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ABSTRACT

Using a very simple type of Waveepacket which are obtained
by letting unitary displacement operators having as generators cano-
nical operators a and E in ﬁhe many-body Hilbert space act on a
reference state, we investigate the relationship between the semi-~
classical and the generator coordinate methods. The semi-classical
method is based on the time-dependent variational principle whereas
in theegenerator_coordinate method'the wave—packets are taken as gene-
rator states. To establish the equivalence of the two-methods, we
examine " in detail, using £oels developed in previous works, the
concept of redundancy of the wave-packet and the importance of the
zero-point energy effects. We make a numerical appiication £o the

case of the Goldhaber-Teller mode in “He.
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1) INTRODUCTION

" The objective of a micréscopic theory of collective motion
igs to reduce the many body problem to a description in termg of only
a émall number of degrees of freedom. In the idealized case one suppo-
ses that there exists an invariant subspace of the many body Hilbert
space, the collective subspace, in which the collective and intrinsic
degrees of freedom are decoupled. The base states in this subspace
are product type wave-functions where the intrinsic degrees of freedom
are constrained to be always in one intrinsic state only. The dyna-
mics in the collective subspace is determined by the collective hamil-
‘tonian which is equal to the expectation value of the many body
hamiltonian in this intrinsic state. One way to perform the explicit
gseparation of the_collective degree of_freedom is, in the case ocf a
cononical collective degree of freedom, by tﬁe introduction of a
canonical transformation in the many body Hilbert space from the
microscopic degrees of freedom to collective and intrinsic ones. This
canonical transformation allow us to write the many body hamiltonian
as a sum of a collective hamiltonian ﬁc (which depends on the collec-
tive degfee of freedom only), an intr¥insic hamithnian, and a coup;ing
term between the intrinsic and collective degrees of freedom. In’
the idealized case, this last term does not couple the collective
to the noﬁ—collective sta%es. HoWever in practice the difficulties
associated to the explicit use of Ehe4canonica1 transformation lead
many authors to present theoriés ﬁhich éry to find ﬁC in an indirect
~way by means of a collective pathl. The collective path is a set of
slater determinants labeled by two parameters, [pq >, 1B the case of
a dynamical collective path and by oné parameter |g>, | g>= | p=0,9> ,
in the case of a static colléctive path. The dependence of the wave-
packats on p and g are constructed so as to refledt the distortion
of the system dﬁring the COllectivé.motion and they are, in general,
equal to the expectatioh vélue on the waﬁefpacket lpg> of dynamical

' variables defined in the many-body Hilbert sPace,'

o
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" <gp|Q|qp> | | ‘
- , : - (I.1) |
<ap [P|ap>
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and these dynamical variables satisfy the weakly canonical commutation

relation

<pa|[8,P]|pa> = i | (I.2)

It is important to point out that the dependencé of lpq}
on p describes the velocity dependence of the wave-packet and it is
not introduced in the sense of describing an additional degree of
freedoml. Thus, the parameter p is thaught to be associated to a
degree of freedom canonically conjugate to the one associated with
P the parameter . One uses different prescriptions to determine the
coliective path which rangeé from self-consistent methods to educated..
guesses based on phenomenological.considerations.

| The differences between the theéries considered in this
paper stems from the way that they use the collective path.

In the generator coordinate method kGCM)3, as used in
practiée, we select a subspace of the many-~-body Hilbert space which
is spanned by the states ﬁhichene constructed as a linear super-
position of the states along the static collective path |g>

'
1

l£> = fdg £(q)}| g > _ _ {(1.3)
A :

!

" The only unknown in eq. I.3 is the weight function f(gq)

which is determined by the variational principle

L--

sg = OS<ElHIE>

<flf>

<

resulting in the Griffin-Hill-Wheeler (GHW) integral equation for

f(q)

f(<qlt|q'> - B<q|q'>) £ (q') dg' =0 (1.4)
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There are many ways to transform the GHW equation, é&q. I.4, into &

Schroedinger type equation in a “cOllective“ coordinafe;(howeVer,

in general, this Schroedinger typé equation has a “VélocitY“ dependent

potential and a "maSSHpafameter" which depen&s on the cdorﬂihate).
This Schroedinger type equation defines the collective hamiltonian

H_GCIV.[

c of the generator coordinate method.

On the other hand, the semi-classical method4 uses the

dynamical collective path |pg> . One finds the time-evolution of

the wave-packets through the use of the quantum variational principle

t
2 > ~ .
I = & f (i<pq|Btqu>—<pq[H|pq>)dt =0 (I.5)
tg -
with fixed end point variations. As long as the wave-packets fulfill

the relatioh
i< <3+ — 0<a-> > =1
pq | 59 £02 |pa

the variational principle I.5 leads to the classical hamilton egs.

CL CL

(p,q)/B‘q g = oH (p,q)/ap (1.5)

where the classical hamiltonian HCL(p,q) is edqual to

1
H

5" (p,q) = <palHlpe> A (1.7)
In the semi-classical method we éré not interested in
the time—évolutiOn of the wave-packets. Indeed in thiéyﬁethod one
uses the wave-packets |pq> as-proﬁés to‘extract.the claséical limit
of the guantum collectiveé hamiltonian. Thus in the semi-classical
method we identify the classical hamiltonian HCT(p,q) with the
2

‘classical limit of the quantum ¢6llective hémiltoniaﬁ"Hc . The

gquantum collective hamiltonian is recdnstructed by a requantization

-~

procedure.
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These two methodé are conceptually and practically différeﬁt
and when‘it is discussed in the literature its advantagés and disau_'
dvantages the point of view usually adopted is that with respect to
the dynamics the semi—cléssical method is superior to the GCM since
it uses a dynamical path as opposed to the GCM which, in general,
uses a static collective pathl. An_example which is always presented
in suppbrt of this point of view is the case of translation of the
nucleus as a whole where the mass parameter.calcuiated acéordingr
to the_semi—classical method has the correct value, whereas the‘value
given by the GCM is in general incorrect. The disadvantage of the .
semi-classical method is that since one always reaches a "classical™”
stage it incorporates in a wrong way the effects associated with the
zero—-point motion of the wave-packet |pg>. However these effects
are handled in a correct way in a purely qguantum method as the
generator coordinate method. Therefore a generalization of the GCM
which incorporates the advantages of both methodé, as used in prac-
tice, is tb.use as generator states the states along the collective

path, |pg> . 1In the literature the GCM which uses dynamical wave-

- packets as generator states is called dynamical GCM,DGCM,as opposed

to the ones which uses'static wave-packets called static GCM, SGCMl_
In general the DGCM is an inprovement both with respect
to the SGCM and to the ;emi—classical method. However in referencé
1 it is investigated under what comdﬁtions th: description of the
dynamics according to three methods agree. 1In this work they come
out with two basic requirements in order to make the three methods
equivalent: o
a) the dynamical wave-packets |pg> should be redundant
i.e., the collectivé_subspace associated by the GCM to the static,

|q> and dynamical, | pg>, wave packets are identical.

b} the dynamical effects of the zero point energy are

-negligible.

The idea behind reguirement a) is the observation that
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the parameter p is introduced to describe a dynamical variable cano-
nically conjugate to the one associated with the parameter'q. There-
fore both wave—paékets are thought to descriﬁe the distortion of the
system along one canonical degree bf freedom. This implies that the
subspaces associated w&th the DGCM and SGCM should be a Hilbert spacé
spanned bf this degree of freedom and thus identical. Once this re-
quirement is satisfied the condition b) is nothing.more than the re-
quirement that the dynamical wave-packet is ablé to extract the
clasgical limit of the guantum collecfive Hamiltoniaﬁ of the GCM.
Differently from Qhat was done in reference 1, the aim of our paper
is to investigate these guestions using a very simple type of dynami-
cal wave packet, which is obtained byrletting unitary displacement
operators having as generators canonical operators in the many-body

Hilbert space, act in a reference state

) « a A
e—qu epo|0>
(I.8)

This, we think, will illuminate many. aspects of the

relationship between the semi-classical and the generator coordinate

methods and will shed new light on the understanding of this relation-

ship in the case of more ¢omplex types. of ane—packetsl.
~The semi-classical method is presented in chapter II.
' A
The generator coordinate method is- presehted in chapter III, and we

show, using the techniques developed in references 8,9 and 10, how

we can- -handle the overcompleteness of the dynamical waqgfpackets | pg >

in DGCM. Also we show how we can define the collective hamiltonian
and collective operators. Iﬁ this.chapter the relationship between
‘the subspaces associated with the stéfid and dynamical wave-packets
is also discussed. 1In chépter IV we compare the methods and we méké

a numerical application to the Goldhaber-Teller mode in "He which can

be described by a wave-packet of the type shown in eq. I.8. In chap-

ter V we present our concluding remarks.



1T} THE SEMI-CLASSICAL METHOD

As was pointed out by many authors®7>1®

the evolution in
time of quantum many-body systems can be determined by a variational
principle analogous to the hamilton principle of classical mechanics.

The lagrangian, which is a functional of |[¢(t)> and its

hermitian conjugate 'is equal to
LY, %) = i<p(t) |7 |w(t)> - <y(t) |H|y(e)> (I1.1)

and the equations of motion are found by requiring stationarity of
the action with respect to fixed end points variations of |y ({t)>

and |¢(t)>*,

t ) . |
ST =8/ (i<u(t) [9(t)> ~<y(t) [H[p(t)>)at = 0 (II.2)

£

subject to the conditions
|aw(tl)> = 16¢(t2)> = 0

As an example, if we impose that |y(t)> varies only in
the space of Slater dete;minants eq. II.2 leads to the TDHF eQuations
26 ﬁhich in the small émplitude approximation is equal to the RPA.

What is called the semingqssical method in the litera-
ture4 and in our paper amounﬁs to consider restricted parametriza--
tions of |¢(t)> in terms of (in the case of one canonical collective
-degree of freedom} dynamical wave-packets |¢@ﬁt),q(t;; . The depen-
dence §f the wave-packet on g(t) is supposed to describe the distor- |
tion of the system during the collective motion and the dependence
on p(t) describes the "velocity" dependence of the dynamical wave-
packet. These dynamical wave-packets can be chosen in various ways

which ranges from self-consistent methods (like TDHF and CHF)  to

educated guesses as to the nature of the collective motion under



consideration.

One determines the evolution in time of the parameters
q(t) and p(t) through the use of the variational principle II.2
which leads to the classical hamilton equations

CL y CL
- oH (Pfq)/aq q = oH (PrCI)/BP

"d .
Il

where the classical hamiltonian is

o1 .

H " (p,q) = <pgq|H|pg> - (I1.3)
provided one has

i <pgl? - 3 > =1 (TI.4)
pg | 593 LES I pg

In our paper we consider wave-packets parametrized as

in eq. I.8

lpq> = e_qu epo !0> (II-B)
~ A
where O and P are canonical collective variables in the many-body

Hilbert space. : \

The parameters g and p in eq. II.5 are equal to the éxpéc*

~ - A
tation value of Q and P on the dynamical wave-packets |pg>.

p = <pq|P|pa>

<pd|Q|pg>

q
where we used the property that the reference state |0> satisfies

the egs.,

<0lglo> = <0|P|0> = O

Given the wave—packets II.5, it is easily seen that eq. II.4 holds



gince it becomes
<pq| [1P,0] lpg> = 1
The hamilton eqgs. can be rewritten in this case as

<pal [-iQ,H] |pg>

<pq| [-iP,H] |pa>

Q
¢
I

.
o+
I

In practical applications one is interested in cases.
where the collective motion is slow. This allow us to expand the

classical hamiltonian HCL(

P, , . I1.3, in a power series in p.
Owing to the time reversal properties of é and i and the reference-
state |0> in the .expansion one has only even powers of p and it is
equal to

2
c
1 (p,q) = _“"E“Ef_""” + Vg + oY) (I1.6)

2M 7 (q)

In eg. II1.6 MCL(q) and VCL(p) are the classical mass parameter and

potential respectively and they are gual to

CL ~
V' (q) = <ql|H|g>
1

M T = op*<palHipa>| 5 = < [é,[fl,é]} |a>
As discussed in ref. 2, in the semiAcﬁassical methoa we are not in-
terested in the time-evolution of the parameters p(t) and g{t): 1In
this method the wave-packets |p(t),g(t)> are used as a probe to
extract the classical limit of the guantum collective hamiltonian

HC(P,Q). Thus the fundamental hypothesis of the semi-classical method

~is that the hamiltonian HCL(p,q) is egual to the classical limit of

the quantum collective hamiltonian H,(Q,P).

The validity of this hypothesis depends strongly on the
properties of the wave-packets |pg> as will become clear later on in

this paper. Indeed, besides other effects, the dispersion of Q and P
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gives rise to an intrinsic energy, the zero point energy of the wave

packet, which ig always present in the hamiltonian HCL(p,q)_ There---
fore the identificatidn of_HCL(p,q) with the classical limit of
ﬁC(P,Q) is valid only;when this Zero pdint énefgy is, unless by an %
unimportant constant factor, negligible. Once this identification
is made, to derive.the guantum collective hamiltonian in the semi- |
classical method, one is faced with the problem of guantizing the
classical hamiltonian HT(p,q), which ih the limit of slow motion

is given by eq. IT.6. This step introduces additional difficulties
_which stems from the depehdence of the mass paraméter'with the coor-
*dlnate. This property leads to the use of different orderlngs in the
canonical quantlzatlon of g and p all of them hav1ng the same
classical limit. This question is clearly discussed in reference
-seven whexe it is pointed out that the guestion of whiéh ordering

to use is_infimately connected to the zero point enerqgy correétions.
-énd =Te) ﬁe defer a.discussion of this point to chapter IV; Hére we |
are going to use.a prescription suggested.iﬁ ref. 2 in which the guantum
collective hamiltonian in the semi-classical method reads

(P,Q)= % (ﬁ 1 = + 1 ﬁz + 2 ﬁ_“&;_r E) +

T (o) 20T (B St

(Q - - (TT.7)

A

_ : | -
This ordering will be seen later onto be identical to the one given by
a proper quantization of the motion along the collective path using

[

GCM.



III) THE GENERATOR COORDINATE METHOD

In the previous chapter we presented a brief discussion
of the semi-classical method based on the time dependent variational
principle {(TDVP), eg. II.2. As shown there, at one poinf of this
method one reaches a classical stage. This stems from the non-linear
character of the variational space of the wave-packets |pg>. Indeed,
if we impose that |y (t)> varies in a subspace of the many-body
Hilbert space the TDVP is equivalent to quantum mechanics restricted -
to this subspace. Therefore to have a theory built upon the TDVP
which satisfies the linear.character of quantum mechanics (the prin-
ciple of superposition) one should take as the variational space of
[¢ (t)> a linear space. A theory of this kind is the GCM introduced
by Griffin-Hill-wheeler?>.

In the GCM one considers a subspace of the many-body
Hilbert space spanned by the states which can be constructed as a :
linear superposition of the generator statés |a>

|£> = ff(a) |o> da (FII.1)

The only unknown in eq. III.l is the weight-function
. | \
f{a) which is determined by the TDVP (in the stationary limit) re-

sulting in the GHW integral equatior
S{<a|H|a'> = E<ala'>) f(a') da' =0 (LII.2)

In references 8 and 9 it is shown that we can always
_associate to the GHW "ansatz" eqg. III.l a projection operator defined
in the many-body Hilbert space. Theréfore the dynamics in the GCM
scheme is equivalent to the many-body dynamics restricted to this |
subspace, the GCM collective subspace $,and we can identify the GCM

collective hamiltonian with the projection of the many-body hamiltonian

T T
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H =S8 H 8

where S is the projection operator on S. _
8,9,10

In this_chaptér, using tools developed earlier ,
we are going to investigate the properties of the GCM collective

subspace associated with the one-parameter (static)and two-conjugate

parameters (dynamical) family of generator states |g> and |pg> respec—.

tively. We are also going to show how we can define, a posteriori

- collective dynamical variables and how we can express the collective

hamiltonian HSCM in terms of these variables. All the details of

what follows can be found in reference 10.

"III-A) A Representation In The GCM Collective Subspace
' Static and Dynamical Wave-Packets as Generator States.

The static and dynamical wave-packets.are respectively equal to

|a> e o>

~igp i -
Ipg> = e ¢ !epo lo> (III.3)
[Q,P] = &

The reference state |0x is the vacuum of a boson
c _ T B '
constructed in terms of the operators Q and P,

0 - L

oy

|0>

b“liO‘ )

L

+iPb) S (III.4)
Y2 o SO 2 '

o
il

PT T, o
bo. 2 <0|Q*lo>

Using egs. IIT.4 we can easily show that the wave-

' packets satisfy the relation
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s . 2 ¢ " -
( pr + i bo(laq p)) |pa> 0 7 - (ITI1.5a)

which can be rewritten as

- -

((Q-q) + ib} (§~p))lpq> =0 (III.5b)

To determine the natural representation in the GCM
collective subspace consider first the static wave packet. Using
egs. IITI.4 the overlap kernel <d|qg'> is easily seen to be equal to

e e 1y 2 2

«qlq'> = e {97a7) /4bo

The eigenfunctions and eigenvalues of the overlap

kernel are determined by the equation

400
j. <glg'> ¢k(q') dg' = 2mx(k) ¢k(q)

— 00
and they are equal to

1 ikg -
¢ (q) = e
m Y27
\ . V(III.G}
A(k) = b /v e o o

A

Acdording to reference 10 the natural representation in-

the collective subspace S, associated to the SGCM is given by

1 %kPY 0> .
k>, = ———— [lg>¢, {q) dg = (III.7)
1 Y21 (k) k2= J<O|ﬁiY [0>
where n¥¥ is the Peierls-Yoccoz projection operator associated

k
with the operator ﬁ_
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1 ikq -~igP. -
1 rag etKQ q
y =3, ‘99 e e | (III.8)

Thus, the orthonormal states |k>l_.are seen to be equal
to the normalized Peierls-Yoccoz projection of the reference state
0> associated with the operator ﬁ, and the projection operator onto
S, can be written as | '

S = rdk |k>'

1 1 l<k| ' . _ (II1.9)

On the other hand, the overlap kernel <pgip'q'> is

easily seen to be equal to (using egs. III.4) 

. . . ) 'y 2 2 .
o4y (prpt)  _damgl)” _{pzpl) bo
C<pglplats = eH @9 T T TapE -

(ITIT.10}

The eigenfunctions and eigenvélues of this overlap

kernel are determined by the equation
H ] 1 ¥ 1 = 2 .
; <palp'P'> ¢  (p',q)dplda’ = 2my, (k) b,k (PrQ)

and they are equal to

] k A
igk . \
e sl —

¢ vitprk)

V2w

¢n;k(P;q) =

and the eigenvalues are independent of k. The eigenfunetions ¢n(p)
and the eigenvalues A, are eigenfunctions and eigenvalues of the
Hilbert Schmidt_kernel
o~ - - . ¥
N(p,p') = <0] e poa(P) e1P'? |0>
| (IIT.11)

1 .
o f dg< pg{pf0>
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In our case IITI.1ll is equal to

~ b 1/2 232 b s 2p2
Nip,p') = (&) - PRY2 oyl/2 mp'Tbo/2
vy _ J .

(ITI.12)

which shows that it is separable and equal to the product of two
Fourier transforms of the ground state of a harmonic oscillator,
Therefore its eigenfunctions and eigenvalues aré easily seen to be

equal to

As is thoroughly discussed in references 8 and 9 the
existence of zero eigenvalues of the overlap kernel implies that the
generator states are not linearly independent. The linear dependence

can be expressed as

|pg> = sdp'dq' |p'q’> R(p'éf;pq) (IIT.13)

B
1

where the kernel R(p'q',ﬁq) is the projection operator onto the ortho-

gonal complement of the null space of ?

i

R(p'q’;pq) Sdk ¢O}k(p'.q') ¢Z;k(p,q)

1 .
[ < >
- <P'g Ipq_

1

Following reference 10 the natural representation in

the subspace 52 associated with the DGCM is given by

= 1 | | _ CPT
|k§2 = flpq>¢0;k(piq).dpdq T

(ITT.14)

0> - (I711.15)
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~PT | . e ' . .
where T is the so-called Peierls-Thouless double projection operator

associated with the operator B

“PT 1k

m " = fapdg =

e—qu epo :

ho
b (p k)

Thus the orthonormal states |k>2 are seen to be equal
to the so-called Peierls-Thouless double projection of the reference
state |0> associdted with the operator P and the projection operator

-

in S2 is given by

III-B) Relationship Between The Subspaces

In section III-A we have shown how we can quantize the
collective motion along the static path and the dynamical path using

GCM. However, in general, the subspaces associated with these two

.10 :
paths are differentl. In other words, the two subspaces carry diffe-

rent gquantum degress of freedom. However, as has been pointed out
before , wﬁen one uses thé dynamical wave-packet [pg> in the semi;
classical method one thinks of |pg> as describing the distortion 6f
the system along one canonical degreéAOq freedon 6nly. Therefore
Wheh comparing the two theories, one of the requirements that one has
to iﬁpoSe, as was done in reference 1, is that the subSPaces associa-
ted with the static and dynaﬁical paths should be idenéical. The dy-
‘namical wave~packets which satisfy these requeriments are called
redundant.

In general it is very difficult.to establish the ne-
essary and sufficieht conditions that a dynamical wave-packet should
satisfy in drder to be redundant. _In the case of wave-packets gene¥

rated as in eq. I.8 this has béen d6ﬁe in ref. lo‘wiﬁh.the conclusion

(ITI.16)
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that the requirement is that the reduced kernel, eq. III.il, should
have only one eigenvector with non-zeroc eigenvalue. Besides in ref.
1 a sufficient condition is discuésed, called iocal—redundancy which-
leads to a redundant dynamical wave-packet. Iﬁ ouf case the requi-
rement of local redundancy demands that eq. III.5 holds. All this
leads us to the conclusion that the dynamical wave-packet considered-
in this paper is redundant and the proof of this fact runs as follows;
As the generators states |g> and |pg> are vectors de-
fined in the collective sﬁbspaces Sl and 82 respectively, one

can find its components along the base |k>l and |k>2 . To do  so

one uses eqgs. III.7 and III.15 and one finds

lpa> = sak e KD ¢M Oy ks, |
e ' (II1.17)
lq> = sax AR e s
Since |g> = |p=0,g> one has
lg> = fak e T 620 ) k>,

Using the above eqg. in eq. III.7 one has

which proves the identity of the two subspaces.

To have a better understanding on this matter, consider
a éanonical transformation from the ﬁgrticle degrees of freedom to
éollective, é and g, and intrinsic degrees of freedom. Together with
this transformation we introduce a product representatioﬁ of the

L

many-body Hilbert space,
l0,6> = o> & |&>

where the states |Q> span a space of one degree of freedom, the

collective space, and |£>,|E> = |g1,52,.,.gN_l>,ﬁone of (N-1) degrees

of freedom, the intrinsice space. The wave-function associated by



the |Q:i> representation to

packets |g> and |pg> are

i

<QE ! k>l

<Qtlg> = (

<gElap> = (

e

_13/2
/b

the base states |k>l

respectively

iko
X (£)
Zmo°

e-(Q—q)

O

Ly

/Ebo

2 2b2
/ o %o
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and to the wave-

(II1.18)

(g)

. a2 2
1/2 elp(Q—q) e.(Q a) ©/2bg XO(E)

This shows that in the collective subspace Sl(sl=S7)

the collective and intrinsic degrees of freedom are kinematically

‘decoupled and both wave packets are given by the product of a wave-

packet in the collective variable and a wave-function which depends

only on the intrinsic variables.

packets is the velocity dependence of | pg>

the phase in eq. ITI.18.

The difference between the wave-
which is introduced by

Thus the redundancy is seen to be a conse-

guence of the fact that a family of static gaussian wave-packets form

a complete set in the collective space {(that has only one degree of

freedom) whereas the dynamical gaussian wave-packet form an overcom-

plete set.

B
i
'

This overcompleteness is responsible for the lihéar.

dependence of |pg>

(sée qu

ITI.13) whi?h leads to the existence of

eigenvectors of the overlap kernel with zero eigenvalue.

L

ITI-C) Collective Operators And Collective Hamiltonians

Once oné has the natural representation in Sl the

collective operators can be found

P, |k>

'Sl 1

10

= k l k'>_l
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0 | k>

. = —iB/Bk [F>

1 1

Since [k>l is equal to the Peierls-Yoccoz projection
of the reference state |0> associated with the operator P one has, by
construction

P|k>l = k|k>l | : (III.?O)
Also we can easily show using ups III.5 and III.7 that

Q|k>1 = -i3/9y ]k>l _ - (IIT.21)

Thus, the canonical collective operators in the GCM collective subs-

pace are equal to the projection onto this subspace of the canonical

operators in the full many-body Hilbert space

- - ~ A
0g, T 98 = 519
- -~ ~ A
Psl = P81= SlP

_The natural representation |k>l is the specific representation ob-
tained by the diagonalization of the overlap‘kernel and egqs. III.19 -
ITT.21 shows that it dia%onalizes the operator ﬁ. However the we'
found this "momentum” representation, by unitary transformations in

: |

Sl' we can find a representation which diagonalizes any hermitian

‘operator defined in S;. In particular we can find a "coordinate"

representation giVen by the Fourier transform of the momentum repre-

sentation

(IIT.22)

(ITI.19)
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-

' oYy . . N . .
where T is the Peierls-Yoccoz projection operator associated with,

_the'0perator Q

ﬁgY 1 poixp epo-dp.

which diagonalizes the operator Q

Q|X>l = x|x>i

- (ITI.23)
Plx>; = 13/8X|X>l ' _

As discussed before the GCM collective hamiltonian is
defined as the projection of the many-body hamiltonian onto the M

collective subspace
H = §,HS (I11.24)

Using the "coordinate" representation III.22, the dyna-
mical eguation in §; can be written as a wave~equation in the "coordi-

nate" representation

fh(x,x") ¢(x',t) dx' = ihd¢(x,t) /ot

where N
h(x,x") = l<X|H|x'>1
A

|

and ¢(x,t) is the collective wave-function ¢(x,t) = 1<X|¢Kt).. Also

we can express the GCM collective hamiltonian in terms of the collective

variables QS r Pslo, |
' 1 1
i - b 1 “m -~ {m) = -
H = - I :

where the normai order is'defined as



™) ¢ = e, s ™ @) L

m anti~-camitators

H(m)(x)'= JdE -~ ig® <X 7 £/2|Hix —_g/2>1
; m!
e ek 2 (8 [y [RB] . .lT] Ixees2s
A 0, [0, [H,0] ...]] N

" m - canmmutators

(III.25)

We see that this orderihg is identical to the ome given by eg. IXI.7, if

we stop at second order in a expansion . in powers of P. Other useful

=~ (m}

expressions of H (2) are

eikx dn -
= <K+k/2/H|R-k/2>
m! 4y 1

g™y = rax

K=0

. * J = *
Jikx  gm g (dd e (o <qlElal e @)
fax m! ar” 2

/y (KK /2) X (R=K/2) I‘K=0

(III.26)

In general the reduced energy kernel is a function
which depends slowly on the difference of the generator cocordinates.
Therefore we can expand the reduced energy kernel as a power series

expansion on the differehce of the generator coordinates

n A .
1|
20 (24 (g q') 2 (III.27)

11( F ') E
. 1:9 n=0
2n!

where h(g,q') is simmetric in g and g' due to the time-reversal proper-

ties of é, Using this expansion in eq. III.26 one hasll
(2b )2m . 292 74
B (x) = (- —2 1 gak oix KB/
(2m) ! '
® pn .
E T £dg by (@e tOE
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IV) COMPARISON.BETWEEN THE SEMI-CLASSICAL AND THE GENERATOR COORDINATE |

METHOD. APPLICATION TQ THE GOLDHABER-TELLER MODE IN ‘He

The classical hamiiténian;HCL(p,q) is equal to (see

eq. II.3)

CL - B
B™(p,q) = <pq |H |pg> (IV.1)

and since the Wave—packets |pa> are states defined in the GCM collec-

tive subspace Sl‘one has

cL, . ‘ |
‘H"(p,q) = <pq| s; HS,| pa>

(IV.2)

- GCM
q [HT| pa>

"Also the use of the product representation ITI.17 shows
that the GCM quantum collective hamiltonian is the trace on the :

intrinsic variables of HIXO><XO[

SGCM _ g 2 .
Hoooo = . Hlxo><x0| o (IV.3)

The eq. IV.2 shows that the "classical" hamiltonian

-

' HCL(p,q) is equal to the expectation value of the guantum collective

GCM
C
out that this property is very general since it depends only on the

hamiltonian H n the WaVe—packet [@q?. We would like to point

fact that the dynamical wave-packet belongs to the GCM collective

-
subspace S Thus we can state that the description of the dynamics

1
dccording to the two methods is equivalent when the "classical”

hamiltonian HCL(p,q) is the classical limit of the GCM quantum collec-

tive hamiltonian HSCM(P;Q).' The-difference between the "classical"
hamiltonian HFL(P:q) and the "classical" limit of the quantum collec-
“GCM S 7 '

tive hamiltonian H (p,Q) is the zerc—point'energy of the wave-packet _

c
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- -

GCM ¢p> <0>) + E,p(P,a) (IV.4)

HCL(p,q) = Hg

Once one has established that the dynamical wave-
packet [pg> is redundant, we dan say that the two theories are
equivalent when the dynamical effects of the zero-point energy are
negligible. In what follows we are goihg to analyse these effects

in a specific example, the Goldhaber-Teller mode in “He,
IV-4) The Goldhaber-Teller Model Of The Giant Dipole Ressonance

According to the Goldhaber-Teller model of the giant
dipole ressonance the dipole vibration is described as a rigid dis-
placément of the protons against the neutrons. In the dynamical case
we also have a felative momentum betweén protons and neutrons. This

pictdre of the dipole vibration can be described by the dynamical

2
Wave—packetlo’l“

|pq> = e-qu epo I0> ‘ - _ (IV.5)

- -

In eg. IV.5 the operators Q and P are respectively

the z-component of the relative coordinate and momentum between pro-

i -

tons and neutrons

-~

Q

-~

P =

= o

Z’;U H

Z

PZ - PN

bl

RZ,PZ,RN,PN are the z-component of the center of mass coordinate

and the center of mass momentum of the protons and the neutrons

- -

respectively. In the case of selffconjugate nuclei (N=2) Q and P

are equal to

-

X4 (1) T3(i)_ |

|

-0

-

p3(i) T3(i) |

»

[ o

e
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where ;(i) and ;(i) are the'ceordinate]aﬁd:momentuﬁ operatots of[
nucleen i and %3(i)'ie the zfcompqne@# of the'isespin operator.
The reference state |0> is the greﬁha'state of -the nueleus or an

approximation of- it.

The operators @ and P are canonical

[0, 7] =i | " | (IV.6)

-

-and the paremeters g and p are equal to the expectation value of Q

-

and P on the wave-packet |pg>

Il
QO

<pq |Q|pg>
- (Iv.7)

i
T

<pq|P|pg>

where we assume&
<0|P|0> = <0lg|o>

In our application to dlpole oscillation in ‘He we
approximate the’ reference state |0> by -a slater determlnant of
~harmonic oscillator wave-functions. In this case it is easily seen

that
(@ + iPb2) [0> =0 A | (1v.8)

where b_ is the size-parameter of the oscillator of the relative

motion of the protons against the neutrons e

o,

uw

where y is the reduced mass, u = %E and aO is the size parameter

of the oscillator well, a, =V‘%§ . 'The discussion up to now indicates

that the dynamical-wave-packet'|p§>e;eatisfies_all the requirements



imposed on the previous sections. Thus the last ingredient necessary

to perform a numerical calculation is the many-body hamiltonian which

we assume to be of the Skyrme type12’13'

1 1
= i fand E —_ z .
B b Bl + 21,3 Vig * 3 1,5,k Visk (IV.9)
where the two-body force isl3
Vij = to(l+xOPo)6(£(i)—£(j)) +
. x [t (BB 2 ez (1) -2 (3))+
2 {1 S £ x
-~ - é(i)—é(j) s °
+ gl{r(i) - r(j) (F——7) + (IV.10)
(i) - pM) - - pli)-p(d)
+ 2 t 3(r(i)—r(j))(*““—j?*'“—)
.2 - -~
+ v
0. .
ij

where PO is the spin exchange operator and V is the spin orbit

510 J
1]

force.

. . 12,13

The three-body force is parametrized as

'
1

ijk

Vg = t3 ME@ D) 8Z (1) -Z (k) g (w.m.'

|

IVv-B}) The Semi—-Classical Hamiltonian

The semi-classical hamiltonian eg. II.3 is given by

e pzn n
(p,a) = <q|H|g> + = (-1)
' n=0 (2n) !

<alfo, fo... o). )} la>

2n Brackets.'

gL

(IV.12)
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where !g> is equal to

lg> = 7' o> (IV.13)
‘e ) 12,14

In the specific case of the Skyrme force one has

- CA(t +t,)

- - -~ . l . 2

. Ral=3+< ., L1 =

S - T 2

. A
é(g(i)-g(j))(1wT3(i)T3(j)) (IV.14)
which shows that
o, To, fo.u]])= 0 o (IV.15)

Therefore the expansion stops at second order and

the semi-classical hamiltonian can be exactly written as

2
P

2MCL(q)

CL :
H (p,q) =

+ IV.16
Vor, (@) (IV.16)
where the semi-classical potential and mass—patameter are respectively

equal to
VCL(q) = <q|H|q>
. o1 . ‘..'_ ' ' L
B (@) = M7 (a) = <al[o,[B,0)]la> (Iv.17) .
A .

|

The inverse of the semi-classical mass-parameter can be written as

_ 1 +e(q)
Borp, (@) m

where e¢(q) is the enhancement factor of the energy weighted dipole sum

rule

oy 1 R S
e (q) =ﬁ—‘j 3 <al 2, .0l ie>



27~

IV-C) The GCM Quantum Collective Hamiltonian

The guantum collective hamiltonian is given by eq.
III.25 and as a consequence of eq. TV.15 it reduces to
~GCM - (o

Hn = S(H

Y@ + 5 e 2u P @ins

where the quantum collective potential and mass parameter are equal to

- -~ -

v(g) = 1%°) (g
- 4 a2 | (IV.18)
B(Q) = M(Q) = B (@) -

In our example the reduced energy kernel is exactly

given by12
- 'ﬁ2 -
hig,q") = VcL(q) - -4 - (IV.19)
8bOMCL(q) :
where
g = (g+q')/2
g = g-q'
Thus V{(Q) and B(Qﬁ an be written as
R iKQ Kbl/4 - f12p2 -igK
V(Q) = — JdK e % e o qu(VCL(q) - — ) e
2m 2M__ (q) L -
CL |
(TV.20)
~ 1 ikQ K'bi/4 , - _. -iK
B(Q) = Py fdK e e o] fag BCL(q) e
where
1

AP? = _<0|PZIO> = —-2-}-3-2‘—
. O-
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We can also invert these equations to express the semi-classical po-

tential and mass-parameter as-

Ig(q)'

By, ()

- fh2ape
Vig) + —-;:——- BCL(q)

Vor, (@)

where B(Q) and V(Q) are the expectation values of the quantum inverse

mass-parameter and potential on the wave-packet |g>

Il

g(q) fB(x){ <x|g>|? dx

(IV.22)

G(q) fV(X)l <x|g>|? dx

Of course, we could also derive these equations by

GCM
Cc

taking the expectation value of H on the wave-packet lpq> ‘as
shown in eq. IV.Z.

Thus the zero-point energy-in our example is given

by

.- i} _
(p,q) = —5— (B(q)-B(q)) + V(Q)=V(®) +

1
'

B
ap

ARPZ = . :
+ qu)A : (IV.23}

|

" 'Usually the effects of the zero point energy are in-

vestigated in the static limit (p=0)7. Also one separdtes it into two

'pieces, the potential zero point energy

B (g = V(g -V(g) (IV.24)

PzP

“which depends only on the pdtential and a kinetic’zero—point energy

(Iv-21)
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2 ~ |
B2ap? 2o (IV.25)
2

Egop (g} =

which depends on the kinetic'energy.
IV-D) Qualitative Discussion

According to what has been shown so far, the zero-_ 
point energy corrections depend on the‘pr0perti?s of the wdve—packe£
[pq> and the GCM inverse mass-parameter and potential. |

| To shed light on thié‘point, we consider the case
where the quantum inverse mass—parameter does not depend on the
coordinate, |

B(x) = B, .

Therefore it followé that the semi-classical inver-
se mass-parameter is also independent of the coordinate and so the
kinetic zero-point energy is a constaﬁt in this case.

Therefore we can always find a wave-packet so that
the dynamical effect of EZP(q) is negligible. Indeed we can decrease
the width of the wave-packet | g> until one has G(q):: V{(g). How-
ever the uncertainty principle states that when AQ? is small AP?
becomes large and so the kinetic zero point energy increases; but
since it is a constant,‘it does not have any effect on the dynamics.
However when é(x) depends §n the cogrdinate this is not guaranteed
a priori since, as before, we can makelthe potential zero point ehergy
small but the kinetic zero-point enerqy; which now depends on the
coordinate increases when we decrease the width of the wave-packet.
Another example which has been investigated in the 1iterature15 is

the case when it is valid to consider an expansion of the reduced

energy kernel as a power series in g and q’,

1y = .]__ 2 v 2 pl 1
h(g,q ).h0+2(h20q_+h20q +ﬂhlqu )

where



h02_,= -<0|HP?|0> + EO<O|P2[0>

hyy = —<0]P2H]O>.+ E0<0|P2|0J.'
= hgy o

h.y = <0 |PHP 0>~ E, <0|p?|0>

In this case the quantum collective hamiltonian is, using egs. III.

25 and ITII.26

-

“GeM _ P’ Ll o2 v B s

HG O = Sl(EO + iﬁ(; + ZKMQ + EZP)Sl
where

B, = Mal = <ol [0, [H,01] l0>

v = <ol [p.[E,PI]l0>

=~
I

-~

P2 ' 1 .'\2
E = <0 + = K 0>
zr P z M

0

The semi-classical hamiltonian in this case becomes

CL 2 1
H (p,q) = EO -+ _P_ + -5 KM q2
2M
0
which differs from the GCM quantum collective hamiltonian by the
A
constant zero point energy which does ndot have any effect on the

“dynamics.

L--

IV-E} The Effect Of The Zero—Point'Energy On The Goldhaber-Teller

Mode In 'He

All the details of the calculations can be found in
references 14 and 16. In the case of ‘He we can find analytic ex-

pressions for all the quantities'of ihterest which was the procedure
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adopted in this paper.

Before discussing the numerical results wé would
like to‘make two comments

a) The center of mass mqtion is exactly factéorized
in the wave-packet |pg> so there is nb.spurious center of mass motion.

b) The spin-orbit force does not contribute to the |
inverse mass-parameters and potentials since the density of protoné‘
and neutrons on the wave-packet |pg> 1s a scalar in spin épace
(there is no vector part in the density) .

In figure 1 we have a graph of the classical and
guantum mass parameter as a function of the coordinate. This graph
indicates that the mass parameters varies slowly.with x and in
the limit of x going-to infinite it reduces to the reduced mass. This
is an eXpected result since when the neutrdn—proton clouds are well
separated the neutron-proton interaction vanishes and so does the
enhancement factor. In figure two we have a graph of fhe classical
and guantum potentials. We can see that they differ.considerably,
the main effect being that the gquantum potential is softer. In fi-
gure 3 we plot the zero-point energy as a function of x and we see that
it depends strongly on X. Figures 4 and 5 which are plots of the:

kinetic zero point energy and potential zero point energy show that the x |
dependence of the zero point! energy comes almost exclusively from the potential zero
point energy. Indeed fig.4 shows that, in 3ur case, the kinetic zeto point energy is
almost a constant which is a coﬁéequenbe of the almost independence

of the classical mass pérameter on the coordinate. On the other hand,
the strong dependence of the potential zero point  energy on X is a
consequence of the fact that we are using as a probe a very.wide wave—l
packet (AQ?= a8/2) compared to a characteristic dimension in which the
quantum potential changes apreciably (~a0). Figure 5 also shows that
the potential zero point energy Joes to zero fOr jarge x since the quantum
potential goes to a constant value and sO the potential zero point

energy vanishes. Therefore for large X the only difference between



the classical and quahtum.potential COmgs from the.kineﬁic Zero
point energy. | |

To discuss in moreldetéil the effect of the zero
point energy on the_dyﬁamics one should Sleé the Schroedinger equa
tidn for the‘semifclassical‘aﬁd quantum.collective hamiltonians.
16

However this, as an extension of the work to 07 and Ca40 will be

the subject of a separate publication.
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V) CONCLUDING REMARKS

In this paper we have investigated the relationship .
between the semi—clagsical and the generator coordinate mgthods, using
dynamical wave-packets parametrized as

lpg> = e *F P2 o>
[o,p] = 1 (V.1)

{o+ipb?) [0> = 0

In reference 1 it is proposed that the two theories :
are equivalent once two requirements are satisfied: a) the wave-packet
lpg> is redundant, where rédundancy means that the subspaces asso- -

ciated by the GCM to the dynamical, |pg> and static, |g> = [p=0,q>

wave—packéts, taken as generator states, are identical; b) the effects

of the zero~point motion of the wave-packet |pg> 1is negligible. The

requirement a) is based on the observation that the dependence of |pg>

on the parameters p and g is thought to describe the distortion of
the system along one canonical degree of freedom. Once the wave—.
packet is redundant requirement b) means that |pg> is able to extract
the classical limit of the GCM quantum collecfive_hamiltonian.

8,9,10 we show that

Using tqois developed earlier
the wave-packet |pg> pafametrized as in V.1 is redundant which in~
our case is a consequence of the gloﬁ%lldecouplihg between the in-
trinsic and collective degreegof freedom. Once the wave-packet is
redundant we show that the semi-classical hamiltonian is equal to
the expectation value of the gquantum collective hamiifonian in the
wave-packet |pg> . So, the two theories are identical from the point
of view of the dynamics if |pg> is able to extract the classical limit
of thé GCM quantum collective hamiltonian. This last property depends
esseﬁtially on the type of wave-packet which is used and it reduces

to the analyses of the effects of the zero-point energy of_}pq>. This

problem is investigated numerically for the Goldhaber-Teller mode in



34~

4He where it is shown that the effects of zéro-point motionis apre-
ciable. - In our example this comes aimoét exclusively from the pb—
tential zero-point energy and, of course, this dépends on the type

of mode that is considered. BAs fhis pbint we would like.to remark
that the conditions under which the wave—paéket |pq) is able to
extract the classical limit of the GCM quéntum collective hamiltonian
are in general different from the conditions under which the Ehrenfest
theorem holds. This stems from the fact lpaY is a parametrized
(constrained) wéve-packet and not a time-dependent solution of the
Schroedinger equation in the GCM collective subspace. So, one canh

in certain circunstances, parametrize |pg)y so as to be able to extract
~GCM

the classical limit of H, even though the dynamics given by
HgCM is not semi-classical.

There are many-examples where the study of the effects
of the zero-point motion in microscope theories of collective motion

is impox:i_;antl7 as the case of fission, especially in light nuclei.
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FIG. 3
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CAPTIONS

- Plot of the classical mass parameter (full line) and
guantum mass parameter {dotted - dashed line ) 1n units
of the nuclear mass as a function of the "coordinate”™ x. The
gsize parameter of the oscillator well, agr is egqual to 1.57
fermis,

- Plot of the classical potential (full-line) and gquantum
potential (dotted-dashed line) as a function of the "cooxdi-
nate" x.

- Plot of the zero-point energy as a function of the "coordi-
nate" x.

- Plot of the kinetic zero point energy as a function of the
"coordinate" %

- Plot of the potential zero-point energy as a function of the:

"coordinate" x.
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