immediately from

Egq. (III.5). The field parameter p - measures thé competition



petween nearest and next-neéarest spins in the z direction. . -
For p<1l/4 the éystém Orders férromagneﬁically, and the

paramagnetic-ferromagnetic A-line is given’by',

= = : + = ‘ —_—
kT J(0) = 4J_ + 23, + 27, 4J0_+ 5

3. L
L g -2 b (111.7)

where Ap=p-1/4 . For p>1/4 , the system orders sinusoidally,

and the paramagnetic-sinusoidal A-line is given by

32

kT, = J(q) =49 - 27, i KT+ 163) 4p° + O(dp

3 . (I1I.8)

It then follows that both A-lines join smoothly at the Lifshitz

point (TL,pL) where pL==l/4 and
KT =4I+ —t . - . (1I1.9)

In order to obtain an asymptotic expressioh;'
close to the Lifshitz point, for the ferromagnetic—modulated
transition line, éhd to_exaﬁine the natureiof this transiﬁion,
we have to go beyond Eqg. (III.lj and consider the higher
harmonic components of!the magpetization per_layer. This will

be done in the next paragraph. y

i

|
B. Higher harmonic components of the magnetization.

The mean—field-#alﬁes-of the'magnetiZation per.
spin in a layer are given by the solutions of the set of
coupled equations (II.10). WNear the transition m,6 1is small,

and we may write the follOwing_éxpahsiQn,



_ =1 - 1 1 _
= tanh m =m + 3 mz + mZ + ... f (IIT.10)

A purely sinusoidal magnetization

m = Ml cos (qcz_+ ¢l) | (IIIfll)

is clearly inconsistent with Eq. (II1I.10). Therefore, we will

seek a solution in the form of a Fourier series

m, = Ml cos(qcz + ¢l) + M3‘cos(3qcz + ¢3) +

+ M. cos (chz + ¢5) + ... (IT11.12)

5
where, in this particular case, we need not consider the even
harmonic components. Also, the ccoefficients Mn are,'.for
convenience, supposed real. Substituting Eq. (III.12) into -
Eg. (III.1l0), and comparing the coéffibients of the same

harmonics, we obtain in leading order

N T 1/2
M, = 2 (1 - T ) » (III.13)
c |
. [ J(aqc)} b |
M, 3 1 Tlay) My . . (III.14)

__3}1\4; (II1.15)
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In general, the coefficient df'the n=th  harmonic term, where

_T)n/z

n is an odd integer, appfoachés Tc as (T . One of

e

the phases, say ¢, . is arbitxary,_but then the other phases
are determined by the ccnditidﬁ' o §

4, = Mgy F VT . (III.16)
where v is an integer. Expressions (III.13) to (III.15)
correspond to the choice v =0 . Strictly speaking, the phaée
¢l is fully arbitrary only for incommensurate wave vectors.
For commensurate wave vectors the expansion (ITI.12) is finite -
and the phase ¢l has to be chosen properly in order to
minimize the free-energy. This point is discussed in more
detail in Appendix A.

Close to the A-line, our results show that the
modulated phase is fairly well represented by a sinusoidal.
layer magnetization with wave vector qc + The higher harmonib
components contribute as pefturbations,‘and become more

important as we penetrate into the modulated region.

C. The first-order transition line.

In zero field the Gibbs free-energy may be

_ _ A
expanded as the following power serigs in m,

=34 =0 . N - - T
N GMF(T’H_O’N'{mz}) = KT £Ln 2.+ % ) { [?Jo m

- 2
: +
+ Jl mz(mz_l-+mz+l) + J2 mzﬁmz_z-kmz+2)] + kT m,

1 1 6 1 | o
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Decomposing m, in its Fourier components as in expression

(IIT.12), we may also write

= L e - s5ea )] o
N e = kT£n2+4[kT J(qc)_l My +
1 _ 2, 1 4
v 3 [kT J(3qc):| M2+ L okT (M) +
4 .3 1 6
+ §- Ml M3) + 9—6 kT Ml + ... . (I1II.18)

Since Ml is of order (Tc'-T)l/2 , and M,

need not consider the third harmonic component in the leading

of order Mi y wWe
aéymptotic expression of the free-energy, which is given by

(m) 5 _ _1 o T,2
s kT £n 2 3 kT (1 T)\) . (ITT.19)

N 3G
To obtain an expression for the Gibbs free-

energy in the ferromagnetic phase, we have to go back to Eq.

(I11.17) and make m =m for all =z. In this way we have

-3 - _ 1 2 kT [ 2 1 4
N Gyp = kT{"{nz 2J(O)m+ 5 E’a +6m +] '
A (III.20)
A
and in leading order
1/2 ”
m * /3 (1 - %E) . (III.21)
_ o

The leading asymptotic expression for the free-energy in the
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fervomagnetic phase is thus given by

-3 (£) _
N GMF

- XT £h 2= :1?: KT (1 - &) .  (III.22)
Equating the freeiénérgieS-(IIiil9) and (IXI.22) we obtain,the
following asymptotic expression for the ferromagnetic-modulated
transition line close to the Lifshitz point

2

kT, ¥ KT - (2 + v6) 16 J, &p ' (III.23)

where T, 1s defined by Eq. (IIT.7). This is a line of

first-order transitions, with a jump of the entropy given

asymptotically by

J
' N'3(s(m)-s(f)) x §v/6 Tl Aps, (III.24)
1 -

The three transition lines T_ ,'Tl and T, join with a
common tangent at the Lifshitz point, as depicted in Fig. 3.
Since it has recently been argued, on the basis

7,15

of Monte Carlo calculations’ , that the ferromagnetic-

modulated transition iine might be of second order near the
Lifshitz point, it is worth emphaéiz%ng the first order nature.
given by our mean-field results. Also, it is worth to remark
that the higher harmonic components have no influence either

on the critical lines (T  and T,) for H=0 , or on the
first-order ferro-modulated transition liﬁe 'I‘1 asymptotically

close to the Lifshitz point. However, not only .is T, affected
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- by the higher harmonic components when we are sufficiently far
from Ty, » but, more significantly, the nature of the transi-
tions may change in the presence of a magnetic field and the

higher harmonic compoﬁents.have to be properly considered.

This will be the main point of the next chapter.

IV. MEAN-FIELD CALCULATIONS IN NON-ZERO FIELDS

A. The order-disorder transition surface.

In the presence of a magnetic field, Eq.
(II.10) admits a non-vanishing uniform solution m, =M for

all 2z , which is determined by
' m, = tanh 8 |H + J{(0) mé} . (IvV.1)

At high temperatures this solution gives the lowest freefenergy,

that is, the system is in the paramagnetic phase. As the |
temperature is decreased, however, a nonuniform solution may
emerge with lower free—enefgy.. In the modulated phase and

close to the tranéition we may write | |

1
1

m = m +d&m o - (Iv.2)
e} -2 _ :

where 6 m, goes to zero as one approaches the critical
: .

surface. Substituting this expression for m into Eq.

(11.10) we obtain
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B_{4JO Sm, + Jl(sz_ +dém_ .} + J-(sz;z-f 6m2+2)} =

1 z+1l- - T2
1 : ;nb 2 IL+3mg-_ 3 ' '
= 5 sz + -——‘——2'2' (sz + ———-—-5—3' sz + ... (IV.3)
1-m (l-mo) 3(l-m0)

Now m, can be expanded in a Fourier series,

so that Eq. (IV.3) gives in first order

m = B(l-mz) J(g) m ’ ' (IV.5)
q o o |

q

which.is analogous to Eg. (III.3) of the last chapter. _The

critical surface is thus given by

kT
l1-m g

b

where m, is related to H by Eq. (IV.ls. Eq. (IV.6) shoﬁs
that the periodicity of' the modulated phase close to the
critical surface is a function‘of @pe parameter p only, that
is, it does not depend either on T ér on H . For small
fields, we may write the equatiqn for the critical surface in

the form : ' - o Lo

I '(IV.'”

sm. = )} m_ e , | (IV.4) .
q -

max J(q) = J(qcf ' ' - (IV.6) -
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which shows the usual quadratic depression of the critical

temperature by the applied field.

B. Higher harmonic components of the magnetization

As it was shown in the last paragraph, close to
the critical surface sz is determined by Eq. (IV.3). The
- solution of this equation can be sought in the form of a

Fourier expansion

6mz = MO + Ml cos (qcz-+¢l) + M

, Cos (chz-+¢2) +

+ M3 cos (3qcz-+¢3) + ... . | (IV.S)

where the even harmonic components should be duly taken into

account. For convenience we will assume that M0 MM

1
are real numbers. Substituting expansion (IV.8) into Egq.
~(IV.3), and comparing the coefficients of the same harmonics,

we cobtain in leading order

m_ B8J(g.)
My Y- 3 Sy M (1.9)
1- |
J(qc)

M2 - 5 J(ch Ml- ‘ } (IV.10})
e — -
J(g )

2,---'.
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22

_ 2 g J(3qg )q-1
-1 _ e, . 2, _
My 1 [B J(qc)] [l Tfﬁi;_ {(l + 3mo)

.J(Zq )41 ' '
2 C. . 3 .
- bm, [l - mJ(qc)]‘ } My ’ (IV.11)
and
M, ¥ % 2.[6 J( )]—l {1 - 3m% - om2 |: 27 (0) N
o e o - “o WTlg,) -T(0)
* SICH —J(ch)} [(l-mo) BIlq,) —1:| . (IvV.12)

In general the n-th harmonic coefficient Mn ; for n>2 ,

depends asymptotically on the n-th power cf M According

1"

to the discussion of the last section, the phase ¢l is

arbitrary, but the other phases are given by ¢n==n¢l .

C.  The line of tricritical points

In the previous paragraphs we have assumed that
the transition is always continuous. However, it may become
first order for high values of the’gpglied field and low
temperatures. To examine this possibility let us éonsider the

total magnetization

(Iv.13)

=
I
B~
=
ll
£~
5
_l..
o
=4
N
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In the paramagnetic phase sz==0 and we have simply
M - ¥ ' ' (IV.14)

whereas in the modulated phase amz is given by the Fourier

expansion (IV.8), so that
= + . J V .
M N (m Mo) (IV.15)

Eg. (IV.9) shows that m, and MO have opposite signs closel
to the transition surface. Accordingly, at fixed T , the
total magnetization of the system is élways smaller in the
modulated phase than in the paramagnetic phase. Both branches
of the total magnetiéation, in the MT~H"plane, meet with
different slopes at the transition point. A loop of van der
Waals, which characterizes the first order transitions, occurs
when the derivative (BMT,m/aH) calculated at the transition
point becomes negative. Therefore, the tricritical points are

located by the condition

aMT-m 3 o . . :
..........._...__.' = [+ ] .
[ oH )criti_cal _ . . _ (IV.16)
surface p
L
From equations (IV.9), (IV.12) and (IV.15) we obtain the

following expressions for the tricritical temperQFure and

field,

kT . T(2q ) .
tro- g - 27(0) c
! {3 +2[J(qc)-.-;r'(0). Y (e - I02q) } oy (IV.1D)
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KT =1/2 J(g.)
- - —tr 1 e |
thr J(0) E. T )} + 3 k Ttrﬂn kT <172 ° (Iv.18)
c 1= E:———Jﬁﬂ
Jla )]
In the vicinity of the Lifshitz point we may write
- 232 2 '
thr kTO + 15 J1 Ap K (IV.19)
and
J,\1/2 . .
~ 232 172 71 3
Her 1 {19 kTLJ Iy AP (1v.20)

These results show that, at the Lifshitz point, the two lines
of tricritical points have a common tangent with the lines
Tk(p) ’ To(p) and Tl(p), determined in the last chépter.
This feature of the tricritical lines can be seen in Fig. 4.
In general, the expression for the tricritical
_ temperature (IV.17) is not valid for all p , since it may |
become négatiVe for large p . It is necessary, therefore,
to investigate the stability of the tricritical points. This

will be done, in the next section, in the context of Landau's
A

H

theory of phase transitions. . |

V. THE LANDAU THEORY IN NON-ZERO FIELDS =

The mean-field expression for the Gibbs free-

energy is analytic in ém, , defined by Eq. (IV.2), and may be
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expanded in the form

N GMF(T,H,‘N,{SmZ}) =N "G, * ) { 5 [4;0 Sm_ +

+ 34 sz(dmz_l 6mz+l) + J2 6mz(6m2_2-+6mz+2)] +

1 2 1 3 1 4 1 5
= + = = =
+ 5 A sz 3 B sz + 7 C dmz + 3 D sz f
1 6 _
+ 6_E sz + ...} p | | I - (V.I)

where G0 A, B ,...., E are functions of T and H given

by
G = N3 f—kTﬂnZ +lkT (.l+m)£n (L+m )} +
o { 2 o o
+ (1L-m ) £ (l-m)] .- lJ(O)' mz} o (v.2)
Mo o o 2 o) '
A = —KT | o (v.3)
l-m
m" .
B = kT —=—0p o (V.4)
(L - m?) A
. o) o .
1+3m2 -
C .= kT - _ (V.5)
' 3(1 - n?) R ' L '
| ° S ]
m (1 + m2) I
D = k7 2 7 (V.6)

Y —m2
(1 mc)
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1 + 10m2 + 5m°
. . [0 JE @)

E = kT ) ' (V.7)

. =
5(1 mo)

By representing sz in terms of its Fourier components as in
expression (IV.4), we may write the expansion of the free-energy
in the form

....3 — :
N GMF(T,H,N,{mq}) = N "G -+

1
+ = ) [A—J(‘q )_l m_ m Alg, +g,) +
2 qpa, Vlay gy 12

1
+ip ¥ m m m Alg, +q,+qa,) +
3 o} q q 1 2 3
Qa9 L 2 73
+Ec ¥ m m_m m Alg, +q.,+q, +4g,) + ... (V.8)

RIRPECE)
where the A function, defined by

Ag) = § 8(g+2mm) (V.9)

n= =00

A _
expresses the wave vector conservation (modulo 2m) .
To obtain the expansion of G up to the sixth
order term in the order parameter, it is enough to consider up
: o

to the third harmonic component in 6mz . As in the last

.chapter, let us call



m =M ; 2m . =M"‘e (n>1) . (V.10)

where, for convenience, M , M. , M, ., ...  are supposed real.
: o] 1 2 : .

Disregarding the possibility of umklapp terms we have

* % Ay M§_+ % B3 Mg + B {% Mi *
+ % Mi'M2 cos (¢2-2¢l) + %.MO Mi +
+ % M M2 + %‘Ml Mé.M3 cas'(¢3-¢2f-¢l>} +

3 4 3 2 2 2
+C {35 Mg M M gy My
1l .3 \ 3 2 ,
+ 3 Ml M3 co_s(<b3 3¢1) + ZMO M_L M2 cos (.¢2 2¢l)} +

1.4 _ ' _3_ A =3 : .
+ D [ZMlMZ cos (¢2- 2_4)]_) +8MQ'M1}+9_6_EM:|. ' .(V.ll)

y
i
'

A = A-Jg) . R w12

L--

The minimization of G with respect to Mo ' M2 and M3

gives
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Mo ao Ml ?0 M1 o o - ‘ (v.13)
- 2 4
= +
M % g M3 | (V.15)
3 3 l 14 . -
where
.. B ‘
ao = T3n ' (V.16)
O
1 6BC 3BC 2B3 B3
by T ®@m {A YA, T2 T 3T BD} ' v.17)
o] 0 2 AO A2 
'_ 5 _ |
a, = T ' (v.18)
2
. 1 (6BC . 6BC  2BC  4B3 43
b2 = 82 {.A + 2 + ~. " LA - AR - 4D} ’ (V.19) .
2 o) 2 3 o 2 273
- L (2B _

The phase ¢l is arbitrary, but thélother phases are fixed

according to ¢n==n¢ Inserting expressions (V.1l3) to

-
(V.15) into Eq. (V.11l) we have the expansion

3 3

- - - 2
- = . -+
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o 4 8 o - : -
where
c. = Ea (V.22)
2 7 % ’ .
c =_Bzg+_l_].+_3_c- v.23)
4 16 {a A 32 :
o 2
4 2
B 2 1 1 B°C (6 6 3 2
C. =-= + 4 — + 2% 122 4=y -
6 16 [ 2 ) ] 32 [ 2 AA 2 A
SO W SO v 2 A Ahy
BD [3 2) c2 5
S22 A - = 2B . (V.24)
16 \a; = &, 64a, ~ 96

The critical surface and the lines of tricritical

points are determined by the conditions C2==O with Cy >0 ,

‘and 02==C4 =0 with C6 >0_,'respectively. Needless to say, .

in this way we obtain the expressions which had already been

calculated in the last section. The condition C6 >0 ceases

to be satisfied for a sufficiently large value of the parameter

p . When C,=C,=C,=0 and Cg >0 a new kind of multi-

critical point emerges, which corresponds to the limit of
A
stability of the line of tricritichl pointsl3. In the

particular case Jo==J1' this multicritical points was found
to occur at p=2.946... . For still larger values of the
parameter p the syétem exhibits two distinct endpoints,
namely, the critical endpoint and the bicritical endpoint, in

analogy with metamagnetic systemsl3._ This behavior was
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observed in the numerical calculations for the case p=4 , as

will be discussed in the next section. ' ;
Finally, we observe that when umklapp terms are

present they should be taken into account. However, for the

particular case J1>0 in which we are interested, the umklapp

terms have no influence on the locaticon of the tricritical

points.

VI. NUMERICAL RESULTS IN THE MODULATED PHASE

In the preceding sections we have examined the
properties of the model near the critical surface. It was
shown that the modulated phase in this region is a distorted
sinusoidal wave with the periodicity determined by the parameter
p=?—J2/Jl . As the temperature is decreased, however, transi-
tions may occur to other modulated phasgs. Indeed, at zero
field, it is known that this model presents a large number of
distinct modulated phasesg'g. In this sections we show,
through numerical calculations, the main‘features of the
effects of an appiied field on the modulated phases.

Withiq theAmean—field approximation, . the problem
consists in the solution of the infinite number of coupled
nonlineér equations (II.1l0). .Siﬁée\it is not possible to obtain
& general analytic solution, we have to resort to numerical
calculationsg’ll. Let us suppose that the sclution is periodic with a

-
periodicity of I lattice spacings. With this assumption,

the infinite system of equations (II.10) reduces to a system

of L coupled equations, which can be solved self-consistently.
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As initial.configurations we may use sinusoidal structures with
different periodicities. In this way periodic solutions with
periodicity L are obtained. In the calculations we
restricted Qurselves fo the particular case JO==J1>O ' J2<O p
and H>0 . Moreover, we considered only periodicities of up
to 20 lattice spacings, that is, we examined solutions with
wave vectors of the form gq=2mK/L , where 0 <K<L<20 .
Among the various solutions found for a given point in the
T-p-H space, only that one which minimizes the free-energy is
physically relevant. Needless to say, the procedure just
described does not take into account all the possible
commensurate phases, not to mention the incommensurate ones.
Therefore, our results are limited to the main commensurate
phases, and it is to be understood that in between them there .
may exist ofher commensurate or incommensurate phases.

Some of the average spin configurations found
in the presence of a field are shown in Fig. 5. Fig. 3a shows
the average spin configuration of the modulated phase with wave
vector q=27r/5 . To better characterize this phase we will
adopt the notation <32> , which means that three planes with
spins predominantly parallel to the field are followed by two
planes of spins prédominantly antiparallel to the field8 .
According to this notation, Eigéﬁ %b and 5c¢ correspond to the
average spin configurations of the modulated phases
<3332> = <332> and <32332> . The continuocus curves

-
superimposed on these figures show the sum of the zeroth and

the first harmonic components of the magnetization. It is

‘clear from these figures that the magnetic field has the effect
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of inhibitihg the occurence of antiparallel sﬁins, thereby
producing a net total magnétization parallel to the field. It @
can also be seen that there are, in general, significant |
contributions.of the higher harmonic components to the
magnetization.

Phase diagrams in the T-H plane, for three
representative values of p , are shown in Figs. 6, 7 and 8.
In the caéé p=0.4 , shown in Fig. 6, the ground state is
ferromagnetic, and thg modulated phase is limited to a hump-
-shaped region which is stable only for small fields. This
observed behavior for p=0.4 1is characteristic of all T-H
phase diagrams for which 0.25<p<0.5 . 1In the case p=0.6,
shown in Fig. 7, the ground state in the modulated phase is
the (2,2) antiphase state, denoted by <2> in the notation
introduced previously (see Appendix B}. Notice that the
modulated phase is dominated by the simp%e commensurate phases
with wave vectors g/2m7=1/4,1/5,3/16 and 2/11 . it is
interesting to observe that thé modulated phases <3> and
<235> are limited to a small region of very weak fields. This
fact is probably related to the non-monotonic behavior of the
wave vector for p=0.6 and to the bulging of the phase <3>
observed in the T-p phase diagramg. Finally, the T-H
phase diagram for a large value ofxtme parameter p , hamely
p=4 , is shown in Fig. 8. We can observe that the modulated
phase is overwhelmingly dominated by the (2,2) antiphase.

Lo

Indeed, in our numerical calculations we did not find any other
phases except the (2,2} antiphase. This is due to the limita-

tions of the numerical calculations discussed previously, since
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we know that close to the \-surface the modulated structure
has the wave vector determined by Eg. (IV.6).- Furtherﬁore; a
detailed numerical study near the A—surféce was hindered by %
the fact that the COhVergence of the numerical process may 1
becone very slow. The fact that the phase diagram for p==4:‘ ‘
is almost fully occupied by the (2,2) antiphasé is not
surprising, since for large p the model can be imagined as'-
consisting of two weakly coupled interpenetrating metamagnetic
systems. Notice that in this case the first-order transition:
line does not meet tangentially with the A-line, but it
penetrates into the modulated region, becoming a line of ‘'
coexistence of two (2,2) antiphases. The endpoints of the
A-line and of the first-order transition line are the critical
endpoint and the bicritical endpoint,'respectively, in aﬁalogy
with metamagnetic systemsl3_

The behavior of some thermodynamic functions
when the system passes through different modulated phases was
alsd examined. Fig. 9 shows the graph of the enfropy as a
function of temperature for zero applied field and p;=0.6
" It should be remarked that in between the main commensurate
phases the system undergoes a number of first-order phase '

transitions to other less stable commensurate phases. It has
A

1}

been suggested that the corresponding curve of the wave vector
as a function of temperature could be an example of the devil's

staircaseg’ll.

This means that the wave vector as a function
of'température would_be,‘for a certain temperature interval, -
continuous, monotonic and with zero derivative almost every-

—where'®. Whether this model cah diplay a true devil's
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staircase behavior or not has been a subject of various

studie58’17'18

, and it is not our intention to deal with this ‘ .
complex and subtle problem. In any event, there is no possi- | %
bility of identifying the true devil's staircase numerically, i
and our use of the term devil's staircase does not imply that

we are claiming to have found a true devil's staircase as |
defined by the mathematicianslG. In Fig. 10 we show a graph

of the magnetization as a function of the applied field for

p=0.6 and (kBT/Jl) =2.,75 . By refining the numerical

calculations between the commensurate phases <2> and <32> ,

a number of other modulated phases were found. Therefore, the

devil's staircase picture is likely to hold as a function of

either temperature or applied field.

VII. SUMMARY AND CONCLUSIONS

We have studied a layered Ising model with
competing interactions between nearest and next-nearest layers
in the presence of an applied magnetic field. All the
calculations were performed within the mean-field approximation
in which distinct effective fields are assigned to each
plane- The A—surfaceﬂ and the ordered region just below it,
were studied analytically by means/Pf the standard mean-field
technigues and the Landau theory of sécond-order'phase
transitions. The modulated structure near the l-surface is a
distorted sinusoidal wave with a period determinedi-by the
ratio p of the competing interactions. Commensurate

structures, in which the period is an integral multiple of the
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lattice spacing, are pinned to the lattice by the umklapp
terms, whereas incommensurate structures can undergo a free
‘translation relative to the lattice without changing the free-
-ehergy. Both odﬁ and even higher harmonic components are
present in non-zero fields, as opposed to the case of zero
fields where only odd highet harmonic components are present.
The n-th order harmonic component depends asymptotically on
the n-th power of the main harmonic component. The )-surface
is bounded by two lines of tricritical points which join
smoothly at the Lifshitz point and end at multicritical points
fbf a particular value of thé parameter p , beyond which lines
of cfiticai and bicritical endpoints are expected to appear.
The modulated phaées at.low temperatﬁres.were studied by means
of a direct numerical analysis of the mean-field equations;
Some modulated phases which.aie present at zero field were
found to be stable only for very weak fields. The modﬁlated
phases.in the T-H plane for 0.25<p<0.5 are limited:fo a
hump-shaped region, while fdr larger values of the.parameter'
p they become increasingly dominated by the (2,2) antiphase.
The devil's staircase behavior is likely to occur either as a
function of the temperature or the magnetic field. At least
in principle, some steps of the devil's staircase should be
amenable to aﬁ experimental obsérvhtion, in the magnetization
measurements, as a series of first-order transitions taking
place in a very narrow field interval. Finally,Lﬁe would like
to point out that our results have the well known defficiencies

of the mean~field theories. Moreover, the numerical calculations
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are further restricted by the fact that only the main.commen—

i
surate structures were taken into account. Notwithstanding -{
these limitations, we believe that ﬁhe main qualitative
conclusions, in particular those concerning the phase diagranms,

. are correct.
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APPENDIX A - THE LANDAU: THEORY IN ZERO FIELD . .

A.l - Results near the Lifshitz point.

Magnetic systems with uniaxial spontaneous

magnetization were studied by Michelsonlg, in the vicinity of

the Lifshitz point, on the basis of Landau's' theory of second-

order phase transitions. The Ising model considered in this
paper is probably the Sihplest péssible realization oflaw'
uniaxial system exhibiting a Lifshitz point. To facilitate
the comparison, we will obtain the phenomenélogical coeffi—
cients of Michelson's work as a function of the microscopic
parameters of the model.

Substitution of the Fourier decomposition of
the layer magnetization (III.2) ipfo_thé expansion of.ﬁhe

free-energy (III.1l7) gives

N3G = - kT fn2+ § % [k_T.—J\(q)] m, T A(‘ql'+q2) +
R - T-= R ) My oo M, Ayt -
: n52 5 qlf""q2h 9 _ Qn v B

A : (A.1)

Near the Lifshitz point the umklapp ‘terms can be neglected.

Hence we have



N3G = -krtn2 +2]A g+ 3B T moo..omo o+
_ g9 T gyt et =0 9 9y
AR
S _ o S
+ E-C 3 m ...m o+, y (a.2)
q1+..,'|-q6= 1 9 - :

where, in Michelson's notation,.

Aq = kT - J(gq) = Ao'%'aqz + % Bq4;+}.f. v
a_ = kT - (4Jo + 2J1 + 2J2)_ S
a=J, (1~ 4p) o
B = - % J, (1 - 16p) f
B'= 1 kT ; c'= kT . S

The properties of the model near the Lifshitz point are
described by Michelson's results with the coefficients of the

Landau expansion given by Egs. (A.3).

A.2 - Effect of the umklapp'termsﬁ N

Away from the Lifshitz point, umklapp terms may
become relevant for commensurate wave vectors. Irideed, as
pointed out in section III.B, ﬁmklapp terms‘afe respongible

for the pinning of commensurate phases with respect to the
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lattice. To illustrate this point, let us consider, for
instance, the commensurate phase with wave vector qc==ﬂ/3 .
This phase is realized, below T, , for p=1/2 . For thisg
value of q. the magnetization may be written as the finite

Fourier series

where only the odd harmonic components are present. By
substituting Eq. (A.4) into Eg. (A.l), and keeping only the
terms up to sixth order we obtain

-3 1 2 1 2

N "¢=-%kT in2 + E Al Ml + 5 A3 M3 +

1 3 .4 3
+ 1z kT {8 Ml + M3 Ml cos_3¢l} +
1 6 6 |
+ §€6 kT {lOMl + Ml cOSs 6¢l} + ... P (A.5)

where An is defined in Eq. (Vv.12), and as usual we have put

.
3
i
=
®
g
!
|
=
w

Now, the minimization of G with respect to M3 gives in

[

leading order

kT 3 :
N o ; . o7
M3 12A3 Ml cos 3¢l ’ ) (A.7)

(A.6)'
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and the free-energy expansion takes the form

30 = - L 2, L 4
N G = kT £n 2 + a Al M1 { 35 kT Ml +
1 1kT 1 1XkT 6
+ 192 kT {2 —3- -Zg + ['S- 3 A3} CcOs Gd)l} Ml + ... (A.S)

The phase ¢l has to be chosen so as to give the lowest
possible value for the free-energy. The above expansion shows
that, near Td ’ ¢l is determined by the sixth order term
accoraing to the sign of

Jo

4 .8
i5 ~ 27

~
~

. (A.9) ;

Lafb-
Pl

|
w

-

1

Thus, for JO >0.30 =0 (mod m/3) whereas for JO <0.3J

1’ ¢1 1’
¢l==ﬁ/6 (mod m/3). '
Generally speaking, commensurate phaées of the
form q =27K/L are pinned with respect to the lattice by the
L-th order umklapp terms. For incommensurate wave vectors, |
the phase of the main harmonic component is arbitrary, and the

modulated phase can undergo a free translation relative to the

lattice without changing the free-energy
A

v

|

APPENDIX B - GROUND STATE
-

The ground state of the model, in the mean-
field approximation, can be determined by minimizing the zero

temperature free-energy
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-2 . __l '
N GMF(T=O'H'{m2}) ==-3 ; {4J m + J1 m. (m 1 mz+2) +

+Jy mﬁ( 7= 2 z+2)} - H g m, ro (B.1)

where the layer magnetization m, is limited to the values
+1 . Since the spins-in.each,léyer_interact ferromagnetically, -
expreséion (B.l) also gives the exact ground state energy of .
the model. The problem of finding the ground state reduces,
therefore, to that of finding the ground state of the one

dimensional Ising model described by the Hamiltonian

: N
j{ =~ ] (J) 9, gy * T3 95 Tpuy T HOY) ! (8.2)

where o, corresponds to m, - This problem can be solved by
the transfer matrix method or by a direct counting of possible
spin arrangementszo. The latter method gives for the ground

state energy per spin the result
E = min {E+ » €_ E+" . E#P— , e+_+ . E+__+} (3.3)

where
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€= I 79

€, = I+ Jé + H)/3
T B R P H) /3

€oeer T 93 _ _ (B.4)

The ground state spin configuration is a sequence
of groups of spins as indicated in the index of the minimum €.

For example, if € ___,  has the lowest energy, then the ground

state is the sequence +-—-++--+... , that is, the (2,2) anti-
phase state. The possible ground-states in zero fields are

shown in Fig. 2. The ground-state is metamagnetic for Jl <0

and J2 >0.5 J, , ferromagnetic for Jl >0 and J2 >=-0.57J

1 1’

and the (2,2) antiphase state for J,<0 and |J1|<2|J2| .

For arbitrary H and Jl >0 , the ferromagnetic and the (2,2)
antiphase states are the only possible ground states, as shown 
in Fig.lll. However, we remark that for J1 <0 other ground -
states are possible.

0f particular intereét are the transition lines.
separating the (2,2) antiphase from the ferromagnetic phases
in Fig. 11. On the transition line H==Jl(-l-%2p) >0 we have

A

e+ = E+__+ , and infinitely many éround states can be

constructed from the arbitrary arrangement of groups of spins +

and +--+ . The ground state degeneracy Dn , in the thermo-

[

dynamic limit, is given by
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¢im £ 0D, = &nx = 0.32228... , (B.5)

N--co

where x is the solufion of the quartic.equatién x3(x-l)_=14
Due to symmetry, on the transition line H==Jl(l-2p5 <b we
have the same gfound state degeneracy with the possible ground
states constructed from the arrangements of groups of spins -
and -++- . Finally, on the point of intersection of the two
transition lines, that is, at the multiphase point (p,H) =

= (1/2,0) , the ground state is eﬁen more degenerate. Possible
- ground states have a sequence of at least two "up" spiﬁs
followed by at léast two "down" spins. The ground state
degeneracy D is given by the recursion relation of

N .
Fibonacci's sequence, and one has in the thermodynamic 1imit15,

£im %

N—>co

= 0.48121... (B.6)

2

We can observe that there is a residual entropy on these
transition lines in the case of one dimensional systems, but

not for higher dimensional sYstems.

APPENDIX C - THE SPHERICAL MODEL
: 1

~ The spherical version of the Ising model -
considered in this paper exhibits a Lifshitz point, and its
; ol
multicritical behavior was analysed in detail by Hornneich

et alzl. In view of the results obtained for the Ising model,
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it is instructive to consider the spherical version in the

presence of an applied field.

The mean~spherical model partition function

1522

4o .

. _ : . |
— _ ) _ _ 2 :
- (B,H,u) = HZ ]J doxyzlexp[ Bﬁ( Bu EZGXYZ]' R (C.1) | f

-0

where }ﬂ is the Hamiltonian (II.1l) but with the spin variables
ranging from -« to +« . The chemical potential u should

be determined from the so-called spherical condition

3

] .
Ea_ﬂn = N (C.2)

A

[}
a

A4

il

!
w| -

~—
—t

As it is well known, at and below the transition temperature

the chemical potential sticks to its critical value, which is

given by
_ ]_l+'._l+
H, o= max {2 J(q)} = 3 J(qc) ’ - (C.3)
q : ‘
where
A
1
>y + + ' .
J(q) 2Jo(cos q, *cos qy) + 2Jl cos q, 2J2 cos 2qZ

(C.4)

Here we'will 1imit ourselves to the case JO'Jl >0 , J2 <0 ,
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and, as usual, introduce the field parameter 'p==--Jz/J1 . .Then,

as in Sec. ITII, we have a ferromagnetic ordering ;30.50' for
p<1l/4 , and a modulated ordering §¢==(0,0,qc) , with qc
given by Eq. (III.6), for p>1/4 .  The Lifshitz point occurs
at p=1/4 . The paramagnetic-ferromagnetic A-line. in zero

field, To(p) , is given by

kTO(p)

3> '
J 4d . =1 . (c.5)

(2m) 3 J(0) -J(J)

No phase transition occurs for p<1/4 in non zero-fields.
For p>1l/4 , however, there exists a phase transition even in
non-zero fields. The paramagnetic-modulated A-line becomes

the A-surface Tl(p,H) determined by

42 KT, (p,H) I a3

> ‘ + 1 . (C.6)
@) -a@]* (2m)3

3 - 3@

The net magnetization per spin in the paramagnetic phase is

H ' :
M = i ’ ’ (C -7)
2[v - 2 5] | | |
A
|
whereas in the ordered phase
. | .
M = . (C.8)
2[Pc - % J(G)] |



Ak %he- t;F'ah s:L tion surfaecesyplistequalstor uc 4 «Therefore,nis
the~magﬁét;§ati@hxvariesacontinuou51Yﬂthroﬁghwthéitransitibnuﬁ
surface,iwhich égnfirmSPigé second~order nature.: The noh-' *

existenceiof tridritical behavior is not surp¥iging, 'since.’::
' 23,

this&is;alﬁeadyitheicaseﬁoﬁ%aﬁmetamagnetiCﬁspheficélﬁsystem
The form of the A-surface is given by Eq:: {Ci6), which may.oi%

also be written as

Ty (pH) oL ) E

Eg.(C: 9} :émphasizesy;: fors fixediwpy;sthe. usualparabolicrshape

of zthestransition iinéiibundwinwsphericalﬁmﬁdelsb

e
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FIGURE CAPTIONS

FIG.1

FIG.2

FIG.3

FIG.4

Ising model with ferromagnetic coupling Jo within
each layer and competing couplings Jl and J2
between nearest and next-nearest layers, respectively.

Projection of the regions of ordered phases found at
T==Tc and T =0 , in zero field, onto the J2 vs. Jl
plane. The solid lines separate the three ordered
phases found just below T, » whereas the dashed lines
separate the ferromagnetic, metamagnetic and (2,2)
antiphase states found at T=0 . Jl 1432 =0 are
projections of the lines of Lifshitz points, while

Jl i2J2==0 are lines of multiphase points.

Phase diagram of the model near the Lifshitz point
(TL'pL
The dot-dashed line is the projection of the tricritical

) , as determined from the asymptotic expressions.

lines on the T-p plane. The insert shows a larger
region around the Lifshitz point (LP), for the case
J =J, , which separates the paramagnetic (PM),

o 1
ferromagnetic (FM) and modulated (M) phases.

Phase diagram of the model for the case JO==J1 ;, in
the presence of an applied magnetic field. The dash-
-dotted lines of tricritical points separate the

second~order transition surface from the first-order

transition surface (indicated by dotted lines). The

lines of tricritical points end at p=2.946... . For
larger values of p , lfhe?_of critical and bicritical
endpoints, which are not shown, are expected to appear.
Inside the modulated region there exist many distinct
modulated phases, but they are not shown in this

[

picture.



FIG.5

FIG.6

FIG.7

FIG.8

FIG.9

FIG.10

Various plots of the magnetization per spin in a layer
mz , as a function of the layer coordinate 2z , which
were found numerically for the case Jo==Jl in non-
-zero fields. The continuous curve represents the sum

of the zeroth and first harmonic components.

Temperature vs. magnetic field phase diagram as
determined numerically for the case JO==Jl and
p=0.4 . The heavy line is a second-order transition

line ending at the tricritical point (TCP).

Temperature vs. magnetic field phase diagram as
determined numerically for tbe case J0=:J1 and

p=0.6 . The heavy line is a second-order transition
line ending at the tricritical point (TCP). The insert

shows the details around the phase <3> .

Temperature vs. magnetic field phase diagram as _
determined numerica;ly for the case JO==Jl and p=4.
The heavy line is a second-order transition line
ending at the critical endpoint (CE). The insert
shows the details around the bicritical endpoint_(BCE),

which was determined numerically.

Graph of the entropy as a function of temperature in
zero field for the case JO==J1_ and p=0.6 . The
insert shows Fhe details of the transition between the
phases <2> and <3> .

| /
Graph of the net magnetizatibn per spin vs. applied
magnetic field for the case JO==Jl ;, p=0.6 and
kT/Jl==2.75 . The insert shows the details of the

transition between the phases <2> and <32> .



FIG.11

Ground-state of the model in non-zero fields for the

‘case J, >0

1 . The (2,2) antiphase state is separated |
from the ferromagnetic'phases by the lines_'H=_Jl-G¢rl)L
which meet at the multiphase point (MP).
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