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ABSTRACT

. A procedure ﬁo'constrﬁct a collective hamiltonian
for a gi&en nuclear collective motion is developed from the
generator coordinate method (GCM}. The proéedure is based on
the comstruction of a collective subspace of the many-body Hilbert
space, and this is achieved bv the diagonallzation of the GCM
overlap kernel. The Weyl transformation makes the connection
between non-local phase space hamiltonian kernels, obtained from
GCM, and operators in the collective space. Gaussian overlap
approximation and moropole vibratlons in-light spherical nuclei

are studied. in-this formalism.

1 INTRODUCTION

‘1If we consider the dyvnamical. behavior of a-system;
which exbibits a collective motion, to be basically described. by
scme.SPecial degrees of fxreedom and not by all of the single
particle coordinates, we are led, in practical cases, to a . . -
situation in which a certain dose of "a priori" knowledge must be
used in order to single out those semi-ctlassical parameters that.’
arse associated to the actual collective variables which describe
the mction. This process is at the foundations of the Generator
Coordinate Method (GCM) [1,Z]; we must be able to describe the
collective motion by the use of conveniently chosen semi-classical
paraﬁeﬁérs (or evén one paraﬁetéfi; The generator coérdinaté .
ansatz uses some set of states, iébéléd”by one pa;ametér;'a ,L
(extension to more parameéérs béing, in Principlé, sbﬁﬂghtﬁjﬂard)

to construct the many body state
[v> = me la> do ' ¢ 951

which is intfoduded in the Ritz variational princiﬁle to get the

Griffin-Wheeler equation [4] for £(a)
J&uhﬂmh’-m<ah'q £(a') do* = 0 {r.2)

This is the basic eqﬁation'of this method; The.
conditions under which this equation has acceptable physical. .
solutions, and also the relationship between (I.2) and a
Schrodinger -equation projected’in'afcollective subspace of the
full many-body Hilliert space have been discussed mény times [3].

A new approach to the generator céordinate method
has been developed more recently E4,5,6}, the aim of wﬁich is to.
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construct explicitly, in terms of states o> , a collective
subspace of the full many-body Hilbert space; this subspace is

identified as the specific collective subspace in which the

collective: motion is to be described. One is able to obtain the

projection operator associated to this- particular subspace and
consequently one can also explicitly restrict the many-body
dynamics to. this subspace. One gets thus a Schradinger equation

for the collesctive motion [5] .-

'J‘[H(k,k") - E'G(k—k‘)]g(k‘) a' = 0 (1.3)
In this eqﬁatién k and k; refér to ihe diagonal regnﬁﬂn&niqn

of a coliéctive_variable ﬁaturally associated to the adopted

semi-classical parameter of the GCM scheme. One has to deal with

a hamiltonién opérator'kernel which is in general non-locél.

In this paper we wiii discuss a procedure to
obtain, from that non-local operato; kernel, a collective
hamiltonian operator defined in the collective subspace; such a
collective hamiltonian is written as a function of a natural pair
of conjugated collective oée?ators _ﬁ and P and is obtained
by the use of the Wevl transformation [7.8,9]. The crucial step
in thig procedure is a quasi-local expansion of the non~local
hamiltonian operator kernel and thé_inherenﬁ questioﬁ of the
convergence of this series. In fact we will identify the first
Vtwo terms of that series éé collective: potential and kinetic
energy respectively.

In section ITa we will bfiefly review the
formalism proposed in refs. [4,5,63., The Weyl transformation is
reviewed in its main aspects in section EIb. - The formal procedure
to get: the collective hamiltonians is presented in section III,

and the whole ‘procedure is carried out:in £wo cases, - namely.-

-

gaussian overlap approximation and monopole nuclear vibrations
in light spherical nuclei in secticon IV. Finally conclusions are

given in section V.

II. GCM AND THE COLLECTIVE SUBSPACE

As proposed in [4,5,6], the GCM ansatz {(I.1) can
be used to construct a well defined quantum kinematics to describe
the corresponding miclear collective motion we are intested in.-
The starting point of this.approach is the identification of the

GCM overlap kernel

N{o,a') = <a]a'>

N

as an operator kernel, bounded and seif—adjoint, in the space ofz
the weight functions £{c) . The procedure to construct the-
collective subspace consists then in the diagonalization of this
operator. The diagonalization can be carried out, in principle

at least, as guaranteed by the spectral theorem of functional
calculus; i.e., one locks for a unitary transformation, Uk(a) ’
that takes the operator kernel, N{a,0') , to a new répresentaticn

in which it appears as a multiplication operator
Jda Jda’_U;(a) <g|a'> Uk.(a') = A(k) S(k-k') (ITa.l)

In this equation we are implicity assuming that
<a|e'> has a continuous spectrum. This is by no means neéessary'
in general, and other cases can be handled bv means of appropriate
technical changes in the discussion to follow.

This allows us to formally write the set of states
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Uk(a)

(k> = | =g s do o0 Lo (ITa.2)
a2 (k)

as the base states in the collectivé subspace provided A(k) # 0

[5]. This set of sﬁgtﬁs exhikits orthonormality and completeness

'pfopefties

<k|k'> = §(k-k') : e T (ITdL 3a)

Jdk|k><k| " ic -, Lo - P . (ITa.3b)

where lcl is the unity operator in this collective subspace.

Collective operators P and § can now be defined as

1l

Ble = #klk> o (ITa.da)

Glk> =71 3%'|k> _ : (TIa.4b)

It can easily be checked that [§,p] = iff ic .
With.the help of that set of base states we can
now write the many-body wave function generated by ansatz (I.1)

in the form

. + .
IR T Up (@) e
Cg(k) T <k = — M
_ SR ) A2 o :
= M [u;(u) £(a) da - {IIa.5)

We can also obtain the formal expression for the

N

hamiltonian restricted to this subspace, in terms of the usial

energy kernel of the GCM =

o e U;(CL) NEEN o : Ukj"(al)
<k|H|k'> = _JJ_RT7§7;?_fqujqj§ KT?EEZ;_Qudq::, (I;q.m

Using the above results; the basic équétion (I.2)
is reduced to the projected Schradinger equation (I.3). In what
follows we will implement this procedure in specific cases and
alsc identify a collective hamiltonian expressed in terms of the
collective operators g ‘and p , introduced above., The basic

tool for this purpose is the Weyl transformation.

<

ITb. BRIEF REVIEW OF WEYL TRANSFORMATION

The Weyl transformation was introduced in 1927 [7]
with the purpose of obtaining a mapping of operators, associated
to physical guantities ‘and acting in a Hilbert space of state
vectors, onto ordinary phase space functions. It is related to
the so called Wigner funéfion-[li], which consists, particularly,
in the mapping of the density operator on a certain phase space -
function. Thus it allows for an alternative description of
quantum mechanics by using phase space functions instead of
operators, and Wigner functions instead of state vectors.

More recently, the properties of Wyl transformation
have been studied in a series of papers Eﬂ. . Here we will
closely follow ref. @] .

In order to introduce the Weyl transformation we
need to assume the exiétence:of.a well defined guantum kinematics;

this is precisely what we have introduced in section IIa. through
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the definitiqn.of the collective subspace eés,.illa.3). Conse-
quently we are able to apply the procedure exposed in ref. Eﬂ
to this collective subgpace. . '

Momeﬁtum and coordinate operators satisfy the

usual commutatioﬂ'félétions:(5hefdiﬁension}'
B8 = fad =0 . [&B) =inl

and have_eigenyecto%s andaéigenvalﬂes; | |
Blp> =plp> v o Glx> = gfx>

where p =1tk . Furthermore these eigenvectors satisfy the

relations

: [dx |x>ex| = 1 {ITb.1d)

c

Jdp lp><p| = 1,

1

: : -z ip3
plp'> = 8(pp'). ; <x|x'> = S{x~x") , <x|p>=h 2.,h

(I1b.1b)
From the identity -
A = [dxl ax" ap"dp" Ix1r><xwlpu><PnIi‘p|><prle;,(xt. ' .

with the help of the coordindte transformation’ =

[ _q 1 = ...E
x—q+2 X g Pl
v u e -2
P =P t3 P p-3

we obtain

.8,

A= qu ép a {0,p) 8(q,p)

T

where
aw@m)='hu<p+%lﬂp—%>e _ . ;gp@)

is the Weyl transform of the operator a , and

Ha

i -
(IIb.3)

dap = § [aolarPea-Fl e
is a hermitian operator. This operator can be put in a more '
convenient form.

<

1

Alg,p) = h™ Jdcduexp{i[(q-?i)u + (p-B)o)/®HY . {1Th.4)

Obviously we could have alternatively

i

Mo

a, (q,p) = Jdc «g-3lala+p e

lag

Alg,p) = Jéu lo-3<p+3le

It is possible, in principle, to recover the
operator A from its Weyl transform and the corresponding

expression for - Alg,p} . In fact. it is easy to show that
A= JdP aq 8(a-§) 8 (@-B) a,(q,p) (IIb.5)

where
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a_ (g,p} = exp[%% g% 3%]3 (q,p) .

This shows how tc extfact operater A from its
Weyl transform, aw(q,p} » L.e., we firstly calculate ao(q,p)
and then substitute the variables g .and. p. by the operator .ﬁ
and p respectively, the coordinate operators always appearing
on the left of the momentum operators.' ThiS_proeedure is
particularly convenient if we have to deal with binomials in H
and § . |

In this way, if we have opereﬁers h&ﬁng ﬁeyi

transforms of the form'

- n
a (a,p) = £{qp
then
& a oa SELANEVRE 'dﬁ' oy ah=£
A(B,q) = [ ][ ] £{a) P
= zgo L 2i) . gt

or using the commutation relations for the. §-p operators,

. n
PP, 1 ~£ by oAbl
Mp) =5 ) [E} Bt e 0t L
25 =0
This resﬁlt can also be writteh as
' ’ n - .
1 n ¢ .,~, an-£
+ -_ .
a_(q,p) 2 = 'z.zo g BE@ BT

where T 'stands far Weyl correspondencé; we could have alterna-

 tively -

.10,

f@p” ¥ = (L..lE@.p}, Bh...BY . (1Ib.6)
2" n anticommutators :

ITI.. COLLECTIVE HAMILTONIANS

In the space of collective states |k> , satisfying
properties (IZa.3a} and (ITa.3b), the kernel of an operator H

is given by <k|H|k'> . 'We could already apply the Weyl

transformation to this kernel, but in corder tc make clear the

connection of the collective coordinate with the generator
coordinite; as will be seen later, we will make a double Fourier
transformation to consider alternatively the kernel <x|H|x'> .

If we now make the coordinateé transformation

i
T
q=x;x . g = x'. -~ x
we can rewrite
<x|H|x'> = <q - %Iqu +3 H(q,c) ' (III.1)

and the Weyl transform of this operator is given by

. 5. ipo/h
h (q,p) = Idc <g - FlH{g + 3> e '

which gives exactly the same result.as that obtained from'
<k |H|K'> .

In order to obtain a series expressing the
collectlve hamiltonian in terms of the collectlve operators G
and p , it is necessary to assume that the kernel assoc1ated

to a mlcroscopic hamiltonian operator admlts the quasx local



eggansion'
<q-Zajg+ = 7 aMg sM gy,
=0

where § ™ (g) n~th derivative of Dirac distribution

: Jao' H(q;c')(c')h -

The validity of that assumption, and the convergence of the

resulting series, as needed, will be assumed throughout this
The Weyl ;;ansfo;m of H is then written as
P

gt (q) Jdﬁ s (o) e

We can now extract the collective hamiltonian

H{g,p) by the use of (IIb.5)

.5)"" N

.gpﬂ
Ui~ g

1

RGP = [a a2 6P o 1P 5@ ()

The final result may be cast in the -form

o Ly It
ags =5 @ + I El o am a0

by the use of (IIb.6}.
. This hamiltonian”may be-intefpreted as follows.

The term indepent of B, , will be considered as a

“.12.

collective potential. Its expression is
v = 1@ - [a@dao | (I11.4)

By symmetry arguments only we’' can show the

vanishing of terms in odd powers of B, i.e.

xR g 2

The second -order term

1% @ =3 IH(Q,G')(O’)Z do"  @Ins)
gives information aboﬁt the inertia of the system.

In favourable cases the collective dynamics will
be well described only by these two terms {IrI.4) and (IIT.5).
However it is importanp to note that we cannot consider the
collective inertia and the.collective potential to be defined
unambigously by these expressions. In fact, canonical transfor-
mations ‘from &, P +tbo new variables in theé collective subspace
wiil change these objects while preserving the collective dynamics
given by the collective hémiltonian.- But since our procedure
clearly defines a collective coordinate, we will use it for
defining our representation and consistently extract a collective
potential and inertia parametefq R

It is important to stress that quasi~local
expansions of the eneféy?and bvéflap kernels have already
appeared in connection with the treatmenf of the Griffin-wheeler
equatiop (I.g),notably in thg work of Brink and Banerjee Etﬂ i
in that work, however, divergences in the weight functions-a;e

not discussed, and the treatment can only be meaningful in the
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special case of narrow overlaps. In an earlier work by B; Giraud
and B. Grammaticos [12Z], the idea of a gquasi-local expansion,
very nuch in the spirit of tﬁe~present one; is indicated in
connection with an orthonormél représentation of the collective
spaqe_associated with 'an auxiliarv "collgctive" variable
intrqduced;independently of the GC scheme, leading to a.repre-.

sentation in’the GC collective subspace which. may be "a pr;o:;"_

‘unrelated. to the adopted generator coordinate... Finally it is

interesting to point out the relationship between this present
method .of obtaining collective hamiltonians and that of

Klein [13]... Here we have shown; that: the Weyl. transformation. is

a natural tool for treating the non-local energy kernel, even
when this kernel is not expanded as in (III.2); however, under
certain situations, the expansion is very convenient. The
treatment presented in_;eﬁ;_Eli} makes use of the gquasi-local
ekpansion (ITI.2), and the extréctibn of the collective hamiltonian
proceeds from the integration in‘the o=variable of that expansion.
The final result obtained by'KléihHEdiﬁéides with expression {ITI.3),
and has been used; in the form mentioned in ref. [6] , ina
description of the Goldhaber-Teller dipole vibration [14] in

4He [15]. There the result for the éollective hamiltonian can be
exactly given in closed analytical form due to the fact that the

series {III.2) naturally truncates.

IV. ZILLUSTRATIVE EXAMPLES

in this section we intend to show how the_abofe
formal schemg works when we apply it to calculate coliecti§e 
parameters. We will consider, in what'follows,‘a simple but
already non-trivial case of translationallf invariant GCM oveflap

e %

.14.

kernéls with one real generator coordihate a-.. = Thus
N{a,a") = n{a-a')

The spectrum in this case is immediately given by

a Fourier transformation

1Ka A
[dﬂ. e n(_a) . . '(IV.l)

N =

A(K) = (2w)

which, under the casés to.Eé'treated below, does not exhibits a
null space, but admits zero as a limit point when [k| + = .

When the ﬁaramgtgr o 1is associated to a coordinate, -
it is easily seen that the cbllective subspace is given in a .
“mpmentum" represéntatfbn. ﬁe take a double Fourier tfansfor—
mation of (IIIa.6), in order to work with a coordinate

representation, as mentioned in section III,

ix -iK'x!

H(x,x') = ” £ <k|H|K'> & dK aK'
(2m) /2 (2m 172

Making use of the transformation

o K+ K' _ =
K=-K'=k r 3 = K

x =-x' = % + x'
Y [ > =q

we have

.'-ify X

-1 —ikg — k= -
H(g,y) = (2m) ”e e <K + 7|H|1< - 3> dK dk (Iv.2)
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Using (IIX.1) and {III.4) it is easy to verify -

that the collective potential is given by

-ikg _ ! _ _
80 (q) = 2wt I[fe E+EmE-5Se  Rag

The y and K integrals are trivially obtained

and we have

v@ -5 @ - [[fopffept - of] ot g & av.y

The dependence of the potent1a1 on the spectrum
results from the need “to “unfold“ the finite spread of the
collectlve dynamlcal Variables in the wave packets nsed to set
up the energy kernel In the present procedure 1t is thus easy
to see that, when the overlap is narrow, the collective poﬂaﬂ:al
is well described by the didgonal part of the GeM energy kernel,
if we neglect the fluctuation energy which always exists in
wave. packet formalisns, Due to the expected relationship between
the overlap ﬁidth and the number of particles participating in
the motion, narrow overlaps will tend to occur in connection with
collective modes in heavier nuelei; en.the oehéx hend in light
nuclei important corrections may arlse from the dependence on the

overlap spectrum. Let us consider now two particular cases.

{a) Quadratic approximation with gaussian overlap kernel 2]

This approximation has been uzed since its
appearance in the work by Griffin [2] as a test ground of nuclear
collective motion theories.

The guadratic approximation reads

) o (o) : ) c
<alit]a’> = N(a;ar).[so + El {m-a']2'+ T2 {_gl] ] '(Iv.é)

[cz Cy

Tul6.

“with

Nig,a') =*exp{e(e4a')2/sz

The introduction of complex generator coordinate in this approxi-
mation permited the treatment of low amplitude oscillations in‘a
nuclear system, . leading to RPA-' like eguations [16]. It has
been recently shown, however, that’ their result isg in quantiﬁative _
disagreement with the'exact solution-[lf]; Here, we are dealing
with a real geherator coordinate only-and”COﬁsequently-we'are='
treating the nuclear vibration problem in-'a more restricted way.

Using now (IV.3}) it is trivial to get the
colledtivée potential

<

C ey gy Ty Gy
Vg =5+ [ - ié] p s 252

3% ]

16 2

The contribution coming frem the spectrum ,

16 - 7T1b2 , appears explicity here. and corresponds to the

fluctuation energy. In this simple case it reduces to a constant

..and is therefore trivial. To complete the description of the

system we must calculate the mass parameter. It can be cobtained
by the use of (IV.4}, (IV.2) and (III.5). After a trivial

calculation we find

which is independent of q .
The b-~dependence of 'M(@)” migﬁt'eeen pectliar.

However 'Eo » C; and C, may be rewritten as [2}:

b
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2
- g
EO = VO ?% b2 ,
o . _m?
A

Cy ='o/f;:92'* .

_ These expreesions are suggested by the form of
<d{H|a‘;';. when H 1is a harmonic oscxllator hamiltonlan, and
the states |a>_ are gaussians of parameter b centered oa o .
In terms of the rew expansion parameters _Vb_i and _Q we

find:

M(&) =: (/Z '

and

(b) Isoscalar monopole vibrations

" Many authors have discussed this parricular mode
of vibration using the GCM in cases where A = 4n [18,19,12]. 1In
what follows we will briefly'summarize the GCM results, and then
we will apply our forﬁalism to extract the collective potential
and mass parameter. _

Let us take the harmonlc osc1llator determlnantal

wave functions as the generatlng functions Ir,B? ’ and the N
inverse of the harmonic oscillator parameter as the generator o
coordinzte é . 'This particular choice for the generating

functiorn: although Gasy to handle, exhibits an undesixable

.18,

feature; the center of mass wave function depends on the generator
coordinate coordinate giving therefore an energy which does not
separate into intrinsic and center of mass parts. However it:is
prossible to circunvent this problem,. the procedure being described
in the appendix, i

The interaction to be used is that of Skyrme [20],
spin-orbit and Coulomb effects_being neglected for simplicity.

For light spherical nuclei (A = 4n) the GCM.overlap kernel

is [19]

' 288"
N(8,B!') = |-t .
[82 + 6'2]

where T is an integer cgnstant which depends on A(T = 6, 36,

120 for 4He . 160 and 40

Ca reepectively). With a new generator
coordinate introduced through B=Bo e [l&], the overlap kernel

becomes translationally invariant

M(a,0') = sech (a-a') IV
This change of label does not affect the collective
subspace, therefore the dynamical content of the method is
preserved. The energy kernel, calculated in ref. Euﬂ , 1s now-

Written as

r . gt o 3/ B ‘2"(3"'(1 )
H{a,a') = N{e, o) |Cl sech(o=a') e + C2 Oosh (oc—a ) @ +
2(ava’) 3{otu’)
+¢y o @t @ 4, coshlomaty & }
= N{g,a") . hiz,a'} . : {IV.8)
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: Again‘theﬁconstants*VCi's- depend-on “a°, and on
the force parameters.  All lenghts are measured in units of
-1
B, -

LA Fourier:transformation’ dizgonalizes the overlap
kernel and the spectrum in this case is
AK) = ——"K—‘i—rms + x%) .

e T(T)Slnh(?r] g=1 - : :

Unfortunately, this spectrum is not easy to handle,
even though it displays no null space, and it has zerc as limit

peoint as K -+ zx , However, we f£ind that a gaussian spectrum

is a good approximation to the exact one, if we are treating

heavy nuclei (160 . 40Ca). The corresponding gaussian overlap

kernel,

wolr3

Nig-a') = expl:—_ (a—m_')2:|.
is in turn a good approximation to the exact one [1§].

The collective potential is now given by expression
(Iv.3}. Nevertheless, before performing that integration in
(IV.3), we will make some approximations in ovder to put it in
such a form as to fully exploit the advantages of the Weyl
transformation.

First we.expand the reduced kernel Hiu,a')|Nx,a')
in a power series in n = a~a' and y = EEEL . Here we will

adopt the notation

.20,

yTitm ‘ﬁ
C = — [H('Y.FI)/N(Y‘I)}
an~ 9y ;

n=0
Y=Yo

where yo is the minimum occurring in the'diagonal part of the
energy kernel. At this stage we can fix the parameter Bo
defining the scale of lenghts. %We willl choose Bo such that

Yo , is equal te zero; i.e., the minimum of the diagonal part of
the energy kernel occurs at that value of y which corresponds
to the oscillator parameter,. B;l ;.theh'gites the variational
r.m.s. radius. : : .

With this expan51on we can now 1ntegrate (IV 3),

the general term contrihuting to the potential is

<~

c_ * e [k v :
« exp [k
6Q) = 5 f 3"9[' %rnz]n“ an J A S‘qﬂ akdy (1v.9)
—co - -2-

If we retain terms up to. fourth order in the
expansion cof the reduced. kernel we get, after a tedious but

straightforward calculation,

+ E%z*"rf [sz "2‘C04D T *Cz T +Cyq - (zv.10)

The expansion coefficients depend on the Skyrme
parameters in addition to T . GEvaluating rhese coefficients
for 160' and 0Ca , we find that is suffic1ent to retain terms

up to second order, if we are interested in the low lying

vibrational states. This truncation can be Justlfled by cahnﬂating

N RN . B
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. Co-3"13 - o L :
the ratio 5 near the minimum of the expression {IV.10).
. Cp29g :
The values are of the order of - 0.25 - for 160 in- contrast to -

the value 0.5 For ' ‘He ' Thus the collective potential for -~

the heavier Light nuelei is
C .

vi{qg) = COO = a7 * CUZ q . o (IV.1l)

) ihe full expression (lﬁ:ld).is ﬁeeaed.fcr 4He ;
howeve;._ . S | . ....uu.u. ...
The linear term in (IV.10) comes from the third |
order tefms in the eapansion of the reduced kernel It causes
a shiftting of the minimum of the collectlve potential away from
the minimum of the GCM energy kernel. Obviously this implies a
nuclear radius different from that calculated by the var1at10nal
method, i, ey uSLng the minimum B . It 15 interesting to note
that those third order terms are associated to the assymmetry of
the GCM energy kernel (C03) and to the coupling of the diagcnal
terms and cff-diagonal terms (621) . In fact we see this is an

important effect only for light nuclei because the ratio

is relatively important when 7T 'is'small. When we calculate

the minimur of expression (IV:11) for 4He , using the Skyrme IXIl
interaction, we get B_¥'= 1.57 £fm .’ -On thé'other hand the use
of (IV.10} gives B_l—= 1.30 fm .(with' the same interaction):’ The

16 40

calculation for 0" “and Ca  wusing (IV.1l) gives essentially

the same' results as those obtained from:a direct treatment of the

22,

Griffin-wheeler equation |:19:| . This is consistent witl'l the validity
of the quadratic approximation in these cases.

The mass paraﬁeters can be calculated in exactly.
the same wag by the use of (ITI.53}. BHere, again, the dominant

term is - —%g coming from the gquadratic apprcximation. A

kinetic energy term comes from (III.3)

- 75;—52 = Kinetic Enexgy ) . - (IV. 12}
If we want a new moﬁe?tum operator in proper units,
. el 42 :
we must introduce the parameter [ ?ﬁ; 1 . In this case we see

that the corresponding mass parameter comes out as

n? r? g%
Mc = —2—C—“—‘-‘ (IV.J.3)
20
This expression can be calculated in each specific case. In

le

particular for ¢ we have

where m 1is the mass of the nuclecn. However, this result is
not invariant under canonical scaling of p and g . In
particular if we had chosen B;l to be the variational r.m.s.

radius we would have obtained instead

=]
I

I

'

in close agreement w1th Giraud and Grammaticos [151.

Another important feature of these nuclear systems
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can be studied now, once we have an analytical expression, although
approximated, for the collective potential, namely the nuclear

incompressibility modulus. This modulus is defined as

=1 _ :
e Wy r R s L BT R S {Iv.14)

We expect the value of K +to approach the value
given by Flocard and Vautherin® [19] as' we'go to heavier nuclei,
i.e., both values tend to coincide when the quadratic approximation
" is sufficient to describe the monopolelvibration. The incom-

pressibility for 160

ig K = 227.5 MeV (interaction SIII)
using (IV.145, which is greafer than K = 200,5 Meﬁ calculated
with the diagonal part of the GCM energy kernel. Although this
high incompressibility modulus can be partially associated to
the Skyrme interaction, as already suggested in other work [19],
it is important to note that the difference between our result

and that of Flocard and Vautherin [19] arises because the collective

potential is not the diagonal part of the GCM energy kernel.

V. CONCLUSIONS

We have shown in detail how a procedure developed
earlier for constructing a well aefined subspace of the full
many-body Hilbert space, on the basis of the GCM , can be -
exploited to give an explicit construction of the coliective
haﬁiltonian, expressed in terms of collective dynamical variables,
defined in that sdbspace. We started from the energy kernek (IIa.6)
and from there proceeded tc cbtain the Weyl transform of the

collective hamiltonian.
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In order to exploit the édvanfages of the Weyl
transformation, and consequently to get the colleéti&e hamiltonian
as much as possible ‘in an explicit form, we made-éIQﬁasirlocal_
expansion_pf the projected energy kernel (IIa.6). This.led to-a
collectivg hamiltonian written as a series in the collective
variables. That expansion, which is not necessarily encompassed
in the Weyl formalism,_dges_ﬁot change, however, the general
charaéter of the prﬁcedure,'but gives in fact an approximated but
effective way of treating collective motions. The convergence
properties of the sérieé afe affectéa by the features of the.two
GCM kernels. The kinematics of the GCM. manifests itself thfough
the width of the ovérlap:kerﬁei; héfréw.oVerlapé may give rise
to'rapidly”conVergent.séfiés.fdf the collective hamiltonian,
altﬂough this is not meant to impiy a "kinematic" criterion of
collectivity since thé<convergendé of the expansion can not be
judged withouf.feference to the GCM énéﬁqy kernel. .

Thé'feasibility of Eﬁé whole procedure was shown

-in two simple illustrative examples, namely the gaussian overlap

approximatioh (GOA) and monopoié vibrations of light spherical
nuclei. 7 ' ‘ A o
This latter éﬁéﬁpie:ié.non££iviél in the sense
that the collective hamiltonian is given in_the form of an
infinite series in powers of é. and p . The point emphasized
in those two examples was the corrections to the simple variational
treatment of the diagonal part of the energy kernel. In this
connecticn it is interesting to note that the spectrum of the
overlap kernek, A(K) , plays anrimpdrtant role. Fluctuation
energy corrections. and a shiftting of the'equilibrium polint -
characterize the corrections in the monopole vibration. . In this
particular mode of vibration the incompressibility- modulus can: be

compared. with previous: results [19]; our results show some. dis--.
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. crepancies, exhibiting g‘higherldegree of ingompreésibility than

that obtained with the variational methcd using the same interaction;

§§rt of this effect is due to the particular interaction used [19],
however our result is not conclusive since it is necessary to
retain terms to highef order in our series in order to compare
the two: results. )
MT: foiﬁ&i1§fi£'is'importantité'stress that ifﬂ?é want
to get analytical solutions for the collective hamiltonians we
must first of all be able to analyfically diagonalize the overlap
kernel. 1In many cases, however, this condition is not fulfilled;
this:int:oduqes.a new difficulty in the method. . An alternative
approach, which may eventually constitute the only way of treating
thatadifficuﬁty#,isaa‘computational_one, in which one performs
numgr;@;;lynthe-differen; stages of the whole. scheme .described
here; Thus we get the collective potential and inertia parameter

numerically. In this connection SBe -has been treated by this

‘computational scheme and the results will be presented in a

forthcoming publication.
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APPENDIX

For the sake of simplicity we will only discuss

the effect of the choice of the generating function, |r;8> , for
the case of 4He . The particular choice we have adopted
4 T2 '
_— - 1.
[T;8> = |a> = exp|- 7} iy . : (A.1)
| i=1 28
where is a normalization constant, can be rewritten as
= F— :
2R2 pi
[g> = expl- exp|- § £= ' . (a.2)
82 121 2g?

where we have made the cSordinate transformation

A et
M|
-~

The remarkable feature of expression {(A.2} is that
the center of mass contribution as well as the intrinsic one
depend on the generator coordinate. Even though we have removed
from the hamiltonian effécts.of.ﬁhe centéi of masé motion, the
B dependence of the center of mass wave function introduces

undesirable spurious effects. This can however be avoided if we
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introduce a new non-determinantal generating functioﬂ - '<¢(6)i,Hintflb(.B'.)*D(B.)|p(B')>=<¢>(B)D(Sj IH|.¢(.B')£'3(S')>-"<D(B) Eﬁdd[p(ﬁ"‘}.'>'<:¢'(ﬁ):.!¢-'(.5')>
_ _ L " . ) ) _ (5.5)
- ( 4. T _2.[5 - B, :
|B> = 'exp—z — exp |- 2R -—'2—2—‘] ’ . - L
. L i=1 2p g B From (A.4) and {A.5) we can separate now
where B is a constant. ] . <p(B) |H, ¢ (B*)> ' "<.p(f3~)|p(B:}'>
o _ int T n(p,8")<p(By) [0(B)> = <p(B) [Hylp(BY)> —————
The great advantage of this function' is that it ) < (B) |9 (RY)> : e e N O R T (R ke :
geparates in the form
where we have made use of °
. 2 § —.2
|8> = exp 22 exp|- 1 Eiﬁ _ . : s .
.8 i=1 26 <4 (BYo(BYIE| 0 (B ) p(BT)> = <4 (BY|$ (B )><p (BY|p(8")>h{B,B'Y = (A.6)
It is ‘easy to calculaté now the new GCM-kérnels’
= ID(BO)¢(8)> (A.3) : L . ) e X
. ) for the ‘intrinsic motion only, since we have-all the expressions” e
<
. we need., Thus -
where the center of mass contribution does not depend on the
generator coordinate. In this form we can use the generator ) , ' 9/2
coordinate only for the intrinsic part, and by virtue of this <e(e) o8> = [52'+ 312]
separation, we can take into account . the center of mags contri-
buticns without having to recourse to projeétion techniques. and
Thus we can write ‘ B e
<p(BYiH, . fo(B')> = <¢(.B)|¢(B')> [h(s By - EL —4—~——}
YN = 5 3 3 int : ' JmE .2 72
<BiH|B'> = <5]Hint]s'> + <B[HCM|B‘> n ) 8° + B
and using (A.3} . If we go to a new generator coordinate as before,
. x .
. . ) : B = Bo e ,we get finally
<p(B) 1y 10 (B'I><p(B ) [0 (B> = <o(BIo(B,) H[4 (BN a(8)> +
<o) |H, |6 (x> = sech 2 (x-x")E(x,x") (A.7)
int ' *

- By (By) <4 (8) loce)> o wae
e e e where hix,x') is precisely the expression we have used in
On the other hand if we had used (A.2) (1v.8)

With this new generating function, the GCM energy
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kernel has thé same structﬁre as befofe, but here oniy the
intrinsic contribution is taken intc account. PFurthermore the
new GCM overlap kernel corresponds to a system with one particle
less than the original one; this gives a new valve of T(=9/2) ,
thus reflecting a larger width of this overlap with respect to .
the initial one. It is this feature of the new description that
accounts for the redefinition of the collective parameters appearing

in the collective hamiltonian of the problem.
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