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ABSTRACT

The method of partial differential“approkimants
(PDA} has béen introduced for approximating‘funC£ions‘of'two
or more variables given a finite number of coefficients of
their power series.. It is supposed to be effective‘close to
~ the multicritical points, where the thermodynamic functions
are expected to behave according to the sCalinQ hypothesis.
In order to assess the performance of the method, we have
undertaken the constfuction of PDA's for several test functions
of two variables. For some gimple functions, which afe
represented exactly by PDA's and which exhibit an analog of a
multicritical point, the numerical esﬁimates yielded very good
resulhseveﬁ at lower orders. For other functions the estimates
tended to improve as we increased the order(ﬁfthe approximants;
Fdr'the‘besf PDA's we constructed flow diagrams and estimated
the scaling functions.. Also, we have analyzed the dimensional
crossover (from d=3 to d=2) of the spin - 1/2 axial
-anisotroPic'Ising model on the £ cc lattice. We considered
series expansions for the direct susceptibility and also for
the sum of the direct and the staggered susceptibilities. In

geheral, our estimates agree with the scaling predictions.




1. INTRODUCTION

The usefulness of the Padé method for approxi-
mating functions of one variable ‘given a finite number of

coefficients of their power series is appreciated widely. In

.the theory of critical phenomena, for instance, the so%called

d-log Padé approximants have been very practical for providing
estimates of the critical parameters of thermodynamic model

functions (Hunter and Baker 1973, Baker and Hunter 1973)..

These successes have stimulated some recent proposals to.

generalize the Padé method for approximating functions of two
or more variables (Chisholm 1973, Roberts et al. 1975}). The
present publication refers to a proposal by Fisher (1977a,
1977b}, which seems particularly suited:for analyzing the
scaling-behavior of thermodynamic model functions in the
neighborhood of their multicritical points..

In the conventional d-log Padé method (Baker

1975) the logarithmic derivative of a function £(x) is

‘approximated as

d PL (x) _a .
% En f£(x) QM(X) = £n FLM(X) (1.1)

&

where PL(x) and QM(X) are bolynomials of degrees L and

M respectively. These rational approximants may represent

well branch point singularities of the form

Fx) = A(xc—:»c)"Y for x - x; ,  (1.2)
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where - v 1is a nonintegral exponent. One should recall at this
point that the approxiﬁants, FLM(X) may'also be regarded as
the solutions of the'differential equation.

P (%) FLM(;;) “‘-:QMFX) E;_FLM.(x)_, AU (13)

The coeffiqients 1) and . qm -(£.=O,l{,3,,L; m=0,1,...,M of
the polynomials PL and QM in powers of X ‘are thén chosen
so that the power series solution of Bg.. (1.3) agrees with the

expansion of £(x) to optimal order. In the critical region

. we have

O'(x -x ) : ' ' _. o (1l.4a)
c c : - _

QO
%
12

~ and

PC . QC ’ ) ' (1.4b)

P(x )
: C

which provide estimates of X and vy .
Let us consider a function of two wvariables x

and y ,Igiven by the series expansion .

k L}
kzk'of & o (1.5)

By = K,k
I

where.the indices k and k' belong to some set of integers

K. 1In analogy with Eq. (1.3), Fisher (1977a, 1977b) proposed

—

-a novel class of approximants for these functions, .FLMN(X,y):

_ defined as the solutions of the partial differential equation
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L ODE0) = gyl SR ey St 0.

subjected to suitabléfB@ﬁh&érydéandiﬁiéhé..ﬁThe poifﬁoﬁiéis.‘
PL.f QM and RN arghghosen.so that the series sngtion for
F(X,f)_ in powers of ‘%" and yJ éﬁreés ﬁifh”ﬁhe“knCWn expansion
(1.5) as far as possible. This simply leads to a set of |
éimuiﬁaneoﬁs:liﬁear equations which may be:solved by standard
numerical methods. | | .

' As we stated above, these "partial differential
?Pproximants" (which will be”called:?DA)'are particularly- .
‘effective when f(x,y) displays a singular behavior according

to the scaling hypothesis of the theory of critical phenomena,

that is, for

£ix,y) = lhx| ' z[——&l—) , . (1.7)
|ax|®

as AX Exc—x-+0 and Ay Eyc—y-+0 , where vy and ¢ are two
exponents, in general nonintegral, while Z(z) is a "scaling
function" of a single variable 2z . In this case, it is easy
to see that the multicritical point will be estimated by
QM(XC;yC) = Rylx sy ) = 0 (1.8)
while the rate of variation of RN and QM at the multi-
critical point, normalized by Pc==PL(xc,yc) , Wwill give

estimates for the exponents vy and ¢ .

To these days, except for some exploratory
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trials, partial differential approximants have been tested
only in the problem of the anisotrbpic exchange crossover in

three?dimensioﬁal classical ferromagnets (Fisher and Kerr 1977).

‘ As’f§r as'ﬁéfkhow; there have been no applications éiEher”to )
“othéf physical problems of interest or to some.modei ekamples.
“The main point of our paper is thus.to chtribﬁte~f¢r assessing
- the pdtentialities of the method by investigating numéricaily:f_."
;some classes of test functions, and alsc the dimensiohal

crossover in the Ising model. We believe that_oﬁr tests will

reveal the advantages ahd some drawbacks (slow convergence,
the need for longer series) of these partial differential
épproximants.

The layout of our paper is as follows. In
Sec. iI we consider a more general scaling form, where the
scaling axes are not parallel to the cartesian axes, ‘and
introduce the method of characteristics:&x‘obtaining the nu-

merical solutions of the partial differential equation (1.6)."

© Also, we discuss the criteria for the stability of these

_solutidns near the multicritical points. 1In Sec. III we study

several model functions, some of which can be represented

 exactly by PDA's.  We obtain the multicritical parameters,
‘some flow diagrams, and try to compare the performance of
fdifferent orders of PDA's. Sec. IV is about the analysis of

“the dimensional crossover, Dbetween dimensions d = 3

and: d=2 , of the Ising model with lattice anisotropy. In

‘particular, we use the PDA's for estimating the shape of the

-phase boundaries in the temperature-anisotropy phase diagram.

'Finally, a summary is presented in Sec. V.
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II. “FURTHER DESCRIPTION OF THE METHOD: =% o

- In general, the scaling axes are not parallel:'

to the cartesian. x,y axes. We thus have the scaling form

£G,y) = |a%|TY z[—é}-—) ¥ (2.1
where
~ 1 . _ o

Ax = Ax - — Ay o S : (2.2)

e

-T2

| and

Ay = Ay - ey Ax L : (2.3)

The parameters e and e, represent the slopes of the

optimal scaling axes in the cartesian coordinate system speci-
fied by x and vy . g
The scaling form of Eg. (2.1) obeys the partial

.differential aquation

- ¢  ~, Oof ~ ~. af
A —— — ———r— —]
{(Ax + :, AY) Py + (el Ax 4+ ¢ Ay) 5y
el
= -‘Y(l - ) f 7 (204)
62

which should be compared, in the vicinity of the multicritical

point (xc,yc) , with the defining differential equation (1.6)




"7¢ , are related to the rate of change of the polynomials Q
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of the PDA's. If the polynomials P ;1QM¢:and -RN_.in leading

L
order close to the multicritical point are given by .

_Pt{x,yl_

= P . (2.5)
QM(X,Y) = Ql Ax + Q2 Ay, : I_(2.6)‘f
RN(x,y) ~ 'Rl Ax + R2 Ay, | R (2.7)

we-may write the folldwing expressions for the_Slopes.Of the

scaling axes and the multicritical exponents,

e -1 2 L R R +4_£] R
PC
Yy = . ] (2.9)
€% T &y N
Z‘and
_ Q. + R ’
o = -l-Y"—l_P 2 . (2.10)
C

Thus the estimate for the location of the multicritical point

is given by QM(xc,yc) = RN(xc,yc) = 0 , while el ,e2 .Y and

M

. and Ry ‘at the estimated values (x_,y ) provided that

_PL‘XC'YC) #0 .

To estimate the actual values assumed by f(x,y),
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‘Fisher (1977a) ‘suggested the numerical: solution of Eq. (L.6)
via the methéd-Of'characteristics;JrIn the:multicritical region,
this corresponds to the evaluation of the scaling function

' Zféf , which is often of interest in the theory 'of critical

phehomena. Let us consider a time-like variable t such that

x=x()  , y=y&) o, (2.11)

‘and
§3'= L R gi ; . L
Eoguxy . Zeray . (2a12)

From Eg. (1.6} we have

. _ 4 : '
PL(x,y) fix,y) = TS f(x,y) . (2.13)

" and, therefore,
t
f[x(t) ,y(t)] - fEc(O) ,y(O)] = exp{J PL E&(t'),y(t')] dt'} , (2.14)
‘ 0 .

where it should be stressed that the integration is performed
- along the trajectories defined by Eq. (2.12). Given the
‘polynomials QM(X;Y) and RN(x,y) , the problem is then
reduced to the solution of the Set of coupled ordinary
differential equations (2.12).

In problems of physical interest it is often

important to know the loci of the singularities of the functions
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f(fo){(for instance, the-shapes of the phase boundaries near .
the bicritical point of an antiferromagnet in the field*_“‘
temoerature phase diagram). From Eg. (2.14), since Pt(x;yf

is a finite polynomial, there is a finite difference between:o.

:”the values'dssumed by the function £ (x,y) ,:caICUlatedﬂat_two"'

" 'points which lie on the same trajectory Therefore, the

'+ critical lines, where £(x,y) is supposed to dlverge, “are

flow-1lines defined‘by Eqs. (2.12). Tt is enough to know one

single point on these trajectories, besrdes the mult;crltlcal

point' to be able to construct them numerically. An illumi-

r"natlng appllcatlon of thlS procedure, Wthh w1ll become more_

transparent in the following sectlons, is presented in the_-p

;paper of Flsher and Kerr {1977) .

In the neighborhood of the estlmated multl—

critical point (Xc'yo) y BEgs. (2.12) may be written as the

linearized forms

dx.

& _ 4 e D . (2.15
o o Mx + 0, 8y G | (2 1.a)
- +and
4y - g oax o+ R, by . © . (2.15b)

dt 1

. which have the general solution

exp(AZt) . (2.16a)

2

: Ax.= Cl exp(klt) + C

-;and
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‘exp{llt)'+ C'ev~exp(k2t)-;i_~- -+ (2.16b)

181 2€2

where ‘Ci and C? “are arbitrary constants. The particular
solutions with"Ciu=05 or 'C2J=0 define the scaling axes, and

the eigenValueS'ZAl -and-%hz -are given by:

A 5 (Q +R) “2" l:(Q R) + 4Q2R:J —Q2e1,2 +Ql (2.17)

1_,2_

A complete dlscu551on about the ‘stability of Egs. (2.16), which

w1ll deflne the behav10r of the flow-lines in the immediate

vicinity of the estimated multicritical point, may be found,
for example, in the book by Brand (1966) . In the case where

Xl . h2.<0 , all flow-lines in the neighborhood of (xc,yc)

:converge onto this estimated multicritical point. Although it

is desirabie to have a stable multicritical point, this is not

strictly necessary for pefforming numerical evaluations of the

function £(x,y) . The estimated values of (xc,yc) may

'happen to be a saddle point (for X_X_<0) or even a star-

12

like unstable node.
Another interesting feature of the flow diagrams

is the following expression for the slope of the flow lines in

the immediate vicinity of the estimated multicritical point,

+
ay _ Cl}\lel exp(k t) C Az 5

ax clxl eXp(xlt) + C,h, exp(kzt)

exP(Azt)
(2.18)

For Al <A2 <0 , unless C2==0 , the value of dy/dx tends to
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,;@_‘ the}slope ;e2 of the scaling.axis as t-+« . This will become'”

apparent in the analysis of the model functions which are

con51dered 1n the next section.

Finally, a relevant question concerns the

magnitude Of the region where the predictions of the linear

' approx1mation still work This may be estlmated by “the

standard technlques assoc1ated w1th the Liapunov functions
. (Brand 1966)

ITI. NUMERICAL RESULTS WITH TEST FUNCTIONS

We applied the technique of partial differential
approx1mants'to obtain numerical estimates pertaining to the

following model functions:

(1) fuhctiOns_with one line of singularities.

P, = (1-2-y)7¥? (3.1
F,om (1-2x-972 exp(y) | (3.2)
Fii)functions with two lines of singularities
F o= (1—x-%y)’3/2 (1—2x-—%’-y)-1/2 (3.3)
Fy = (1-x-2y) ~°>7? (1-3x-y) "2 £n(1~3x-y) (3.4)
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l/?-+exp( x~2y)cos(xy) {3.5)

oy
1l

j(l—x;-%y)’3/2(142x-

b
i

(lwx-2y)"5/2 (1*3x-y)-2:4;erp(;k;2yjcostxyff' kd;ﬁﬁ

Functlons F to Fd 'are represented exactly by PDA 8 of lower
orders (as remarked by Flsher (1977a), they belong to a general
class of functlons whlch may be represented exactly) Roberts

et al. (1975) have analyzed similar functions by the techniques

‘of Canterbury approximants. Also, these functions may be

regarded as the natural exten510ns of the one—varlables functions

which had been anallzed by the Pade method and other technlques

_by Hunter and Baker (1973} .

The 51ngular parts of the test functions (3.3)

to (3.6} obey the general scaling form of Eq. (2.1) with two

options for the scaling function Z(z) . For example, in the

- case of functions Fc and F, r oOne of the options is

AX = 1 = x = % v ; (3.7a)

and

{

1 - 2x -

Ul

Ay Y s (3.7b)

which leads to

e ="10 , e, =72 , Y'“% ¢ = %-, and 2Z(z) = z_l/2 .

i
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' In the other option Ax and Ay are interchanged, leading to

= % ,.end _Z(z) =z--3/2
For theee functlons, unllke in the case of the real phy51cal
problems, 1t is - not possmble to determlne f and ¢ inde-
'pendently | Also, 1t should be remarked that F _'may be.
represented exactly by a set of PDA s where PLT hasﬁa constant'
:value and the polYnomlals and RN are linear'in;the - |
variables X and vy |
Functions. Fé to.Ff were represented as the
.power series | E | o
F(x,y) = I S xkyk"  - (3.8
: k,k'=0 ' = e - : _

with the. coefficients fk K corresponding to a triangular
. ) r .

'array {(that is, with k-+k'_§os , where the integer"os gives

. the order of the series). Also, the polynomials PL 'QM » and

.RN are given by the triangular arrays,

s ol | (3.9)

il

P_{(x,y) Z P '
L goer=0 Lok

m m'
qm,m' X'y ; _ (3.10)

Q. (x,v)
M " omm'=

~and
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where the integers L , M and N Y are the nﬁmber of terms of

the polynomials PL ' and RN respectlvely, nd £-+£' <oP '
n1+nﬂﬁioQ ;- and n-+n"5QR . As we are lelng L M and N ' |
1nstead of the order Op oQ ' and OR ' the polynomlals 'PL .

-QM and RN may not be symmetrlc in terms of the varlables

x and. Y - For example, the polynomlal PL ’ w1th L-—4 ;.is

written as
Pyixs¥) = Pgg * PgXx ¥ Py ¥ T Pyg® - N _(3'l2)

| If we make Py =1 , the L+M+N-1 remaining
coefficients of the polynomials’are determined by the set of
linear equations which come from the substitution of the series
expaneion (3.8) into Eq; (1.6). Given a series.ef order Og

we'may construct approximants of order Oy ! such that

o, <o, -1 , (3.13)

where

(OA+1)(OA+2)

- = = . .14
L+M+N-1 5 Kwy (3 )

The construction of all PDA's up to a certain order, in analogy
with the standard Padé tables, is a rather formidable task

even at not so high orders. Indeed, the number of approximants
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of order OA"is~inen by

S N ('QA+1)'2(OA+2‘)2'- 3 e T
KﬂkaA)]l= = | +-Z_(OA+11(OA+?thl  yf_ F3.15) -:*

8

 This clearly.imposes sharp limitations on the numerical

_ caiculations. Therefore; we_have choseﬁ 88 apbrdkiménts, up 
 to order 13, in a somewhat arbitrary fashion;"As defihed in
Table I, we included diagonal and neaf—diagonal_approximants
(L.zM=:N) , as well as some off~diagbnal ones;r-

It has been impossible to construét-numeriéal
T‘_apprqximants for F_, even at the lowest orders, due to ill
conditioned equations. With the exception of some off-
diagonal approximants, the estimates for the critical points
of F lie along the critical line, and tend to cluéter

b
around the intersection with the cartesian axes. For F and

o]
Fd" even at the lowest orders, we obtained nearly exact
.results for the mulﬁicritiéal points, the slopes of.the Qﬁding
axes apd the muitiéritical exponents. However, ' some off-
4' 'diagoﬁél-approximants give‘estimates of the multicritical
-zpoint which cbncentrate along one of the critical lines. For
'theSe”functions the system of linear equations tends to become
111 conditioned as we increase the order of the PDA's.
Due to the regular terms added to their singular
:parts, functions Fe and F are not represented exactly by

£

‘finite partial differential approximants. For function Ff

- the singularities are stronger and closer to the origin than

for Fe . S0, it was not surprising to verify that Ff is
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better represented than F_ with PDA's of lower orders. A

sample of the estimates for the multicritical parameters of

¢ 1s given in Tables IT and III respectively. As

a general pattern, the gquality of thé estimates improves as we

increase the order of the approximants. Also, diagonal and

near-diagonal approximants tend to produce better estimates

than off-diagonal ones. Tables IV and V give ordered sequences

of approximants according to the decreasing precision of their

‘estimates. By the inspection of these sequences, it becomes

apparent that there exists a correlation between the quality

of different estimates: usually, a PDA which gives a good

‘estimate of the location of the multicritical point, also
:happens to produce good estimates of the slopes of the scaling

axes and of the multicritical exponents.

After obtaining the estimates of the multi-
critical parameters, we used the method of characteristics for
solving numerically the differential eguation (1.6). It turns
out that most approximants for FC to F_ , despite yielding

£
good estimates for the multicritical parameters, display a

~-saddle point unstable multicritical point in their flow-

diagrams. As a matter of fact, no correlations were apparent
between the quality of the estimates and the stability of the

multicritical point.

In Fig. 1 we show the flow~-diagram corresponding
to the approximant number 1 for FC (L=1, M=N=3). Within
the numerical precision, this particular appfoximant belongs
to the set of PDA's which represent FC exactly. Since the

polynomials QM and RN are linear in x and vy , the
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system of coupled ordinary differential equations (2.14) is
already linearized, and we can find solutions that hold in all
regiohs of thé X,y plane. In particular, since the estimafed_"
multicritical‘pdint is stable, every flow-liné, ne matter its
étarting point, converges ontO"(xc,Yd) < The characferization 
of the_critiéal lines as flow-lines, and the asymptotic
alignment of the flow-lines with the scaling axis of slope

e, =-10 (associated with the smallest value of |A] ), are also
‘apparent from Fig. l. Estimates of Fc along.some flow-lines
were obtained by the numerical_evaluatidn of'Eq.—(2.14);' Of
course, inlthe.case of this particular PDA, the defining
eQuation (1.6) can be solved exactly, so‘that'our.numerical
calculations could be controlled.against the_cqrxesponaing
exact reéults. For example, in Fig. 1, if we startlat_fhe
_beginning of the flow-lines with the exact value_of Fc, after
~a time interval of about 3 units, which already leads to the

- vicinity of the multicritical point} the usual error of our

E computer program amounts to about 0.3%.

The flow-lines corresponding to the approximant
- number 73 for Ff (L =35 , M=34 , N=237) are shown in Fig.
2. This PDA exhibits a stable multicritical point with the
same features of the previous one. The asymptotic alignment
E of the flow-lines with the scaling axis corresponding to
e1.=-3 is more striking in this case. This is due to the
larger value of the difference Ill-A2| . The estimates for
.Ef have a typical error of about 1% after an interval or 3

_timerunits. In these numerical calculations, we used a Runge-

Kutta method of fourth order for obtaining the flow diagrams,
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and a Simpson procedure for performing the integrations,without

worrying about the precision of -the results.

- IV. DIMENSIONAL CROSSOVER IN THE ISING MODEL

An Ising model with axial anisotropy may be -

- defined by the Hamiltonian

(XIY) ' (z)

n,
_f{ ==J 3 s;85 ~RJ uzjfisj H ;Si Hst.g(.l) s, (4.1)

(1,3

where sS4 =+1 , the.first'sum is over nearest neighbor pairs
in the x-y planes, andlthe secohd sum is over nearést‘neigh—
bor pairs whose relative displacement vector has a z compo-
nent. H stands for the applied magnetic field, and Hst: for
a staggered magnetic field which acts oppositely on adjacent
planes of constant =z (the parameter ni is 0 'or 1
depending on whether si belongs to an even or to an odd x-y
plane). 1In this work we consider J >0 only, so that for

R >0 the system orders ferromagnetically, while it exhibits
metamagnetic behavior for R <0 . The special value R=0
corresponds to a set of uncoupled two-dimensional ferromagnetic
Ising models. Therefore, according to the ideas of smoothness
and universality, an abrupt change in the values of the
critical exponents is expected to occur at R=0 . The method

of partial differential approximants is quite suitable for

studying this dimensional crossover between d=3 and d=2
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Harbus et al’ (1973) studied the four—-dimensional .

phaSE“diagram,"inﬁthe- T~H;Hg£*R‘.space; and ‘some thermodynamic

' propértiés 6f;thiS'model. jInnparticular,‘they‘identified aff.
 tetracritical point, where two ferromagnetic ‘and two:anti-

“ferromagnetic phases become identical, at R=H=Hst=0 and T is:

equal to the critical temperature T, of the two-dimensional
Ising model. Using the symmetfy propertiés of the model.

Hamiltonian (4.1), one can easily establish the following .

relation

) L %(T:R{H =HO_'_H_St =O) .= 3(':[', -R,H -_..—OIHst =HO?. ' (4.2)

where é% is the canonical partition function. From Bq. (4.2) -
we may write |
(T,—R,H%O,HS =HO) , (4.3)

t

= 'H =0 =
?{(TerH HO st ) X

st

where ¥ and Xgp are the direct and the Staggered'susceptif-

':'bilities of the model system. Thus, in zero'fiélds, Harbus

and Stanley (1973) formulate the scaling hypotheses

X(T,R)3x‘|T|-Y'z[ R } o - (4.4)

for R>0 , and

- R
.Xst(T'R) x| Y Z{— ] - (4.5)

for R<0 , with 7 E(T-Tc)/Tc , and yv=¢=1.75 . The critical
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~lines which -are incident on the tetracritical point are

-associated with the singularity of the scaling functionﬁat;zt.

They are described, therefore, in the vicinity of this multi-.

critical point, by the symmetrical curves . .

6 _ . R |

Although the one-variable series analyses, which were performed

by Krasnow et al (1973), seem to support the scaling preﬁicﬁion,

we decided to construct PDA's for the two-variable series

éxpansions obtained by Harbus and Stanley (1973). ‘Besides

checking the previous analyses, the PDA's are expected to

. produce numerical results for the crossover exponent ¢ and

the shapes of the phase boundaries near the tetracritical
point.

We considered a triangular series of order 10

= KTX

for the reduced susceptibility, ¥ N

; of the model system

- defined by the Hamiltonian (4.1) on an fcc lattice. Using

the wvariables

% = tanh 1= and y E tanh %Q (4.7)
T

we constructed 61 approximants of orders 7 ,8 and 9. This is

the complete set of PDA's, up to these orders, with L >1 and

M=N>3 . 1In Pig. 3 the estimates for the location of the

tetracritical point are presented. The exactly known tetra-

~critical point,




is also indicated in this figure,_as,well as intevals of 1%
and *10% of xt . . We do not note any alignment of the

estimates along the critical line,_althpugh they_clearly tend
to be situated on the half-plane _y §0 (which indicates the
influenée of the ferromagnetic critical line). 1In Fig. 4 we
see estimates for vy as a function of estimates for X,
The values vy =1.25 and ly==l.75 are indicated. The estimates
for y are plotted against the estimates for Yy in Fig. 5.
In Fig. 6, estimates for ¢ ‘are plotted against estimates for
Y . The straight line v =¢ was drawn in order to test the
agreement of the results with the scaling prediction y=¢=1.75.
Some correlations are observed in this figure, but they do not
allow any conclusions. Finally, one may.observe that the
estimates for e and e, vary in a rather large interval.
However, all estimates are such that ]el| <1 and |e2| >1 .
In particular, those approximants whose estimates for the
tetracritical point are close to the exact known location yield
values for e, and e, such that '|ell <<l and |e2| >> 1

2
This seems to indicate that the original x and y axes are

indeed the proper scaling axes.

We believe that the nature of the tetracritical
point as a terminal point of the ferromagnetic line may be one

of the reasons for the rather poor performance of the aproxi-

mants in this problem. In order to work with a gquantity which

takes into account the symmetry of the model, we defined the

average reduced susceptibility,
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T o= X3+ ' (4.8)
2 at : '

which diverges at the critical line for both R>0 and R<O0.
From (4.3), the series expansion for Em. may be obtained
trivially from the series for ¥ by a mere supression of all
odd terms in Yy . Thus, from the.defining equations of the
PDA's it is possible to have P and QM even in y ‘and

R, ©odd. This really happens numerically, and leads to the

“fixed value yt.=0 in the estimates for the tetracritical
point. In the approximants for Ym' we noted a large number
of cases where ill-conditioned equations were obtained. It
was impossible to construct any approximant of order 8, but

" ‘there were 55 approximants of order 9 which, despite being
off-diagonal, displayed well conditioned linear equations.
Fig.‘7 shows estimates for <y as functions of estimates for
x, . The marked point xt==/§-l , ¥y=1.75 indicates that
the results are really consistent with the expected values.
The apparent dispersion of the estimates and the linear
correlation they reveal is known from d-log Padé results for
one variable series. Fig. 8, where we plotted estimates of

¢ versus estimates of Xt , shows a similar behavior. Finally,
Fig. 9, which displays estimates of vy versus estimates of ¢,
Seems tq indicate very strongly that we really have v =¢ =1.75
for thié model. It is to be emphasized that in this case the
values e =0 and e, = are fixed by symmetry.

We also constructed flow diagrams for some of

the best approximants to the original series for X and for
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Eﬁi.-'lt is remarkable that the best approximants exhibit
locally stable tetracritical point estimates. The starting
points of the flow-lines were located on a circle of radius
r=0.32862 and centered at (V2 -1 ,O); whiéh contains the
estimated critical point (xc==0.10174 P yc=¥0.10174) of the
isotropic Ising model on an fecc 1atticeﬁ(Sykes (1972)).

Fig. 10 shows the flow~diagram for an approximant
of order 9 (L =25, M=N=15) forlthe series expansion of ¥

This approximant gives the estimates

x, = 0.411873 ,
_ -5
Y. = 73.56741 x 10
and
e = ~1.415158 x 10 ° , e, = 2.34177 ,
y = 1.87897 , o = 1.79030 .

It is apparent the alignment of most flow-lines with the

scaling axis with slope e The marked flow=-line corresponds

1
to the estimated critical boundary. A log-log plot of X=X,
versus _yfyt for this particular line provides another
estimate for .¢ . The points are linearly correlated,

even in regions not so close to the tetracritical point. If
one estimates the slope grafically, it is possible to obtain
¢=l.610.2.

Finally, Fig. 1l shows the fléw—diagram for an
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approximant of order 9.(L=21., M=30, N=5) for the series

expansion of_.im . .The estimated tetracritical parameters are
x, = 0.4146114‘ '
y =1.7659 ,
6 =1.7840 ,
while
Yo T o . e, = o, e, > ®

are fixed by the biased symmetry requirements. Due to the
 parity of the polynomials, the flow-diagram is symmetric, so
only the half-plane y >0 is displayed. The same features
observed in the former flow-diagram are visible here, but a

' log-log plot of the estimated critical line produces the result
.¢ =1.75 +0.02 , which manifests the better guality of these

estimates.

V. SUMMARY

We used finite double-variable power series of
some test functions and thermodynamic model functions to access
the performance of the partial differential approximants for
estimating multicritical parameters and phase boundaries.

| The test functions were chosen so that their

singular parts simulate the kind of multicritical behavior

which is expected to occur in physical situations. Some test
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functions could be represented exactly by PDA's. "~ In this case
we obtained excellent numerical results with approximants of
lower orders. The accuracy of the estimates for the test
functions which could not be represented exactly by approximants
of finite order tended to improve as we increased the order of
the apprégiﬁantéil.Tﬂié héépened.eveﬁ in ééseé where approximants
of relatively lower orders provided gquite erratic eéﬁimatés.
Also, we used the method of characteristics to obtain numerical
solutions for the defining differential equations of some
approximants. It was possible to verify a strong correlation
between the quality of the estimates for the multicritical
parameters and the accuracy of these numerical solutions.

With the purpose of analyzing the crossover
behavior between two and three dimensions, we constructed
PDA's for the series expansion of the direct susceptibility of
the axial anisotropic Ising model. The quality of the estimates
improved considerably as we turned to the analysis of the more
symmetric series expansion corresponding to the sum of the
direct and the staggered susceptibilities. Besides using the
PDA's for obtaining numerical estimates of the multicritical
parameters, we also performedrnumerical solutions of the
defining differential equations for some approximants.

This procedure gives an estimate of the critical line

in the anisotropy (R) ~temperature (T) plane and an additional
estimate of the crossover exponent ¢ . It is worth remarking
that, despite the good overall agreement with the scaling

predictions, the existent series expansions are a bit too short
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for providing really excellent_estimates_by,meang_of‘the_PDA{S.
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TABLE CAPTIONS

TABLE I -

Specifications of the approximants to the.power series

of the test functions. The approximants were numbered

’from”l*tbPSB; L}3M'ahd N.stand_forfthe:humber of - terms

TABLE IT -

TABLE TIT -

| TABIE IV -

in the polynomials -PL ;QM and R_ ;'respectively.

N

Estimates for the "critical paraméterSF of the test
_ : L -3n oy _1/2

~ function Fe==(l-2-?- y) (1-2x -2y} +

2
+ exp(-x - 2y) cosxy , provided by a subset of the

approximants defined in Table I.

Estimates for the "critical parameters" of the test

function Ff==(l-x-—2y)—5/2 (l-—.3x--y)-2 +
+ exp(-x - 2y) cos xy , for‘the same subset of PDA's

presented in Table II.

Ordered sequences of PDA's to function F , according

to the decreasing precision of their estimates. The

. parameters used in the ordering procedure are: Ac -

distance between the estimated and the exact "multi-

critical point"; 4, - distance between the estimated

"multicritical point" and the straight line l—x—%3r=0;

A2 - distance between the estimated "multicritcal

: n . > . - _l = . —_
point" and the straight line 1-2x Y 0 ; Aexp

- distance between the estimated exponents {vy,¢) and

the straight line ¥y -%—¢=h% for the scaling option

'. with el'b"lo and e. VvT2 Ael - absolute difference

- between the exact and the estimated values for e

2 I

1 ;




TABLE V -

be, = absolute difference between the exact and the

estimated values for e, i Ae - equals to

JQAel) ‘+ (Aez) .

Ordered sequences. of PDA's to function Ff , according

‘to the decreasing precision of their estimates. The

parameters used in the ordering procedure are the

. same és defined in.the caption'of Table IV, with the

_exception of: A, - distance between the estimated

1

multicritical point.and the straight line 1-x-2y=0 ;

A, = distance between the estimated multicritical

point and the straight line 1-3x-y=0 ; Aexp - dis-

tance between the estimated exponents (y,¢) and the

straight line Y"2¢==% for the scaling option with

- -1
n, ad LA VIR
€773 and ey 3
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FIGURE CAPTIONS =~

FIG.1l - Flow diagram in the (x,y) plane of the PDA n? 1 (L=1 ,
M=N=3) fof the function Fc . The heavier lines
indicate the trajectories which correspond to the
:Scaling axes. The.dots'oﬁ.the Flow lines are spaced

in unitary "time" intervals.

FIG.2 = Flow diagram in the (x,y) plane of the PDA n® 73
(L=35 ,M=34 ,N=37) for the function Fd . The

symbols have the same meaning as in Fig. 1.

FIG.3 - Estimates for the location of tﬁe tetracritical point
(xt,yt) for the series expansion of the suscepbtibility
of the axial anisotropic spin-1/2 Ising model on the
fce lattice. The crosses, open dots, and full dots
indicate PDA's of orders 9,8, and 7 respectively.
Intervals of #10% and :1% about the exact value of

Xt are also indicated.

FIG.4 - Estimates for the tetraéritical exponen£ Y"plotted
against estimates for Xe o The symbols are the same
as in Fig.3. The dashed lines indicate the values of
the critical exponent Yy for the two and the three-

dimensional Ising model, and the exact value of Xt for

the  two-dimensional Ising model.

' FIG.5 - Estimates for the tetracritical exponent vy plotted
against estimates for Yy - The symbols have been

defined in the captions of Figs. 3 and 4.




FIG.6 -

FIG.7 -

FIG.8 -

‘FIG.9 =

FIG.10 -

Estimates for the tetracritical exponent .y . plotted
agaihst estimates of the crossover exponent ¢ . The
scaling prediction y=¢ =1.75 1is also indicated in

this figure.

Estimates for the tetracritical exponent vy plotted

against estimates for x_ . All crosses represent

t
results from approximants of order 9 to the series
2 2 *st
of the axial anisotropic Ising model on the fcc

expansion of the average susceptibility: éix + 1 )

lattice. The big cross indicates the exact location of

xt and the scaling prediction for vy

Estimates for the crossover exponent ¢ plotted
against estimates of the tetracritical parameter xt .
The order of the approximants as well as the series

expansion which has been used and all the symbols of

this figure are the same as in Fig.7.

Estimates for the crossover exponent ¢ plotted
against estimates for the tetracritical exponent vy .
We are using approximants of order 9 for the series
expansion of the average susceptibility of the axial
anisotropic Ising model. The scaling prediction

vy=¢=1.75 1is indicated by the big cross.

Flow diagram, in the (x =tanh J/kT , y =tanh RJI/KT)
plane associated with a PDA of order 9, given by
L=26 , M=N=15 , for the series expansion of the

reduced direct susceptibility of the axial anisotropic




Ising model on the fcc lattice. The dot-dashed lines
indicate the estimated scaling axes. The heavy line

indicates the estimated phase boundary.

FIG.1ll -Flow diagram, in the (x =tanh J/kT , y =tanh RJ/KT)

plane, associated with a PDA of order 9, given by
L=21, M=30 , N=5 , for the series expansion of the
reduced average suceptibility of the axial anisotropic
Ising model on the fce lattice. The scaling axes
are fixed by symmetry. The heavy line indicates the

estimated phase boundary.




‘1l |m |v |1 L: M| N i_ L M In] 1M |nN
SRR 23 {23 |22 ol as | 3] 26 50} .67 15 74 |3
2 | & | 6| 6 |24 |22 |23 [22] 46 {59 10 |10 68| 36] 35 |35
312 | s |15 |25 |22 |22 | 23] 47 i10] 59 | 10| 69 35 '36-35
4| 2|10 {10 ‘26 |25 |21 [21| 48 |10| 10|59 70| 35 | 35 36_
s 17 1 s |25 |27 |21 |25 | 21| 40 |e6] 7| 6| 71|37 | 34 I35
6 | 7 {15 |15 |28 {21 |21 |25] 50 |30 31 31| 72| 34| 35 |37
71 7 |25 {5 f29 {37 {15 |15 51 [31| 30 31| 73] 35 34 |37
8 | 4 |21 |21 [30 |49 |15 | 3] 52 |31] 31|30 74| 35|37 |34
o | 6 | 5 (35 [31]15 | 3 49| 53 f29] 31 (32| 75| 34 36 |36

10 | 6 |20 |20 |32] 3 |49 |15 54 {31 29|32 76| 36| 34 |36

11 | 6 |35 | 5 [33] 3 |32 |32] 55 |32] 29|31 77 36|36 |34

12 116 |15 |15 |34 |15 |26 | 26| 56 |32 31|29 78| 45| 31 |30

13 |36 | 5 | 5 |35 27 |26 | 26| 57 [29] 32|31| 79| 45| 30 |31

16 | 6 {5 {45 |36 |26 {27 [26] 58 [31| 32| 29] 80| 28| 39 |39

15 | 6 |15 |35 |37 ] 26 j26 [ 27| 59 |28] 32|32} 81 30 30 {38

16 | 6 |25 |25 |38 |23 |28 | 28] 60 |20| 36|36 82| 38| 34 {34

17 | 6 [35 |15 §39 |37 |21 | 21| 61 |36 28|28 83| 50| 28 |28

18 | 6 |45 {5 J4o | 21 [37 |21 62 10| a1 |41| 84| 3|s2{51|

19 14 |21 |21 41 |21 |21 | 37] 63 |45 23| 24f 85| 3| 5152

20 |18 | 4 (34 |a2| 3 |38 |38] 64 |45| 24|23 86| 10| 21|75

21 (18 |19 |19 {43167 | 6] 6] 65 | 3| 15]74| 87| 21{ 75 |10

22 |18 134 | 4 |4s 3 |50 [26] 66 |74 3|15[ 88| 21| 1075

TABLE I




1 e Yo €1 €y Y .¢
12 0.3186 2.318 10.66 -2.128 5.537 -7.091
15 0.4612 0.6485 ~2.566 -5.6x107 2 0.5964 0.5928
23 0.4668 0.4075 ~19.80 -0.7800 3,139 5.695
27 0.1893 ~4x10” " 30.39 1.004 0.1857 2.164
30 0.5921 -0.9837 -10.08 -0.5056 -0.7342 -2.605
34 0.4547 0.3446 -6.248 0.9314 -0.3029 -0.9209
37 0.3913 1.413 ~22.18 -2.002 -0.5770 -5.599
49 0.8315 -1.419 ~1.286 1.082 -1.025 -2.038
50 0.3406 1.305 -5.917 -2.004 1.185 -0.5753
66 0.4570 0.7495 ~18.78 ~3.845 0.3050 ~0.6100
68 0.3806 1.265 ~12.08 ~1.998 0.2370 -2.653
72 0.3735 1.256 -9.685 -1.995 -0.3188 -3.646
76 0.4268 1.244 17.86 -1.748 0.9843 -2.899
82 0.3f39 1.248 ~9.557 -1.995 4.5x107 2 -2.786
85 0.3742 1.224 -9.224 -2.026 -0.261 -3.229
87 0.4061 1.036 -16.14 -2.149 ~0.3537 -2.350

TABLE




I_. : XC -. Y, : el e2 ¥ ¢
12 0.1884 4059 -2.950 ~0.5044 0.4094 ~1.104
15 1 0.2035 LY -3.712 ~0.4022 -1.273 -2.043
23 0.1989 ).3987 ~2.966 ~0.5030 -0.5720 - -1.547-
27 10..2000 .4000 -3.001 -0.5003 -0.2923 - -1.398
30 0.2353 L3693 ~4.141 ~0.5071 0.9854 ~0.3429
34 0.2000 .3999 -3.001 ~0.5003 ~6.67x1072 ~1.217
37 0.2001 .3999 -3.004 -0.5004 6.53x107 2 ~1.216
49 9.34x10 2 6537 ~2.662 -0.2878 ~79.82 -1.525
50 0.2001 L4001 ~3.007 ~0.4991 1.017 -0.7439
66 0.2635 .3179 -4.307 ~0.5884 ~3.484 ~0.9281
68 0.2000 L4006 " -3.020 ~0.5000 -13.81 - -8.160
72 0.2001 L4004 -3.018 ' -0.4999 -11.03 -6.767
76 0.2001 _,4000' .-3.002' ~0.5000 -0.8118 -1.655
82 0.2021 L3974 -1.467 7.85x10 % 4.583 1.066
85 0.2003 L4008 :n'e3;ois -0.4959° | - -0.1895 -1.344
87 0.2341 .3296 “lo.ss -5.04x10° 4.621 1.526

TABLE III
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39
4
6

15
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83
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8
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6
67
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63
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65
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18
12

54
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53
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72
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28
15
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70
38
33
13
22

34
57
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27
33
39
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36
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76
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53
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47
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26
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19
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'35
71
23

44
63

76
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29

31
17

58
64
33

43

52
83
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13

69
24
29

44
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52
69
46
16

5
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75
81
13
67

37
69

41
15
67

58
55

84
‘15
63

62
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14

37
78
12

44 -

58
61
19

37
72
28

14
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68
46
87
16

52
77
19
13
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53
75

82
43

85
71
41
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33
26

81.

88
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27
57
73
49
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77
74

19

22
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16
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49
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20
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70
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63

79
‘65

62
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