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ABSTRACT

We prove that the non-local charge anomaly of the-
-1 . _ : SR
CPn. - model vanishes when fermions are coupled in a minimal or

.. supersymmetric way.
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I. INTRODUCTION

(1) ﬁe proved that the CPH_l model

In a recent paper
has a quantum anomaly in the conservation of the non-local quantum
charge, which explains the departure from its classical analog,

known to be claééicaily integrable(23

The classically integrability condition is known to

be(3):

gr-jv—g"‘}.r-"z[jr“i“]‘o (1r.1)

but due to quantum fluctuations the right hand side of (I.l) aquires
the term —% zizj. Fuv' o

However there are reasons to suspect that when cou-
plgd to fermiops.in_a minimal or supersymmetric way the equation
(I.1) is again valid. These suspections root in the fact that in
the supersymmetric model gquarks are liberated(4) as well as in the
case of minimal coupling(5). Fof both cases there is a prqposed

exact S-matrix(S’G)

verified in lowest non-trivial order.

In fhis paper we will vefify that, indeed, in lowest
order of the l/n-expansion, the anomaly of the pure Can1 model is
cancelled with a complementary one coming from the additional
couplings conéidered:

In section II we are going to discuss in detail the
case of the CPn"l model minimally coupled to fermions. 1In section
III we state the Feynmann rules for the supersymmetric CPn_l model.

In section IV we write down the Wilson expansion for
the product of two currents. Finally in sec. V we construct the

conserved current for both cases.

IT. MINIMUM COUPLING TO FERMIONS




We couple the ¢P™ T model minimally to fermions by
writting down the Lagrangian: | |

ﬁb :)'lj) o4 df (‘3 A )“f

(I1.1)
where :Dr,z = 9".2 - Ar&! 3 A‘L = - AP, 3 £% = ;.E
Thé.Euler's equation for the AU field furnishes

N S A e - -
Af"'?{ A e 4 (IT.2)

so that, classically, A is not an independent field.

Associated with the linear transformations of the

zi flelds, 1eav1n9t£¢ndwdﬁ§¢- + there are internal symmetry

currents givenby

J.la s & Bpia "D

3 o= gl 2B YY) o3
,..e. ) 3‘3’ __e;_("i’ls‘ )z‘z .-(IIJ.)
where At:- - z‘-‘:élu, ia- . 2% ( 2 f—)t.,_-z) a‘-i'a_.

4 n

As can be easily véfified-'these'currentsfsétiSff' N
[3&. _39—.\53'_-.- I E(a 3“. a 37‘ ‘”"{(& & \9 (‘\' “6’“'4') - u=>r,]

(II 4)"

s-41 (,»J aﬁ.»)..a -[a(a za‘H‘Hl')nlb’b"r-)]

where, in the last equality; axial current conservation €
was used.

(¢Y QFO
~From (II.4) we see that the cla551cal non- local charge

Q = da-daz Elzt'gl)-jn (34.{:) jolzz.i) - .2} (A‘ﬂ% '-‘i’_\d"\('hi’a)da_ | (11-5)
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is conserved, i.e.,
In the guantum version of the model all theze
calculations must be reexamined. Using the path integral :

formalism the fermions can be trivially integiated out and we

obtain the Feynman rules adequated to the 1/n  expansion.

A - propagator <«— (é - M)[(F'“”“)A(P)J (II.6a)

u | F? ey | L ThnTR
z - propagator «— P:+-m3 o o (1.ep)
¢ =~ propagator <— IA‘P?] S e o (II.6c)

P ey

where o 1is the lagrange multiplier field added to to enforce the classlcal

A(P)__‘[P (Pur“ﬁ’)] 72 /Le% \]p-flfm + \r?‘

constraint zz 2 2 The mass m is a ~dynamical- generated mass given by
m2==u2e_n/2f ; Wwhere u is the renormallzatlon spot.

When compared with the pure cptl case, we:note
that the Ah field has lost its pole at p2 = 0 . Heuristically, this
means that the partons (the guanta of the zZ, fields) are liberated.
In ref (5) a factorlzed S-matrlx Wthh agrees in lowercnﬂerwmﬂl
" the one obtalned by the use of (11.6) has been proposed This
strongly suggests the existence of guantum non-local conserved
charges.-sTaking:into accounf-the apomaly in the pure CPn_l case
we conclude that a compensating anomaly coming from the minimal
coupliﬁg must exist,. In lowest order this can be verified by the_;_

study of the short distance product of the currents.

Jp tete) 3y () - T o) S,Lcm)- Co, 3+ Dby as:Sf +

+ Cr.u 1&‘% F:fb“ + Nz [- 3"'('2+CJ ’ V(x') ] - (I;[.7)
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wheke.tﬁe symbol N, denotes ﬁhe ndrmal product defined ba
Zimmermann making the minimum number of subtractions necessary
to render the product of currents at the same point well defined..
In contra.distinction to the pure CP™ T case we find that -
this normal product gives an additicnal contribution, From (II.4) we have

[J ,Jw] _{_ Nletz 8 (%,‘Q,L fza z, AI“) Lv i}

(I1.9)

Now, the graphs contributing to the rigﬁt hand
side (r.h.s.) of (IIL.9) have the. structure shown in fig; 1. where
in fig. 1lb the detached subgraph of fig. la can not occur. The

monmentum space-expression'ﬂj:the detached subgréphhdf'fig. la is

Ir«vz - L{" (’)'gr -P 3095 3}.&5’ Fig) 3135. 5’95 - ?m(?)— (rt“' V) ('11.10-)”'
3?- ql k"_{i: . . :

where p. is the total momentum entering-at V . Thus ..

I = %‘(J%P a( )- b‘njg E)., __if ‘S[M’-—**—')&G‘LQT) (’u,»v‘)

2 c L‘ (IT.11)
q' . +

where current conservation quj“(q) = 0 has been used.




The first term in (II.11l) cancels against the
contributions from the graphs of fig. 1b The contribution from
the second term, on the other hand is, in coordinate space, equal

to
___:L__Z;Ea- (av Al“'" DF“A")"'@D‘V[&EA (;:F?fﬁ'q!)j_ (r‘,ﬂv) (I1.12)
T s o l BT -
Thus

N, I'IP"_]"]= _‘.:E_ 2% Fw"i‘i{ gg (22 ¥ ¥EY) - (r‘_'.“."'vj]:(il._lfi)_

with F =53 A - 3 A .
Tuv o v v

Thus defining Q.= Zim Qs where

Os - =3 4y, dgz 6(%.-%,)30(3,,%)3;(31,{')-% chl&wr"f’?f "1’2143 (I1.14)
1442138
2.m J ,LS)

one Qbﬁéins %% =0 up to the order considered.

III. FEYNMAN RULES FOR THE SUPERSYMMETRIC cpnfl MODEL
Supersymmetry couples the cp™ ! to the Gross-Neveu
chlralrxxbl(4) The formal Lagranglan den31ty descrlblng thlS. o

coupling is given by

. YD + ¥ (3% g}“‘-)w* £ ) ("PKS'P) o)

III.1)



The 1/n expansion of this model was extensiﬁelyu”;f
discussed in ref. ( 4). For completeness we repeat the main
arguments. _The:generating_functional_fof'the“euciidian:Green_

functions is given by

u .

2(3 ) - |0 Ds 9+ &7 T 5(.;-.:'_- g})&ﬁm&m .

| . (ITI.2)
2 - - - o

xexpd -5+ |d«x a’a-g-aj—rrl“l’ir'."l’r[

where S 1is the action.
The constraints and the quartic interaction can

be eliminated by introducing auxiliary fields «o ,lu',c',c',¢ ]

and m in the following way

1

T_I S(!zl )5(% SGE¥)|ep | dx |-E (55;%'*'?"_“&&"}
2n

+ £ (@?)7-} (;V’_fs ﬂp)‘ - Q« 'Qc. Ea °@3ﬂ- a9¢ a@f exp dzx _(_,__a{ (!%l zﬂ-ﬁ)
2m . ’ ﬁ:

p ol (P Fac) o La [ GRee)-F07)- (e 1220 )nls

Yn fn o™ Ce

+4_(95?“P+:L’VJIIS'W) L (ppexT) a3y
7\ 2f

Using (IXI.3) it's straightforward to 1ntegrate out
the ¢ and 2z fields to obtain an effective action, whi¢h is
expandable in a power éeries of ;//ﬁ . The saddle pcintcxmdﬁﬁonfi
implies mass transmutation and that ¢ has a non vaﬁIShihg
vacuum expectatiqn_value,‘

The rén6rmalizétion of f 1is the same as in the

case without fermions, which by the way do not affect asymptotic




(4)

freedom' '. We have now for the quadratic part of S :

) S :
S . fdlxd}t& {:’{ e [ gy o g+ LAy o f’,f,, ) Ay

| ¢ |
+ '."? (}S_L?ﬂ).h.(-‘_’“g) ¢L3) + __L Tf('x.) r' L!—a) Ttp&) + ;[ (-x.)r‘ (oe

3) lLl;)
- r:c'.c. |
+  C %) (=Y ) ctg)} : g (I11.4)
where
A8 ' _
, (p) = A Cp) TR S : ('I.I.I.S) |

. (ITI.6)

P
r? -

(P = (P 4nd ) Ap) (I11.7)
Mey = @ Apy Ay | | (111.8)
npat o -2 & | - A |

e (P) = pv Ev. g (ITI.9)
P“(P) = (l% _,m> At?) _ “ | , ' .(II-I,:LZO)

Atp) < fitfi- {(%»&) (t?ﬁ\) +-?)}
(a2i0)* |

oy P [P e -
- A PZ -2+ 4."}:] _ P+ 'P T Y (III.11)
‘ﬁf[ (P | ) )Eta, J;'z‘_' - l_Pz+ 4o o



The propagators read:

-

1

Do

1) LF)

" where

for the vertices are shown in fig. 2.
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The graphical notation for these propagators and
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 IV. SHORT DISTANCE EXPANSION FOR THE PRODUCT OF TWO "ISOSPIN"

- CURRENTS
Associated with the isospin rotations there is a. 1

set of conserved currents ?: given by
Toes pra—- —— . .

9 N 3 P -
= i":D Er 4+ ’qj ‘\0’ PLPL _ Iv.1l
I LR 3 (Iv.1)
which are conserved. 1In ref. ( 7) it was shown how these currents

can be used, at the classical level, to construct, non-~trivial,
non-local conserved charges. In the quantum.ver51on we need,
similarly to do what was done in section II, to study the shott
distance behaviour of the product of two such currents. The most

general expansion for this product is

[JP"“” J"""J N [gpeer o) « CLL it v D Do e o €L 2ty Feo
+2_m%|w éanlz T Y. . H'w Er,-u_'\l* Y. 4 1_;,,,,&:5 ‘—‘F ¥s ¥
RGN Y %) e 2 Ch Ty bes Lo e m’g- 5 )
o W R Buv *f%a' TEP, Ofy 3 i) g +
£3f (e ¥ 2 iE Gpe) . S (Z'“';pa' ¥p < -’\ll;za.lg, z ).f |

*?{3" egﬁ' a-‘ A ™ + jrv (,%(,’1" c - {‘P %ac>+ ‘&;%_ @-5‘#}

' L - ¢S
+ Jf“’ (%;‘."\Pa.c. - "\b‘.g. g) + Qrw 6-36‘ 2.3 d) ll..

(1Iv.2)
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Higher order terms (quadrilinear in the ¢'s and
z's}) have not been considered. We observe now the following

facts.

(a) Making a charge conjugatioﬁ'transformation, the left
hand side of the above equation changes sign, and interchanges
i and J . So, by C-invariance we have that .Buv ’ JLS ’

N ' oP "are Zero.
uv uv )

(b) Aﬁv  and _RSV” vanish as eF+9.. This is so because
they are notzﬁdst iogarithimically divéfgénf and it is impossible
to construct a third rank tensor (using only Guv and the ¢'s)
having such property.

(c) The % and Qig contributions come from the subtraction
at zero momentum of the graph of fig. (1), but this is :eadly

seen to be zero when antisymmetrized in u ,v .

() J v and ”J!v -are antisymmetric in u,v , thus
FR "

proportional to EUV what is impossible by P-invariance.
With the above femarks'the eqg. IV.1l can be re-

written as follows:




.12,

[é‘“ 6”] Cl‘w éf B D 96‘ 4¢ 6’,_‘, ataa F_fﬁ‘ +

+ Qm%a _ fq" \‘s 14" + “ga 635* T_ °L3"~If" +.

‘I&V

P EL b T e e 2CL T U, -
ey L 6p S
7 Lt“-’ Sp (b5 b)) Ny 9 (2% T)
(’Z Xsc"—q'!/‘?-a}fs c)
'(Iv.3__)

- The calculations involving only z and An.fields

are in the ref. {(1).

The contrlbutlon for the term o

<)

. comes
by o

from fig. (3} which is

' T : (e &
(fig .3 ) - Tf (-4)&‘“ _\P{‘ b’rk. i _Kﬁ —L-—— \JV t@‘a oLzl(
. e ko o,
: (f.3) = J; p rl,v HU (’""C) _ (IV.4)

Analogouslly for the term ¢ E& ?Ewi that comes from fig. 4 we

have:

(fig.a) = P "I‘éu *prj B ! L Fv e 4tk

Fem  Lth-m | (IV.5)
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(£ig. 4) = ’sz qj,“ "[’,;P Ko (me) Epv ‘b'sxﬂ ¥

the
L

+ ﬂ#mférv'fs dtk
' (loz-&m?)z

b - (1v.6)

the second (constant) contribution will be included‘in thé finite
part of tﬁé buble in order tb normalize it exactly in the‘same
way as the inverse ¢—propagatbr and implement the cancelation
shown in fig.5 in the finite part, The contribution to the
Wilson—ekpantion is only the first term. So far for this te:m{__
For thé Tb"j yswi anq Tﬂj Y, wi.- that come from

fig. 6 we have as result

2
6?.

The first term contributes to GSS and the second one to:.

Cﬁv + Kﬁv . The term corresponding to fig. 7ais given by:

a—r .lL ] . . . B
(fig.h) = 2,_‘(4}3'0 dll(_ et E___l._lf&___ {hem 'b/v - (r\,uv) '
kt""mz T
(Figaw = 4a¢ '\ba-c. é’w Ko(mE) + zérw- b’s 3(1;;(- B (IV.?2)

where the second term goes with the finite part which is not
normalized to.zero in order to be proportional to the inverse c
propagator.

The fié 7b_is completely analogous.

Gathering the results (IV.4); {(1v.6), {IV.7), we

get the divergence of the axial current.
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26uy Kene) D (H T, b;’#*) - 26 v.&(mg)%(@m b )i

(Iv.9)
This contribution can be included in Lﬁp
We are finally left With
g de Croafe el o
+”2' :D':j O &y '+. Erf‘f L Ff;“" (IV.10)

where js is the pure CPn“l currént ahd ip = 55 Yp“&

Neverthless note that the field Au' which is in jg although
having exactly the same Feynman rules as in the pure CPn_l'model
is the total Au ; that contains also E'ﬂlw . As a consequence

the :terms z, zj P Yp P and ad(zi Zj U Yp ) are already -J.nclude_d_

C

in what we called jp and BU jc

p

The coeficients CP , pP? , E°P  are known from
pure cpl calculations, and given by (II.8).
¢ i
Crv | Bl 4 Speby [ 8,E. , 2E.EE (Iv.1la)
21
. & e* £t €?)*

:D:ﬁ = D L + L vm .;W_LE.? ( grus Svg - Sva‘ SM’ )+ Sug EtEg'
; Zr i 2 4 q -2‘,1-

~Sue Golp S €ebe o Suv Erés Svf Epbs | Ep b0k gshlv._llb).

2¢t 2€* 2g7 2¢ ¢ | C(eY? J_
6 o .
pr sal2dy Efe L 25 Lube (Iv.1lc)
2% éz : g*

I
and from the second term of eq. (IV.7) Cﬁﬁ is given by:
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(Iv.lld)-‘

1 '
: Cr.v = N -S'A-V E‘ﬁ + gEfEu + 6v£ Eﬁ
_ E‘ £t -6L

&

We could calculate direct D;ip from 1/N expansion.
However given C;s we can achieve enough information about

D;Sp from PT conservation, locality and current conservation.

D L e D e 5l 6 ) ¢

rb

D € e €, 85 ) Dy (SL ST 85 50

S {IV.12)
were Dy 4 Dy . L
4 '

This results are enough to define the quantum

. non-local charge which will be shown to be conserved.

V. CONSTRUCTION AND CONSERVATION OF THE QUANTUM NON—LOCAL.CHARGE |

We define a cut off supersymmetric quantum version

of fhe non-local chérge as

% K3 .2 ‘3 ..+ 43¢
Qgﬂ‘a.ds.ﬁfsrada» (g § ) -8 [dy gy + 2i)

lérazl %8 — M
i fdg Gizy¥pte)

That this charge is well defined in the & > 0 limit can be seen

W

using
. ¢ o . o)

¢ o il T “:: Z)"—-—z—-—- J’ (e: 5)+&(‘l' z)
[J 3] 21 la-y) ai & 2;:_?-31).4 * 3 ) (v.2)

t_.: tz = t
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and choosing % = %% In ﬁ6 it's readly seen that the charge is
well defined.

It remains to be proved that with this choice

Q% is qqnserved..
-.‘,‘-.,j‘*a dgu €y az)[ PR ) o)+ 4 T2 “w)]
ol-l' 3y, D40
: : 3 b.ad L
% Jd?* . Ceag ) dh5eR¥en
" t

and integrating in one of the wvariables we have:

%Q; :':‘Jd} [(6[ ( ¢, gu})fjl U: )3 “’r';}) (3:53,%#) ¢

N . o
s 3‘:3 (E'%'J)J Jo “":'a) - 2 3‘ (31 h),pa (2; 2: “{"6‘1’\4’ ] (v. q)
For the’ cgmutatm- 0,3 ~we have

[Aoj;] =N [ 3:»34] + D::P 9% ée + 2:'): Opdy + eijﬂ% .Ffﬁ‘- (v.3)

'tInserting0J5) in(v.4}, 8031 and aoii cancel imediatély leaving

(v4) as

O_\_g_'._: < d N [ o,_é_i] + LKC' L. Fol (V.G)”'
o ""J 3 o 4 e .6)

At da__ (2 5 1\"31“’)

Now a straightforward calculation, similar to that
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. 3T L ) -
done in section II shows that Ma"}.‘]' 2.&‘_&3*" ':'gtu‘zé?w ¥)

up to the order considered. So

e o __(v.?)
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FIGURE CAPTIONS

Graphs contributing to the r.h.s. of (II.9).

Feynman rules for the supersymmetric CP™ ' model.

The coefficient of the term ﬁf"% Y.

distance product of two currents, comes from this graph.

in the short

Graph which generates the coefficient of the term
T p
Mechanism of the cancellation of the finite part of the

above graphs. The finite part of the bubble is norma -

lized as to cancel the ¢ propagator.

This graph gives contributions to the coefficients of

¥ % Y and {1"3 5 Y

-

Graphs producing the coefficients of the terms "P 2:C

o

and '%-ﬁ?'E
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