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ABSTRACT

An important type of statistical p?éequilibriﬁm feacfién is one that
has recently been described és."ﬁuitisteﬁ”éoﬁpéuﬁd”, because it proceeds
through successive ¢lasses of ddarWéys. That is, & reaction that proceeds
through resonances which overlapjand_wﬁqge'partiél widths are enhanced by
doorways which themselves overlap, wiph fhe partial widths of the doorways
themselves enhanced by even broader overlapping doorwaysgetc.

A particularly cogcise theoretical desc;iption of such a reaction can
be achieved by the use of a nested sequence of energy-averaging intervals
Il > 12 e > IN’ where each In is intermediate between the widths of two
successive classes of doorways. The present Report provides the full details
of this approach and employs it to obtain the multidoorway generalizations,
first, of the Hauser-Feshbach expression for Ofﬁ and ,more importantly,
of the Ericson expression for fhe autoceorrelation function, which is found
to exhibit several correlation widths,one for each class of doorways. The
results are derived in the Feshbach projection—operator formalism.

A comparison with approaches of Agassi, Weidemmiiller and Mantzouranis,

and of Feshbach, Kerman and Koonin, shows that all three share the
features of béing (1) probability-conserving and (2) Markovian in their

description of the percolation of flux through the doorway classes.




1. INTRODUCTION

A preeguilibrium reaction* is, by definition, one which occurs with
a delay time or reaction time which is intermediate hetween that of a direct
reaction and that of a compound-nucleus yeaction. Unfortunately, it appears
highly unlikely that it will be possible to measure such times directly with
any reliability in the hear.future; Instead, preequilibrium reactions have
generally been identifiéd'by'indirect criteria which are more readily mea-
sured, such as angular distributions and energy spectra of reaction products.

However, the most commonly assumed model for preequilibrium phenomena
is the exciton model {1], which contains definite, identifiable delay times,
the lifetimes tn for the various classes of exciton states. These times can
be measured more or less directly as tn= M/rh, by measuring the energy widths
df the states of the various classes, provided these are isclated, ra<3( Dn'
In the inverse situation that the states in each class overlap, the excit-
ation function for reactions proceeding through them will exhibit statistical
or Ericson fluctuations. It is this cése which is the subject of the present
study. In this situation the time or energy structure of the reaction is

accessible only through a study of the autocorrelation function

cte) ={Ti®) ozre )y - Loery Lo (me ),

) P e
which will contain as parameters more than one correlation width, 7, which

provide the characteristic energy variations produced by the classes. When

*
In the present paper we shall not discuss the multistep direct component of

the preequilibrium reaction cross section; we concentrate our analysis on
the multistep compound processes.




6
there is reason to believe that preequilibrium states »f this sort play an
important role . o reaction, 1t is clear that neither the customary Erxicson

. ~2 2 - , ,
expression C{€ ) ~ (["+ &) 1 for the autocorrelation function, nor the

2

Hauser-Feshhach expression Cr‘:c'

=TT ,/2T , for the fluctuation cross
c C c

o
section, is wvalid,

A certain amount of experimental evidence has already been obtained
for the existence of more_than one correlation width in autocoxrrelation
studies [2], The earliex studies.[2§] were directed toward an Investigation
of isotopic spin in nuclear reactions, and an attempt to identify two cor-

L o~
relation widths, r; and rz in the same rcaction. This included a theore-
tical study which obtained a 2-width generalization of Ericson's function

1 , . ' .
, which is very analogous to some of the results we obtain

P, 2 -
- +e7)
below, even though the widths involved were quite comparable to each other.
. G .
Another example is the compound nucleus 3 P, which has recently
_ . . . .27 .29, .
been investigated by Bonetti et al, [2D] in Aﬁfh@p) Si at bombarding
energies near 11 MeV. The essential feature of an autocorrelation function
for a compound nucleus which has only one type (e.g., fine structure
states) of resonances is that it must exhibit the same correlation width
for all reactions proceediné through these states. As Fig.l shows, however,
the autocorrelation functions £6¢ the above :eéction praceeding through
30 .y . fe 29, e . ;
P to two different final states of 8i e¥hibit the two very different
correlation widths of 55 keV and 230 keV. Even more interesting is Fig. 2,
for a third chénnel, which is fit by Eg. (2.17) below including both these
widths in the same channel. fThe interpretation appears to be that the

reaction to the channel shown in Fig. la couples primarily to the fine-

structure ({55 ¥eV) states, that to the channel in Fig. 1lb couples primarily




to the doorways (230-kev), and that to the channel in Fig. 2 couples to
both.

Our purpose in this report is to obtain the generalization of the
Ericson expression for the autocorrelation function and the Hauser-Feshbach
formula for the_fluctﬁation cross section when: a) more than one class of
states is present; b) states in each class arve overlapping and c) the
correlation widths of the various classes are substantially different.

Assumption ¢) will be the crucial feature of our approach, for we
have discovered that a simple method of analysis exists in that limit. In
essence our result is equivalent to the lowest-order tevm in an expansion of
Ujﬂ or C{&€) in powers of the ratios of the correlation widths. The re-
sulting formulas are especially simple and transparent, and we feel that the
result for C(& ) is particularly worthy of experimental investigation, For
it appears to be the most sensitive probe available of the existence of more
than one class, as well as the only practicable source of information on the
time'scales involved in the various stages of the reaction.

Although our primary emphasis is on a "nested average" approach to
the multiclass model of preequilibriun reactions, we first briefly discuss
and compare the four distinct approcaches which are under active investigation
- at present. These are the approaches of (1) Feshbach, Kerman and Koonin
(FKK) [3) (chaining); {(2) Agassi, Weidenmuller and Mantzouranis (AWM} [4]
(random matrix elements in the particle-hole model); (3) Hussein and McVoy
(HM) [5] (nested energy averages); and (4) Friedman (F) [6] (probability
flow approach). Although not immediately evident in all cases, all four
approaches yield a fluctuation cross section which, in the absence of

direct reactions, has the form




Oge _zn: xn,cc’ Xh,{:'c' (:_L'l)
and, whers caléulhted [4;7), an Stmatrix altocorrélation function of the
form -

Copi (€)= ”<.s§f:.:<e> ST (B +€)) =§-’l—~‘:‘9—“——";—‘-’— (1.2)

from which the crods -section autocorrelation function in a single partial

wave and in the abééﬁée of direct reactions is obtained as (see Appendix B)

s g2
cc.c,(e-).}_ . (1.3)

The firgt'tWO approaches (FKK and AWM) explicitly employ multiclass
modeis;:wfiﬁiﬁg'ﬁ = HO+ V and sorting the levels associated with Ho into
"plaséeé" -(Qeﬁerally by their degree of coupling to a particulér-entrance
cﬁanﬁél, whichzﬁay be détermined by a quantum number such ag in Griffin's
original éxqiton‘model [I1]1) which then define theiv;rious states of the
reaction. Although these approaches differ in palqﬂlatiqnal techniques,
they both_rely.oﬁ-the following assumptions:

a) ;fhé maﬁy;b§dy matrix elements of the.Hamiltonian'governing the
reaction aré ra@dém in phase (i.e., g’ii, depends:only on Qrobabilities
withoﬁf céhéreﬂ£ phase information, just as in a one-stage Hauser-Feshbach
calcqlation).

D) -Oveflapping resonances for each class.

.c) Tha nuﬁher-af open channels is large.

Employing these approximations, these first two approaches produce detailed

£

e which (as hds been discussed elsewhere [7a]l) can be

derivations of d’i

written in the form of Bg. {(1.1), with explicit recipes for X's.



" The last two approaches (HM and F) are closer to the original Hauser-

]

o in the Eq. (1.1) form, but they

Feshbach point of view. They obtain Crz
do not employ a specific model (e.g., particle<hole) to define the classes,

The HM'épprbabh uses assumptions (b) and (c). ‘In addition, it assumes that
the classes of states have very different correlation widths, [1}:2> Iﬂn+l'

and that the phases of partial-width amplitudes (for all classes) are

random.* Rather than giving a model-baséd'recipe for the X's, this approach
primarily provides their relation to “optical—model" transmission coefficients,
which are to be obtairncd from a nested sequence of energy averages of §-
matrices. The FKK and HM approaches arrive at a result which describes a
Markovian process, presumably as a consequence of the statistical assumptions
that were made; AWM obtains a similar result in the limit in which their
.parameter y is small. Finally, the I approach rests only on the Markovian
assumption. It does not assume the existence of resonances, but merely
assumes the existence of coupled stages and traces the flow of {conserved)
probability among them, assuming the exit route from each stage to be stat-
istically independent of its entrance route. It also leads to a cross sec-
tion from channel ¢ to c¢' of the Eg. (1.1} form, in this case with no re-
‘strictions con the lifetimes or widths of the stages, or the number of open
channels., Since this approach does not explicitly involve the energy-
dependence of the S5-matyix, it cannot be employed to obtain the auto-

correlation function.

As will be seenr below, this produces a substantial algebraic simplification
over the method employed in AWM, merely becauseo'gg, is a simple, explicit
function of the partial-width amplitudes, but a very complicated function
of the Hamiltonian matrix elements.
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_This report is organized as follows. In Section 2 we give a simple
heuristic derivation of_the_f;uctuation_cross_sectién_apd,the cross section
“autocorrelation fuﬁction for.mulﬁistep.compound px¢céssés using tﬁe nes£ed-
average method. in.SectiQn_B we supply the complete guantum mechanical
foundation:pf-the_nested average model using Feshbach's projection operator
techniques and generalizaﬁiqn_of.the optical-backgyround reppesentatiqn_of
Kawai, Kerman and McVoy [8]. In Section 4 we present a simple physical
inferpretation of the results of the nested-average model using the prob-

' ability flow approach of [6], and discuss the results of other formulations
13,4). 1In Section 5 we discuss possible applications of our results and
-indicate the range of their validity, and finally, we present several con-

cluding remarks in Section 6.

£4

e AND THE AUTOCORRELATION FUNCTION

2. DERIVATION OF (¥

IN THE NESTED-AVERAGE APPROACH

2.1. A Simple Derivation of a Generalized Hauser-Feshbach Formula

Before deriving the autocorrelation function, we first provide a
very simple derivation of the fluctuation cross section, using the nested-
average method as a generalization of the Hauser Feshbach (HF) approach.

The conventional (HF) theory defines as "direct" those processes
that are governed by the energy average of the S-matrix, while it defines
as "compound” those processes governed by the remainder of the S-matrix

energy dependence. The energy averaged cross section for any reaction

£

ot i.e., an incoherent sum of

c—c¢' has the form <0Jcc' = G"Sif +

contributions from these two processes. Furthermore, under the following




three assumptions:

a) that the S-matrix is unitary; b) the S-matrix elements are in-
variant under time reversal; and ¢) that the decay of the compound nucleus
is independent of its formation,* the Hauscr-Feshbach formalism permits
the evaluation of the compound contribution to the averaged cross section
using factors which_depend only on the direct, or energy averaged, S-matrix,

We shall extend H¥ formalism by gencralizing the concept of the
"direct" processes. We shall also define them as those processes govefned
by an eneryy averaged S-matrix with the additiona] provision that we may
take arbitrary energy averaging intervals, I, and by so doing associate
different "direct" and "compound" processes with different energy averaging

' J intervals I. Whereas inlthe original HI ‘approach the terms "direct" and
"compound" had a relatively unigue meaning, in our approach these terms
reguire the further specification of the averaging interval, I.
Let us consider the following generalization of the HF representa-

tion of the S-matrix [9]), {51,

S=5 +(5,-8) + (§-F

-5 2.
=1 =2 A1 ~3 §2) + +(§ §N) ’ (2.1}

where § = <:S % represents an average of 8 over an enerxgy interval
T} et fod
n

I drI I .
n’ o8 n:> n+1
If we interpret each of the above differences as a fluctuation con-

tribution relative Lo the appropriate energy average,

£i — —
- ) 2.2
s S, S (2.2)

“Phis implies, of course, the absence of direct reactions. This restriction
will be lifted in the following section,
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we have N
s =5 Z T (2.3)
M .

In the original HF. formaliém, N=1, so that E' involves inngl {the

optical S-matrix} :and one fluctuating contribution. .If. n=N in (2,2),

we define. SN 1 =;§.
Clearly, the definition in Egq. (2.2) provides that <jsfﬂ>> <( ff>> =0
wi
by construction. To proceed we make one more assumption, namely,
£4 fn* . .
<(Sn S ;% = 0 for n#n'., This is valid when the characteristic energy
variations of the successive Sﬁ ,t.e., thelr correlation widths FZN

are distinctly different

Ty YD FN- e

and the averaging intervals In are chosen in the nested fashion.

Mo T B (2:5)

Implied in the representation of ﬁ given in Eq. (2.1) is a set of
"compound” and "direct" processes characterized by In: direct processes
from ¢ to ¢' are asscciated with -5; et transmission coefficients P _

I : r

for "getting into" the corresponding "compound" nucleus are given by
SRS S L
n,c o n,cc

Using Eq. (2,3) we have

2 — 2
<iGEC',%l =<<\Scc' - Scc'] ;zl: \Scc' B Sl,cc'\
N

+Zl<‘ st ]2>I - e

n=
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The first term i3 the conventional difect or optical contribution, whereas

the remainder involves an 1ncoherent sum over contributions from classes n,

which we 1abe'.l<()“f’Q > <\ n,co! \ > ""  'y] "Ec/ .

Next we use standard HF technlqucs to flnd and to interpret these

contributions. From Eq. (2.2) we have

n cet <<| n+l cc' ‘ ‘ n,cc' l ;>> _ (2.7)

N . ; - o 2 : 2
the generalization of the familiar <lSl >-— ]<%>,
We now introduce the assumption that each paftiai cross section
il . ' ' n . _ o ,
Th car IS the product of a factor, g‘c ,9ilving the probability for going

from o into the "structure" asscciated with class n and a factor for the

”decay from this structure into channel c¢'. The former is found by summing

£ .
a 4 , over ¢' to obtain
n,cc

- n ; £y
QJC - g;:crn,cc'

QOALSRIEE SLAED
n+l,cec n,cc
' ; I
c C 1
<Pn,c - Pn+l,c>I , - (2.8)

1

il

where the transmission factors Pn c represent the probability of entering
. r

the "compound" nucleus associated with the respective averaging intervals.

Just as. in the customary HF argument, this immediately implies that

_P P —
<<bn,c n+l,c:>}l<i-n,c' Pn+l,ci>%
:Ej<?n c" pn+l c";>>
£4 TN o

— 1

<PN,C>I <pN,c' }l L neN
o >

1 ,11<N

h)CC/
(2.9)
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which expresses (y'nﬂ oentirely in tems of energy-averagod quantities.

2.2. The Nested—Energy*Average.Derivation

The fundamental_assuﬁption Qf_the nested—ave%age approqch is that the
compound (A1+A2) system through which the rcagtion procecds exhibiﬁsrinter—
mediate structure and that this structure_clearly separates into "¢lasses",
each identified by a width f;n and a lifetiﬁe'ﬁ/fqn. Tﬁé exciton model
[1}, e.g., is one which_similarly employs'the concept of classes of staﬁes
distinguished by the number of particle-hole pairs; these, however, are
"model" classes, identified by configuratiqns of a model Hgmiltonian HO.
The class states we refer to, in contrast, are obtained by performing
. fnergy averages over the exact S-matrix, and hence over the exact resonant

eigenstates of the full Hamiltonian HO+V. For class n, these "states"

correspond to the resonant structure Df;§n+l and possess a correlation ‘

P
width rL. These correlation widths can,in principle, be directly ob-

tained experimentally by fitting Eg. {2.17) below to autocorrelation data,
without reference to any model Hamiltonian HO. As mentioned above, an
eggsential assumption of the nested-average approach is that the widths
[ ~
Pn and r;+l are sufficiently different that classes can be unambiguously
assigned on the basis of these widths. In practice a factor of, say,
% between successive widths may be adequate.
X . . flZ . .
wWith the In chosen according to Eq. (2.5), Sn E} will contain
At
only the energy-structure associated with c¢lass n. It will be shown in

Section 3 that, by a procedure similar to that of Kawai, Kerman and

McVoy (KKM) {87, SEJ(E) can formally be written as a pure "pole sum",
~m



¥ g A oy o 8 .

L V.. ni

Bg. (2.10) defines the reSon;ﬁces in ciass n for the.nésted—average
approach. The gni,c Hé&éian enéfgy'dependence on the scale of classes
n-1,n-2,.,.,1.

We employ this standardEsum—ovéf—poles_form to cbtain the S-matrix

autocorrelation function,

s ) S E L g x . _
c (€)= <Scc' (E) Scc'(E+e)>I , (2.11)

E from which £ can be obtained asg Crfﬂ = CS (@) An important step

| 0 cc ce' T e )

in the argument is the recognition, from Egs. (2.3) and (2.10) that the

‘ ) total sfl('

o

B) can be written as a sum over the resonances associated with
all classes. A key‘assumption, which is a slight extension of that em-
ployed by FEricson {10] and KKM, is that the partial-width amplitudes
gni,c of Bg. (2.10) arc random in the level-indices ni, whicﬁ eliminates
ail (ni, n'i'} cross terms, either within a class or between two classes.

This latter assumption requires overlapping resonances within each class,

i.e.,

M o,

where r%/2 = <Im gni;>i . A slight generalization of the KKM argument

then gives

* *
s — £ £ ~ £ £0
Co (€)= <scc, (E) s, (B+ € )> ~ Zén’cc, (E) Sn,cc’ (E+6)>
Il n Il
2 2
:Ej ji ]gni,c’ ‘gni,c'l 3
4 L (E-E . + i r‘ni/z) (E-E_ .+ €~i r:li/:z)
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35, <‘gni,c|2'|gnf"°"‘:2>. <7'_L?

2 | | | ‘
. xé %f(lgﬁi,.cl _ Igni,é", > S TS (2.12a)

-where we have defined

< s > = i | 212
Fni f [_;\ ‘

A detailed discussion of the approximations employed here can be found

o .
in Ref. [11]. We have dropped terms of order ["‘m/Il and é/Il, but have

E(_)_t; assumed all states of class n to have the same width:; this means that

in general -/ﬁn <E

If, following KKM, we define a matrix Xn for each class by¥*

T *
T <g g > , (2.13)
n,cc I b ni,c “ni,c
n

we obtain

' —~
¢ e *z X X + X X "
“ec! - n,cc n,c'c’ n,cc' “n,c'c ﬁ v ic
n I n

F.
- R n
= ZU n,cc' = . ! (2.14)

+
. e i€
whoere we have used the KKM relation
£1
= + X 2.15
Ovn,cc' <Xn,cc Xn,c'c' Xn,cc' n,c‘c> ( a)
I
1
2
f . . .
for 4 , = <‘ Sf‘2 ,l > defined in Section 2.1,
n,cc n,cc T

&
This definition includes an additional sguarc root factor not included in
Ref. [B].




From the é=0 limit of thé last 1line of Bq. (2.14), we have

G =S P . (2.15b)

an incoherent Sum“ovef classes, as ;isb obfainéa.by fhe.argument in Section
2.1. |

As.for the éross section éutoc;¥relétion functioh,_CcC,(é ). itseif,
we use Ericson's genefal rgsult [iO] that, in thé preéence of direct
reactions, 1t can be expressed'in Eerms of Cic.(é,) by.the relation tsee

Appendix B}

C o (&) <Crcc‘ (E) 07, (E+€ )> “(Q'cc- (E)> <o-;c,(E+6)>
Il Il Il

Ii

2
s | dir S (2.16)
= + - . .
| e (e 2057 re S ()
This immediately vields our central rcesult,
: ~ 2 a2
{1 n di f r‘n
€ '(6) = o‘fﬂ B + 20‘“ lf G g ' T 5 s
cc Z n,cc r’+i6 cc n,cc a2 +€__2
. . n 5! r1n
(2.17)

which is a direct generalization of Ericson's l-class formula. It is this
expression which was fitted to the experimental data of Fig. 2.
An interesting and important generalization of Ig. (2.17) can be

obtained without further effort, by recognizing that what was called

S] = Sdlr in {2.3) need not be Ypurely direct" in nature. All that is
wl

. dir | . . .
required of S Y {s that it be constant across the averaging interwval Il.
.4

Consequently, if, e.qg., f7l is the largest doorway width present, and

e .
Il >f: 7 Eq. (2.17) is valid as it stands, with n=1 included in the




appear ihstéad.in's..
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sumé. If hoWeVor, we éyerage.dve;.a smal;er_interval.Iz, withn Pl >ﬂ;2:> rgf
then the n=1 temn £rom the sum of Eq. (2 3) w1ll be removed, and will
5 Then for ¢ ;( T .,Eq. (2 17) is still valid, exceépt

that #hé_hél, or w1dest doorway, term is m]Sqlng from the sum of fluctuation
bonffiggtidﬁ;. (In this case the region e :> I is ﬁnlnﬁerestiﬂg.. Allu
the fluéﬁuation contrlbutlons to C(e ) for n > 1 will be small bedéuse
the eneféy dep&ndonae due to the n= 1 doorways is cssentlaily ﬁnéveragéd 50
that 0—> U’O"—- . Thus for. e>1I 2 C(e) = 0J) |

This suggests that C{& ) be generalized to é 2-variable function,
C({&,L), with.i74information obtainable from its dependence on both
variables. Exaétly this was done several years ago by pPappalardo, (18]
who invéstigated oxperimentally the speciai casc of C(0,I), obtaining the
"sedia di Pappalardo", a somewhat- chair-shaped curve suggesting the
presence of'two steps-up, at two different values of I. This behavior

foliows immediately from Eg. {2.17), which we can write as

£],...2 £

€(0,1) (1)} +2g-' (I)O- (1)

1

[

- O}ot)2 o Oglr(I)]Z ’ {(2.18}

N
ﬁm = _5_ o’fﬁ ; (2.19)
E’]
n=no I}

: ~
with the lower limit n of the sum determined by the condition [_'n <‘I.

£9

n

where

in other words, UFOt = aglr(l) + SF g’
n=n_ (1)

is independent of the

averaging interval I (whose choice merely detennlnes how the S-matrix
is to be divided between "direct" and "fluctuation" parts),but C(0,1)

4 . . dir £4 '
assigns different weights to g and 4 ", and so does depend on the

C sk . . . dir
division determined by I. In particular, as I increases, ¢ (I)
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decreases, and C{0,I} increases as Pappalardo found experimeritally [18].
Although the approximations we have made do not permit us to calculate

the exact shape of the curve, it is clear that it will rise more of less

—~

abruptly each time I inc;eéSES past one of the f’n, thus éroviding a
means of obtaih£h§ the Fiﬁ's airectly ffom the variaﬁdé of the cross
section itself, without COnstfuqting the autocorrelation function. The
full function C( &,I) may be wofth investigating; we conjecture that its

form should be something like that indicated* in Fig. 4.

The only task remaining is to express Olnﬂcc" Egq. (2.15a), in terms

of transmission matrices correspending to the variocus energy-averaging

intervals In. To this end we obtain from By. (2.2)

1 - o
< ﬂ f‘> < - S1~ S > , (2.20)
n o w~n Mt 3 ~n+1 S ) T

Il

A -
whore we have used the fact that <i 1 %fﬂ ;> = 0, Defining for any
s+l om0

I

n
class n a transmission matrix in the channel indices {(analogous to
Satchler's P = I - ET

At [

5 i for one class)

p =1 -35 (2.21)
o 1 Ead fhe A
we have
t
sV =/p-p i (2.22)
Al el i+l
I I
n :
We are definin S = 5 P = () so that <§fﬂfsfl:> =P However
9 2N+l roeN+l T B0 N N T ANT ’

the methods of KXKM immediately allow us to evaluate this same expression

in terms of the X's,
b s

*1t is important to recognize that for I small, C(&,I) is really C(& ,I, E Y,
and depends also on Egy, the center of the averaging interval.
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SfﬂTsfﬁ

ATl AT

. 2 )
= X Tr X + X . {2.23)
a1 Aavl A~

Consequently, our net conclusion from unitarity is that
L L . 2 L _
P - P >=x Tr X+ X0 A~ X TrX (2.24)
aell el an wn o o~n 77 amn ~n
B + R S '

the latter approximation being the one customarily employed [8] when the

number of open channels is large. Employing it, we have

.Pn - <?n+£>. o
' T :

X = * ©(2.25)

n o
(o 1/2
Itr (2 <E:H+1>I )}
n

Inserting (2.23) into {2.15) gives the fluctuation cross section in terms
of the "optical" transmission matrices of the problem

Mﬂ!@n"énﬂz > (Pn_<Pn+l>I ) ‘+Gn~@n+l>In)cc'((Pn_<Pn+ {)c

f n cc n c'c

. Cl
G’CL' N '
rree < (B )
ne . ..n ~n+l>1h
P P, + P P
+ N, cc N,c c N,cec' N,c'c (2.26a)
Tr P
AT,
I
1

Using the result of Appendix A, we can factorize the above averages,

so that we have

N-1 (/P ~P P -P +( - >é -p
0 <(n,cc n+l,cq>&l <frl,c'c‘ n+l,c'c;:%l Pn,cc' Pn+l,cc'Il n,c¢'c n+l,c'c T
Uee'” | T <p 2y
r -
n=1 awll aenh1 Il

<%N I <5PN 2! ';? +-<,PN ';% <%N c'c;ﬁ
. , CC, 1 ,o'c 1 ,CC 1 .

v i,

1

(2.26b}
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The factorization holds if‘the number of channels IJ:>1, and r’n/Dn 59 1,
both of which have been assumed throughoiit. In the aBsehce of direéct re-
actions, Xn;cé' =0, ¢ #¢';, as is shown in Eq. (A.32), so the nth term of
(2.26b) reduces to Eq. (2.9), obtdined from our previous, abbreviated, argument.
By. (2.26) is our central result. Its essential feature, which dis-
tinguiShes'it from, e.g., a éimilar result by AWM [4], is that it is auto-
matically separateéd, by the use of nested energy-averagés, into contribu~
tions corresponding to different time-delays. For example, if only the

energy average over the smallest interval IN were performed, the corres-

pondingg<ﬁjjf%? would contain only the last term of Egq. (2.26). The

N
otha2rsg, which correspond to time-delays less than h/IN, could not be dis-
tinguished from the direct-reaction components in a measurement whose enerqgy

‘ resolution is E = IN. Thus, using successively wider energy-averaging in-

I di
tervals moves successively more of the precompound components from o ¥

’ S £ £ . . :
into g-". The fact that q is given by Eg. (2.26) as a sum of gen-
eralized Hauser-Feshbach terms evidently implies that an eguilibrium among
the degrees of freedom of each class n is reached before the system decays
back into the open channels, so that the process appears to be Markovian
at each stage. We note that Eq. (2.26b) is manifestly unitary, i.e.,

Lo, = P .
c cec l,ce

2.3 o«ﬂ2 and the 'ruMatrices

Although Egq. (2.26) provides the desired generalization of the 1-
class Hauser-Feshbach expression, previous authors [4] have obtained their
results in a somewhat different form, expressed in terms of a set of
transmission matrices Zﬂy which are the transmission matrices for the

hypothetical case of an S-matrix involving only the states of the nth
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class., As we shall see, the relation between our penetration matrices
j:ss_and.these-:g’s is a linear one. . We shall give here a heuristic
presentation of the results . which will be more fully discussed.in Sections
3 and. 4.

~Let .us first interpret the guantity 0»2- introduced in Eg. (2.8).
We see that this quantity - -literally represents the cross section for
going into those configurations which are considered part of the "éom—
pound" nucleus with regard to an averaging interval In' but not those
states which are considercd part of the compound nucleus with regard to the

avrraging interval In . To make this interpretation more concrete; we

+1

use the techniques of the Feshbach projection operators. Let us divide the
Hilbert space for the total wave function into portions associated with

.prOjéétion operators p, dl,d2,d .. .,d._ where p represents the

3’d4" N

Yoptical™ open chamnels, and dl...dN, the sequence of classes. One example

of such a division is to be found in FKK. These portions of Hilbert space
“are intimately related to the averaging intervals discussed above.
The opérator p represents the space for the "direct" processes

associated with the averaging interval I The operator p+d, = P repre-

1° 1 1
sents the space for "direct" processes associated with 12, and in general

Ao+, L L+ d represents the space for the "direct"” process assoclated
} 1 -1 I P I

with In. (This symbol, Pn' should be distinguished from the penetration

coofficient matrix P we have used above and which is a matrix in
n .

1
,CC

v} ™ ~ ] r +'..+
channel space.) The space complementary to Pn ig given by dh+dn+l dN

-1

for which we introduce the notation ¢ =d +Q o The reason for explicitly
n n “n

soparating dn from Qn is because of the importart role it plays in the

£

. . n ; . .
interpretation of S andAgér In terms of the ppaces associated with
: n
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. _ oo ' -
hese proijection operators we see that =P -P _ ;} measures
t proje P at a. <:n,c n+l,c Il o

.l'

the flux into the space dn which does not proceed to space .Qh+l

It is convenient to introduce a géneralized transmission coefficient,
Tnc’ which répresents the probabilify for getting from channel ¢ into
the spacé of dn; This includés probability for direct entry and also
probability for entry via the doorways dj (j< n) which are inéluded in
Pn—l'

To connect T  with p -P we define , nZ m, as the
ng n,¢ n+l,c . m

"downward" branching ratio for a state of dn to decay directly or indirectly
to one of dm and we gdefine

Moy~ = | (2.25)

m(>n) nm

-as the total downward branching ratic cut of n. It then follows that

<pn,C “pn+l,C>I i Tny'c - Ilnrc?n&: Tl’l,C (- ’7n‘i’) (2-26)

1
gives the flux which reaches dn but does not proceed to classes of narrower -
..width.
Motivated by the results of KKM we generalize the transmission co-

efficient Tn o to the transmission matrices T oot defined in terms of
n

r I

the Satchler penetration matrices P ove a8

r

T -— . = - .
mn(l %n¢ ) En £n+l' (2.27)

where‘Pl is the penetration matrix of the conventiocnal optical approach.

For a large number of open channels we have from Fg. (2.24),

(1 ~?Zn\b)3‘n=.§n Tr&‘n ’ (2.28)
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When writteén in terﬁs of the T's, Eq. (2.26) assumes the particularly

transparent form:

o '3 S oM ce Theter P Thcer ThLeve S
O—a |= (l__/? ) [ ] 7 ¥ (2-29}

which is the simpieéﬁ.poééislé éénefaiizétﬁbn ;f the.i~cléés Haﬁsér-Feshbach
expreséién. .Théwfaéﬁgfé.(l ;dzn¢) cléariy ﬁiéy ﬁhé fole of “dépietioﬁ
factors", indicating how much of the flux which entered dn from channel ¢
survives the "downward leakage® to decay back to c'. ‘This factor is abseént
ffom the n=N term, as Qell as from the l-class Hauser-Feshbach formula,.
bucause in these cases there are no lower classes available.

Finally, to obtain the relation of the E'S and E's to the 1;'5
employed by previous authors [4], we define Eh as the matrix describing
direct entry iﬂta the states of class n from the open channels, This
differs from En’ which incltudes both direct and indirect entry into dn.

The relationship between E and T is then defined by the following set of

And

ions
eqgquation el

T = + T
A I’l..n e WM ?mn

' (2.30)

where the second term on the righthand side includes all of the indirect
entry routes (see Fig. 3}.
Consider the specific case of 3 classes. For that case we have

the following set of recursion relations

il

g

wl AL

33
|

=Y, + 0 T, (2.31)

2

I3 L v 5 Moy * 8 My
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which can clearly be extended by induction if more classes are present.

Solving them gives

D%l - (2.32)
3378 Ke Ty * W12 T3t Ty
indica£ing.how aii IQE]{'S, :k &Ln, c@mbiﬁe out #o describe the flux into
dn from above.
For comparison with the work of previous authors, we restrict our—

selves further to the case of only 2 classes and assume no direct reactiong.

Eg. (2.29) for the fluctuation ¢ross section then becomes, in terms of the

Y's,
cc T’l,c'c' + __;,r * T 1712 cc(:l_’:2+ pai ,712 c'g!

T T Tr, +E Ty)

(2.33)

Since, for the 2-class case, the downward branching{?lz is nothing more

than the direct coupling fromd, to d2 called /a in Ref. {41, we have

1

agreement with the results of those references, especially 4d.

2.4 A Brief Comparison with the Heidelberg Approach, AWM.

Although Section 4.2 below is devoted to an extended consideration
of the relation between the nested-average (NA) and other approaches to
the multi-step compound problem, we include here a brief comparison with
the Heidelberg work (AWM).

Eq. (2.33) for Giﬁ, is obviously a bilinear form in theé transmission
matrices Tmlwhich couple the c}asses directly to the channels, and could
be written

£L

= ' 2.34
Oce! %vTUﬁHuv v,e! ( )
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This is exactly the form of the AWM result,

1
ofl -x Snm 1%, L (2.35)
cC mn m mn n - .

(except that our T is their T), and the agréement goes deeper than just

the form, because of the fundamental fact that both formalisms are unitary,
i.e., probability-comserving. In the NA approach, probability-conservation
is contained in the relations

T =1 +3% T n (2.30)

n,c N,¢ g<n OsC gn ’
which express the transmission coefficients Tn . = Tn ce in terms of the
- . ] - : .
7's. In the AWM formalism, the unitarity relation,
a £1 |

b = = 5T : 2.36

g1 Yoot P],cc X n;c’ , ( )
is most conveniently expressed in the form *

A L (all m) (2.37)

n mnc n

where 1 is the column vector (in class space) with all elements equal to 1.
To see that these two expressions of unitarity or flux-conservation are

indeed equivalent, we re-write Eq. (2,30} as a matrik transformation in

class. space (a transformation which diagonalizes Hmn)’

T =Y T N {(2.38)
mye G o om
where
N =8 - N, O &m,
om ol om (2.39)
=0 s O > m,
i.e., the matrix
- g
i Y
PooMpg Mg Mgy
-1 n 0
N = 23 24 (2.40) |
-l Mg,

=1

g e _I

C We +hank Y. =T Tana, FAar Anintina At Fhi e Fmeem vk At fa s P
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By inspection, the rows of N are linearly independent, so N is non-singular,

and we can equivalently write (2.38) as

_] .
Ty = % T (N~')mu, {2.41)
s0 that
T T ‘ .
f1l L . O,C a,c’ = :
y = L et (v ) S L oL (2.42)
ce a E-TQ,b o
=X NA v S S (2.43)
m,n m,c W 7n,C
wen Yy g oy (2.25)
where -1 -1
m ) W) :
i i 0% (1 )y (2.44)
mn o -1 o
L LT (N ) .
25 2,0 Lo

. : NA . . . . s . .
this expresses T} explicitly in terms of the class—-mixing coefficients
.nan.

To check the agreement with Eq.(2.37), we construct

NA -1
DRI E Tn,b =3 ™ D (]-Ya)' (2.45)

If this is indeed 1, for all m, as Eq. (2.37) reauires, we can multiply by
N to obtain [From f?. (3-“50}‘_(

L=vy = D Nom

(2.46)
- in agreement with Eq. (2.25). But since N is invertible, we can trace our
steps backwards to see that Eq. (2.45) does in fact yield 1, without ex-—
.piicitly constructing N—I. (These manipulations exactly parallel those of
the Appendix of ref. 6, without requiring a complete evaluation of Hgi.)

Thus the Hmn's of AWM and NA agree in form, and both conserve flux.
This implies that the (many)} approximations made in both approaches, élthough

different in detail, carry the same physical content.

Closer agreement than this capnot be exvecteéd. for two reasons. First. as
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AWM carefully point out, the purpose of their approach is only to determine

.ghe fofm ;f Eq. (2:355; fﬁelgﬁécificridéntif;cétion of the doorway.ciasses
(and hence the numerical valués of the T.; 'énd tﬁé Hmﬁ) is.PﬁfﬁOSely left

undetérmined. Theirs ié‘a H==H + V approach; with the doorway classes

identified as eigen-configurations of H_ . They are thus guaranteed to be

. different from our classes, whose doorway states, definéd in Eq. (3.45) below,

are eigenstates of dn B (Pn } dn’ an energy-averaged effective (and non-

-1
hermitian) hamiltonian. A second difference in detail between our approach

and theirs is that, by using optical wave functions to describe the channels,
we have effectively employed a somewhat different channel definition, .
which' includes "external mixing" in the channel states themselves. In spite
of these differences in details, the way in which the cross section (and
auto-correlation function) depends on the classes has exactly the same
structure in the two approaches.

Finally, we remark that the restriction ¢ < n on the sums in Eq. (2.37)
should not be interpreted to imply that the flow out of o is resfricted
to be only '"downward", towards n. Such a‘restrictionrig imposed in the
FKK theory, by the assumption that pn+l >> o,- We have not made such an
asgumption, however; as Eq. (4.25) explains, Mo includes mot only the direct

coupling from o to n, but also all other routes via intermediate states

m < n.

2.5 dofl/dﬂ and the Multi-Class Auto-Correlation Functicn.

For a detailed experimental investigation of the doorway hierarchy which
may be present in pre-—equilibrium reactions, the most important result of
the present work would seem to be Eq. (2.17) for the cross section auto-

correlation function in a single partial wave,

i‘ B
C ., (e) = |z_gf1 PSSR | 2gd1T ¥ of! , — (2.17)
. ce R Y ce g D,CC [z £2

. . 0 t ' a
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s In the fortunate circumstance that this partial wave dominates the full

auto-correlation function, Eq. (2.17) can be employed, as it was in ref.

[2b] ;;to'understand the possible occurrence of different coherence widths

in different final channels. More generally, its use would seem to provide

the most direct experimental test possible for the occurrence of more than
one class of intermediate states, in the compound nucleus.

It cannot be expected that a single partial width will in general dominafe,

so for completeness we give here the full angular dependence of both the

fluctuation cross section and the auto-correlation function.

The angular distribution of the multistep compound cross section

for going from channel o £o p((' (with & #¢”) for unpolarized particles

+ iS
a g _ _
' : da: = Z Z 24387 sIZ(R'74'7.s'L)
* k (2T +l) (21 +l) I Ji
X G_ff,‘J' P (cosB) (2-4¥)
xSh J “ Q ’!
where

LT _ £4,7 _
O:tsi'd: s v qu;asjz sl

h
sr o4 I .
(1-97,) nxsﬁ,xu n ocsf A5 L n,xsf,v"S'f' Tn,a(s’,a',xg._@
>0t :
T
Z n,«, 5,2, ot 1 5 2, (2.4

L
and Il and 12 are the spins of the two particles in the incident channel eo¢ ;
£ and £“* are the relative angular momenta and s and s', the channel

spins, in the incident and exit channel, respectively. The coefficients

Z are given by
Z (43,8, Tpsm) = (20,507 2041 F 27 +1) % (27 41 %

4
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Since in (234) .only /Ql'..:ﬂ'z" ocq:};r:in_ z, the Clebsch Gordan coefficients
in (2.35) insures that only even L's occur in the sum_ (2. 4% . Consequently
the angular distribution is symmetric around 90?.

' Similarly, the angular dependence of the cross section autocorrelation

- function, in the case X #®K' and no direct reactions, is given by:

'<d q‘iu(;ﬂ) c{o:dae’ (E‘*é.): MMI(E)><GIU;{¢<1 (E+€‘)>

d L d .o
S [P
L__ 1 1
L. Jl

2
l“kx@%‘”ﬁ(ﬂ;f') 3,8.8, 01,

z(,llJlﬂzj'z,sL_) SN ISR ATAT IO B A S Z(.QgJ.zfi Tem

(2.50
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3. THE PROJECTION OPERATOR TREATMENT OF MULTISTEP
COMPOUND PROCESSES TN THE NESTED-DOORWAY MODEL

Our aim in this section is {(a) to show that the fluctuation S—matrix
associated with any one.éf the N classes of overlaéping resonances can be
.Qritten.in the sum-over-pole form of Eq; (2.10);and (5) to derive explicit
expressions for the pole positions and the residues. We accomplish both

goals by using Feshbach's projection operator formalism and the KKM repre-

sentation at each awveraging stage. Our approach differs from that of Feshbach,

Kerman and Keoonin [3] primarily because we begin by iseolating the fine-
Structurc resonances of the cross section and work our way "up" through the
classes of states to the smooth background associated with the channels,

whereas the auvthors of Ref. [3] begin with the channels and work their way

"down" through the doorways to the fine structure. The conditions of our

v a¥} n, Y .
model, namely Tl >> F2 >> P3... > FN’ permit us to perform the calculation

of Sfﬂ at each averaging stage In’ in a simple way. Namely for the calcu-

P!
. £e

lation Of,ﬁn , we treat all classes, dn+l'dn+2""dN on the average so

they act like a "sink"™ for the flux readiing dn and all classes dn—l' dn-Z’

...dl, together with the open channel subspace p, act like an effective

source of the flux that reaches dn' Here we are using 4 = p+dl + ...+ dN'

This amcunts to dealing with two coupled equations at each of the averaging

stages., The effective Hamiltonian entering in these eguations ceontains the

doorway classes dn 1""dN' on the average, as will bhe explained fully in

+
the next subsection (these classes thus supply dn with a damping width).

s

In extracting (Sn ) from the two coupled equations we uge the KKM rep-
c

T




29

resentation, IHowoever, the KKM representation iz further used in subsection

3 to exhibit the detailed structure of the residue factors g . _ that
. al:e ructure 18 residue ragror ,

appeays in Sn cot " This structure arises from the modulations due to
’

those classes that are present in the "continuum" wavefunction that defines
9, o It is this decomposition of the i into their smooth optical
- p . . L . ) L .

-components and fluctuation components (arising from the abovementioned modu-
lations), that proves to be essential for the purpose of calculating

<X > in subsection 3.4.

3.1 Projection Operator Treatment of the Nested Doorways Model

In this subsection we.generalize the KKM procedure in order to con-
' £4 S
struct the terms Sn e that appear in Eg. (2.3). For completeness, we
?

begin by outlining the main results of KKM. The original one-class formula

e . .
for SCC, of KKM, for a given value of the cc' total angular momentum, 1s

given by
93 - P (-)c* 1 v )¢
Sgre = 723 \cFopt \ qu E -~ H -y &(H v qu C-PoFt >
qq qp opt Pa
\ | (3.1)

+
whiere ptg = J , and C¥)é;lc , the optical wave function with an incident

" wave in channel ¢, is a solution of

() o

(e - pH(@p) F =0 . (3.2)

opt

1 ' .
pH (g)p = pHp + pHg ———— glp _ {3.3)
BT
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+
and é;fépl is the opcen-channel space propagator

4 -1
C()Pl =& - PP (3.4)

1
The form factors V__ and Vv are given by
' - qp - Pq

AT /2
T T .- S gHp : (3.5)
v E-qHG+iI /2 o
q
in/2
V= pH (3.6)
oq © PHa

E-gHg + in/Q

The argument q in the effective Hamiltonian|¥€(q) of Eq. (3.3) stresses
the fact that the g-space has been eliminated. Notice thatéze(q) does not
have an energy dependence on the scale of Ecgi' Its energy variation is,
howover, only on the scale of the averaging interval specified by Iq’
which is much larger than rai/% (the imaginary part of Eqi)'

£l

The above expression for Scc' (Eq. (3.1})) may be written in the

‘sum-over-poles form of Eq. (2.10) by using an expansion of the propagator

— - " +) -1
a?(qy —  (E-gHq vquapt v (3.7)

—
in terms of biorthogonal basis states, l qjqi>‘ and ' q)q£>' which

satisfy the following eigenvalue eguations,

(€ o R Wi >

=0 , (3. 8a)
* o " -1— Pt
(€ —affera) | Y ;5 =0 (3.8b)
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where q}f_(p)q iz the symmetric operator -
{+)

: = + v 4 v 3.9
gqHip)g == qHq qu’ég)pt b (3.9)

The argument p in the effective operator Z{ (p) indicates that the p-space
has been eliminated. This elimination is accomplished through the intro-

+
duction of the optical Groon s fum,tlon ﬁfcgpi'

The two set of states, {&\.IJ C_{l>} and {\ \y q1>} , form a biorthogonal

basis characterized by the following conditions,

1<,q;:;.1' ‘ kl) qi> = 511’ (3.10)

{Bqg. (3.4)) into Eg. (3.9).

—
Since qm 3)q is a symmetric operator, the dual states, lk{/ql> are there-

fore also the time-reversed images of lLf/ qi>' namely l\{) qi>: Q'l\*}q1>

where 8, is the time reversal operator. Thus,

S r< J)t qu HJqD \{Eﬁél)qil 'qul C.PC();J}CCZ

, (3.11)
c'c _
. o _gcﬂ
L s
. . L -y (+)c’
Since, in addition ]qjopt > is also the time-reversed image of lcyopt '

) - (+)
i.e., 8— lq:c()p‘)cc > = l qDo;tc , we have

c'/‘Fz'ﬁ = <q3{_)c'l qu l\\)qi>
op‘f \8 9 pq Wq1>

(90 g g, o 6IYY

N <CPopt l pq 6_1) ,qjqi>*
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. T | |
Gl eenien

<‘\"ql . l Hc - ._ - (3.:1_2).

where we have assumed that qu satisfies the condition

‘ -1 +
v = (V ;o o S 3.,
O Vg & = ) (3.13)

which is the case for V. and V__ of Egs. (3.5) and (3.6):
- : i Pg P

1 1/2 -1
(va = H(pua JE—quq Tirs ) &
— --——--._i _[72'—‘ .
— pHg = ) (3.14)

B-gllg ~ 1I/2

the above relation (Eg. -(3.14}) is strictly valid only when the total

Hamiltonian H is Hermitian and commutes with §, i.c.,

H=H, (u,8] =0 (3.15)

As a consequence of Eq. (3.12), the following expression for Sgc is

obtained
9. 9.
Bl ‘iE qi,c’ Tgi.c (3.16)
c
* B- gqi
By consturction, the energy average of S <S yis zero, and as a

consequence one obtains the following important property of the gq:L

=0 3.17
<gqi,c' gqi,.c >i ( )
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where by < > we imply an aversge over the states i contained in the
interval Iq. In KKM; the further ansatz is made that the complex gqi o 's

are sufficiently random that their average is zero, i.e.; -

.<_gqi_'c Z =0 EEEI R (3,1_8:)_\

In defining the biorthogonal states, we have dealt with only the inner
P . .

. prOduCt<i\vqi‘l*éj\> (Eq. (3.10)). For later use, two other inner products
. be defined 1"<~'N> a Yy, which do not satisf
may be defined namely . . . . ich do not satis

o Y Lqu l\qu an <qullkkqj ! Y

L S~

the orthogonality condition. Furthermore, thoe diagonal elemcnts,<}kqi\ q)q£>
ar . . 2 eque rator tl it sequence of Eg.
md <}qul 4&3); are cqual and greater than unity as a conscquopc; of Fqg
(3.10). The above inner products may be formally evaluated in terms of

matrix elements of clsﬁ((p)q (see Egs. (3.7) and (3.8)) as follows,

2] I {(p)g .
<d[’qi‘ Va5 7 = F< mq%qu[\["q]> (3.19)
qu FEqi |
For i=j, the above reiation gives
AIm gqffiplg .
Cralwy - Sop e

£ 4 /‘Fqil aFpIa|¥y; D

One may view Egs. (3.19) and (3.20) as a generalization, appropriate for
bl KKM representation, of similar rclations obtained by Bell and
steinberger[16].

The impeortant feature of Eg. (3.1) is that optical
cuantities appear in a specific and c¢lear way, namely, in the distorted
) . . .
waves, qgopt’ and in defining the average width of the g-rescnances.
Accordingly, the generalization of Eq. (3.1) to cases where more than one

class of resonances is present is simple, as we show below. We recall that

KKM start with two Gcoupled eguations, one for p}f (where &’is the total -
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wave function for the system) and one for gy. The operators appeéring in
these equations are.the_projectiéns of the original Hermitian many-body
nuclear Hamiltonian: pHp, the projection onto the p-space; gHg, the projec-
tion onto the g-space; and the couplings plig -and qu.

- Our aim in this subsection is to generalize the above considerations
to the case of N classes of overlapping resonances and thus obtain the

£f

explicit form of Sn referred to in Section 2. We call p the projection

L}
r

operator associated with open channels and decompose the closed-channel
part of the Hilbert space, § -p, into N subspaces, each associated with
one of the doorway classes that we considered in the previous section.

We shall call 4_,d

1 2,...,dN the corresponding projection operators with

d1+d2+...+dN = j__p; dN contains the most complicated "fine-structure”
states.

As mentioned above, the essential logic of our approach is to start
by separating the Hilbert space into a "resonant" part dN, and a "smcoth™
part P 1 = ﬂ_—dN = p+dl+...+dN : the terms "resonant" and "smooth" refer

~ a—
to energy scales determined by the averaging interval IN' rTN—i7 INj? r’N'
In this sense dN plays precisely the same role as g in the previous (one-
class) example. We then proceed iteratively by separating out the
"resonant" part of PN—l = dN“l + PN_2 (with reference to a scale set by an
: —~ ~

i i then that of P =
averaging interval Tg-1 where I1N—2> IN—1§> PN—l)’ n N-2

d + P

Ne2 N-3’ etc., wntil the completely non-"resonant continuum, p, is

reached, p :fﬁw (dl+d2+._.+dN). It is therefore clear that in order to
extract Sil, {n=1,...N}, we have to solve two coupled equations for dngi
and Pn lji with non~Hermitian Hamiltonians that contain the classes

a ..4 on the average. This amounts to replacing the N+l

n+l’ dn+2" N
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coupled-équations problem by‘ a set ‘of N two coupled-equations. Each of
these pairs of equations '&é’sbéiated with the corresponding averaging
interval, can then be solvéﬁ for'éﬁe‘éérreépondihg §fQ using the KKM
method. Clearly ,the.‘ above reduction 'df-"tlh:é problem is possible only if

the experimentally accéssible -correlatio-n‘ wi-dth{'fﬁﬁ? .satisfy the condition

~ ~ ~ ~
T >> L 5 >> . PN—1>>|-1N‘ 'The above scheme, therefore, constitutes

“the essential features of our modél. In détail the ab_o'v'e arguments proceed

-as follows.

The complete wave function of the system, ¥ , satisfies Schrodinger's
equation -

(E<-H)Y¥ = 0 : (3.21)

where H is the total Hermitian Hamiltonian of the system. We carry out the
scheme mentioned above and start by writing W= (PN_l+ dN)y . The component

PN-]H{ = (p+d1+._.+d _l)\_k' is then a solution of

N

(E-P HP

n-1 Pyoy TPy d

aH P )P W =0 (3.22)

N
N E-dp & ‘N

The "effective" Hamiltonian in the above equation has energy dependence at

the level of the Nth class doorways (fine structure states). The wave
function PN_l\_{_J(I)C, on the other hand, has energy dependence associated

+
with all classes . The average of PN_le(—)_C over an energy inter-
o~
) -~ &) c> —mpiHe
val. In T'N_l)> IN>> I—IN / <PN_]_H: 4 —?PN 1 is a solution of [{F]
M i :

& - » 20y v 1P <o (3.23)
N-1 N N-1 ’

PN—l

Eg. (3.23) is the analog of Eq. (3.2) with the "smooth", complex, effective
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Hamiltonian pl\]hl’;{(dN)PN-fl given by

Puo1llldy) Py = By g H Py + By o H A < > dy B Pyoy
- ~a M a4
N

=P HP _+P _HA4d — dg H Py o

(3.24)"

which is energy-independent within the intcrval IN/2. The argument dN in

PN_l'}re{dN) PN~1 indicates, as in p;f{(q)p of Eq. (3.3), that the state

. * ,
in dN appear only on the average. Clarly,gﬂé )e shows an energy-dependence
S : : , . N-1 _
associated with all the doorway classes in PN—]’ i.e., dl'dz"' 'dN—l' The

' +
S-matrix arising from PN—lEE( Ye (Eg. (3.22))can therefore beé expressed as

- £1
<§ ‘"EN 3

Sn {3.25)

= : (He
where S =<§>IN arises from QOPN )

term is given in exactly the same form as (3.1),

of Eg. (3.23) and the fluctuatien

14

= ' (=) )
SN ,cc' 2 <C_F v [E-d_Ha ~v -1
PN’-—}. PN—ldN N N dNPN——l P VP d]
- N-1 "N-1"N
{3.26)
Y +)c .
dNPN—lF§>éN~l ”
_ o+
where the P_ _-space propagator, ﬁ- . 1s
. N-1 P
N-1
(+) (+) -1
= - 3.27
: (E p Hiapr (3.27)
N~-1 ‘
and the form factors V and V are

Pa-1% AePn-1
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1/2

ir/2 o R
Co= - ' ‘ . (3.28
VP dN PN—]. H dN : ( )
N-1 - L g-a ma +1ir1
c - TN TN N/2
. i IN/2 1/2
= .2
dePN“l aH mel (3.29)
E- + i
W4 Iy
Since H above is the total Hermitiah.Hamiltonian, the result for (S‘E‘Q)Ccl

above can be further reduced to exactly the same form as Eq. (3.16) for

the one c¢lass formula, namely,

T gNi,ciSNi,c'

3 | ;2
(s.7y , = -1
N "cec E - E

ie{dm} Ni

(3.30)

The major difference between Eq. (3.30) and Eg. (3.16) is (a) the i, e in

. the former equation contains doorway modulations arising from the doorway

i.e., 4. ,4 d , and (b)) the average of the widths

classes in P 1ty eee-dy g

N-1'

. el 7
fﬁi‘ that enters in the complex 55&' s, is given by FN,

PN </-J

—=—Im . v r .

’ | \kNl dNPN"l_é)PN—lxyém—ldN] lq}Ni§;> 3
1%

Since the é%; in Bq. {3.31) is an (NxN) matrix propagator, ij
N~-1
is composed im general of N terms, We shall further discuss the average
. : . . . . £ .
width at the end of this subsection. Although the calculation of SNQ is

identical with that of the one class case we have, nevertheless, given a
detailed account of it in order to fix the notation as well as to present

the major differences cited above.
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134

We now turn to the calculation of the other terrs in Scc'; ‘This

amounts to extracting from §N of BEg. (3.25) the contributions s and

N-1
Sf‘Q with S = § + Sf! and:then from S the contributions §
N-to N UN-1 N-1 S T S B3
£ N ' '
and SN—2 etc.

To begin this program we start with Eq. “{3.23) where the Hamiltonian
;s the non-Hermitian operator PN_lsﬁf(d )PN 1 of Eq. (3.24) in which the

dN class states appear on the average. This is similar to what was done

previously where we started with the full Schroedinger equation Eg. (3.21)

with the total Hermitian Hamiltonian H. We then decompose §P§ into
- N-1
the components dN—lQPf ) and PNQZCPPN . and further use the KKM method
to solve the resulting two coupled equations for these components. Similarly,
£t =

to extract SN 5 from SN;l’ we start with an equation for the wave function

Pe B <PN—2 ‘PPN_ N >

N-2
N-1
which is analogous to Eq. (3.25) but with an effective Hamiltonian
+ . i d
PNn2ﬂ (dN d )PN > We then decompose GOP into dN—chP an
N-2 N-2
PN 3C§; and solve the corresponding coupled equations, following again

. N-2
the KKM procedure.
- This demonstrates that in general, to calculate the general temm (with

.,N) Sf't we have to work with § which i1s defined in terms of the

n=i,..
! :ny n+l

optical” wave function C?I? and, by writing Pn = Pn—l + dn’ we obtain

the equations

€& -r F@ ) P Pn_lgDPn = W‘le)dn)dnq’yh (3.32)

(E - dnste (Qn+l)dn) dnq)Pn T (dn?((Qrwl)pn-l) Pn-lc;)Pn (3.33)
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Eﬁf(gﬁ+l) - 5Q?(Qn+2) +£?%%Qn+é) dn+l - o "(3f34a)

where the average over In above guarantees that the states in dn+ are

+1 1

'treated.on the average and since 1n£ﬁf(Qn+2) the states in Qn+2 were

.averaged out, all the states in Qn+l appear only on the average iné?f(Qn+l).

This implies. that 5ﬂf(Qn+1) may alsc be obtained from the total Hermitian

Hamiltontan H,

_ 1
%(Qnﬂ) = He HQn+1< E-o0

q j;? Qn+l H
n+l Qn+l

In+1

(3. 34b)

With KKM we can then easily solve the above coupled equations (3.32) and

(3.33) to obtain Sii,

4

7 {(-) ¢ +)
Sn s c'c - —2V1<C}’Pn_l IVP a [E - d1’1'}"{(G?r'a+l)dn - Vd P

£§2;n—l Pn—fdn]
(=)’ 4+ e

- .—2'!1"1 <(?pn_l ]Vpn_ldnggh Vdnpn—ll qD?M > (3.35)

n-1 n n n-

where again we have defined the “optical" wave function

-1
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. (v @ > (3. 36)
which is a-Solution of the "optical" equation

() e

(E B Pn—_l?’e(gn) .?_n—_l_) 99 =0 ' (3.37)
n-1-
,,'.”.“ ) ' SHAN : ) |
The "optical" matrix propagator P 1s
- : n-1
o) (+) -1
ﬁ;‘P =@ - @) P, (3.38)
n-1
_where Q. =y *d, =4+ ...+d and Pn__l';tefgn) P _, is analogous to that of
Eg. (3.4). In (3.35) we have introduced the dn-resonance propagator,%
n
~ ""1
" %n_ [E - dn;Z((pn_l)dn] (3.39)

where the effective Hamiltonian dn';fe(Pn_l)dn is defined, as

dn gqun-l)dn = dn‘r’ze(Qn+l)dn

3.40
+} ( )
V. f{ v
C.1nPn—1 I:’n—l Pn-l d'n
which is the generalization of Eq. (3.9). The form factors Vd p and
n n-1
VP a are
n-1ln
i In/2 1/2
— : : 3.41
Vdnpn 1 ' % gLC(le) Pa-1 ( )
E_dn'a:E(QrHl) dn'm:n/2
and
i1 /2 /2
v =p__Hio  a X - } (3.42)
P d n-1 n+l’ n
- . - i 2
n-1"n E an';:’E(QnH)an +i I/

ek
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Notice that the effective Hamiltonian {Qn) that, appears in p

' é 5 i 2G4+ A, oLe. o+ the
centains all the doorway classes in Qn N N-1 dn on
average, whereas 5i€(Qn+l) that appears in.the form factors_cpntaipsloniy,

the classes in Q on the average.

n+l _
At this point one might ask about the formal relation between the
- "optical" wave function QPP and the total wave function of the system
ﬂf. This relation is simply

| CP Pn-—l =<Pn"l<““.<PN_2<PN'.lY'> >I >I
- <Pn__l'f> | (3.43)

Fg. (3.43) again exhibits clearly the spirit of our model., Tt also indicates
how the actual optical wave function, q’opt’ that describes the open

channels in p,is formally defined in a nested average sense vis
{(+)c R _
opt h SDp h 5’aPD

Gl o un D

N

H{ (3.44)
X _
o Il

. . . f .
Having derived a formal expression for Snﬁ in Eq. (3.35) we now
ol

It

d
n

cast it in the sum-over-poles form by expanding the dh—propagator,éé?ﬂ
. . . d
(Eq. (3.39)) in tems of biorthogonal basis states I\Ynij> an

‘quni:> which satisfy the following eigenvalue eguation

(6, ~a e _a)rjy > =0 ' (3.45a)
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T t |
(g -a,He oar|y >-=o ©(3.45b)

ith the effective Hamiltoni a_ given i . (3.40). Egs.
with the effective Hamiltonian dh;ﬂ{(Pn_l) N given in Eg. ( .) gs

{3.45a) and (3.45b) are analogous to Egs. (3.8a), b} for the one-class

case. One major difference between Eqg. (3.35) and Eq.'(3.26)'for‘§£f

. . f . .
is that in SNﬁ the form factors are given,aside from the complex square

root factorlln terms of the Hermitian operator H whereas in Sn’Q they are
o

given in terms of the non-Hermitian operator ;ZC(Qn+l). However, despite

this difference, one can prove that VP a satisfies the same condition
‘nn

(3.13}, namely,

6 v, 7= v ¥ (3.46)
nn

The proof is as follows:

| -1
QVde -
nn

Il
e’
=
o
+
e
oF
=l
-]

(3.47)

o : + ‘ . :
Wg have used 8 %(Qm_l) —% (Qm_l) @ which is a consequenlce of (3.34b)

and (3.15). Therefore we obtain, the sum-over-poles form,
Siicc' R ni,c “ni,c (3. 48)
' ) E - & .




which when inserted into V ;ﬁ?
S P
1 n-1
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wnich justifies Eg. (2.10). The:residue_factoxs I o 2Ye given by

L

SERT N s Wy o

and the average width, r;,: which one obtains from. gni by

M/ A~ | +) e \
- _ ) |
T2 1M_<\%_}hi'[dn?(_(9n+;l)dn * Y P P an—ldn] lk\)ni> >l

n n-1 n-1
(3.50)
An interesting fact which emerges from Eq. (3.50) is that the average
. Qo 2 .
width L, 1s generally composed of (N-n) + n° terms. This can be seen from

)
the .fact that the Pn_l—Green's function EP is an (nxn) matrix
' n-1

) (ﬁ" Fhp - ,;- - ({;@h )PJM
(gfh_,),;m | (géf

- . ddhl

(5{ )J o (fcp,,_,)c;ml,_,

24

{3.51)

2
4P a generates n  terms. The other
n n- n-1n

. 1 . .
(N-n} terms in | , come about from dn;Z((Qn+l)dn in which the doorway

classes dn+l’ dn+2""dN appeaﬁyfn the average (see Egq. (3.34a)). Generally
the off-diagonal elements ofggzﬂ contribute little to r; as they generate
n-1

terms with odd powers of the form factor V,s and thus would approximately
average to zero. Therefore one may consider ITH to contain N terms: the
N-n terms originating from dn;¥{(Qn+l)dn may loosely be referred to as the

average "damping width" of the nth class resonances and the remaining

n terms as forming what might be called a generalized "escape width".
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3.2 "Optical-Background" Representation of g o
. Lo . : 4 ¥

It is clear from our previous discussion that the residue factors

" of Eq. (3.49) 'g , contain "modulations” due to all the doorway classes
ni,c' 7. : . T

I

contained in P .
P n-1
g ?"l- =g ., . For our later use we shall, in the following, exhibit
ni,c ni,¢ P
explicitly these modulations in gn?~c° To do that we resort again to
. . f )

To stress this point we introduce the notation

KKM and analyze the "continuum" wave functionff% that appears in the
Pn 1 n-1
definition of gnl o" The first step would then be to extract, from g}% ’
1
n-1
the components dn_lﬁp;n . and Pn_2<P£nhl. By solving the pair of coupled

equations (3.32) and (3.33) with n-»n-1, we cbtain

n-1 n-2

“ (+) {+}
+ v . v (+) {3.52)
:E C:}Dh_l qop- gpn—Q Pn-—2dn—-].ﬁﬂnml d P 90?n—2

énd_
i 1/2

I /2
¢ -
a ‘ﬁjpﬁ B no % Va » SOE(’H (3.53)
n-1-"n-1 Ewdn_lge(gn)d FiI /2 n~l n-1 n-2 n-2

n-1 n—-1

+
where the "optical" Green's functioné&ﬁé ) and the doorway Green's
n-2
functionéﬁg are given as in Eqgs. (3.38) and (3.39), respectively, by
changing n into n-l.
Pn-l
Substituting Egs. (3.52) and (3.53) into 95 o of Eg. {3.49}) we

finally obtain (dropping the square root factor that appears in Fgs. ({3.49)

and (3.42) as it has no conseguence)

P P
n-1 _ n-2 £l (a ) (3.54)

gni,c gni,c ni,c n-1

where

(-}c'

9ni,c J"'"<QD

v ' .:> (3.55)
Pn—2dn \Fnl

and
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o2 ta )= 2T <CP“C\ n_zdn_'_lggdn'_lvgﬁ_lag |¥asd

\Pn%>

Fn-2tno A CTS T a_.a
le{ﬁnhl% | |

(3.56)

e ¥ D¢ P
“ﬁ<‘?()‘ d. Z ( )8 (n-1) V

In the above, we have defined an effective interaction §yg a that
: n-1n

couples class dn with class d 1 and 'is given by’

V -
= Y + v {3.57a)
: ; &
n—ldn dn-—l n dn——an—Z Pn-z Pandn
h c = .5
whe re _ Vi 4 dn_l(VP a ) | {3.57b)
n-1n n-1n
v - ' 3.57
P a " P2 a’ (3-57¢)
n-2 n n-ln
and V_ q vas defined in Eq. (3.42), Notice that our decomposition of
P . n-1ln P
gn: c (B} above amounts to defining an energy average of 9, (E),
Pn 2 :
i.e., 9oi o (E) , plus a fluctuation part that results from the dn—l dooxrway
+
rmodulations which are present in the “continuum" wave funotiongpg")c .
n-1
In addition,the KKM construction results in the following property of
Pn—l
. BEq. .18
gnl,c (see Egq. (3.18}))

P .
<fg -l (E):> =0 (3.58)
ni,c

i

where by the above average we imply an average over the index i which
labels the states in dn' The interpretation of gif c(dn_l) is now guite

P I
clear as it corresponds to that part of gn?ﬂc that contains explicitly the

r

dn 1 —class modulation as shown in Fg. (3.56). By repeated application of
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the KKM reduction proceduré one can easily generate all the terms in

P
gnzwi which contain explicit doorway modulations. A natural decomposition
I:P,n" ‘ . . 5
of 9.3 is then obtained-
Pn 1 opt o fi
\ = . + . .
Yni,c gnl’c_. m}; gnl'.c(dm) o (3.59)

wiiere gggtc is given by

- e S
i, e J5i7<gpopt _] Vpdn ‘qgi:> (3.60)

_ ]
and g?épic is a solution of the optical equation in which all doorway classes

£

. {d ), which are given
ni,c m

have been. averaged out, scc Eqg. (3.44). The terms g

by

(=)
gii'c(dm) = yar <g0p c l\;rp 5 C;%/dM g ‘\'I)ni> . (3.61)
m-1 m-1 m ™ m It

P
. . n
ropresent the modulations in 91

due to the resonances in class m (m{n).
I .
As can be seen from Ey. (3.61) gii C(dmj contains also modulations due to

r

resonances in classes m-1, m-2, ...l.

For the purpose of clarity we give below the explicit form for

pn—l

ni.c as given in Eq. (3.59) in the case of three classes of states,
r

d;,d, and dg ( r71>Q> Fgﬁ2>l’3). To be specific we consider first

Py
g3i,c
Pz opt £ £l
= 1 - + .62
935,06 = I3i,c ' I3i,0lY) F 950 dy) (3.62)
with

£ - {-}c
gT; _(ay) \l21<cp

3i,c opt

vpdl _gfdl\/dl% lk!j31>
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| | Yy |
- \!27r <q;'opt s, %} .E.P_}.ng__l_\/ l‘l’3l> ; (.3.1.6‘3.»).

£ _ “"‘ V4 ()c
3i,c(%) = V2T [ cjoopt

l‘pd \gg Vd2d3 l Ll/31>
* < opt

pd -g ledzﬁ % d lq)3l>J
@] v, = My ey

= _ " a
@jé{dzk E Szj %23
(p - lq/lk><k}/lk \(PZ_)><\1231 \/
24 opt Yo, 2 s d a, E ~ ¢ Vaga ]%9)
ke{dlﬁj ik 5 .{dzll 23
{3.64)
Pl
Similarly, we obtain for 9i the following
!
P t £l
= P -
1,0 " I2i,e T Fa1, 0N (3.65)
with
. £ (d)_m< (-} v L]/
921,01 T P opt l pd, %l%ldz | 21>
T < (P
< 1] 15
B <90C§P1)1 j> : Md lkl/,2i>
Nl E- £ 12
sefad (3.66)
- Finally,
| o L p L et (3.67)
1i,e T Y1i,e T %1i,c .
since there are no more doorways above d]' Notice that in Eg. (3.66} the

coupllngM d, is given by an equation ‘%Lmﬂar to Bg. (3.57) except that
(+)

. . + . ; , +
P is now just‘ge ), i.e., the full optical Green's functicn -dgc( )
j n-2 D opt
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‘associated with thé opén channél éubspace.p. As for‘Qy/ A "thé Greén's
dp 3

, with P = p#&i; A

function that appears in fhéﬂéé&ond'féfm is'éﬁ? 1

By
fuller distussion of thé matrix éléments of thesé ¢lass-class couplings

will be given latér.

3.3. Calculatién 6f the X “Matrices

1l

As discussed ipn Section 2 and in Appendix A, the fundamental guantity
. ' £ . - S
in our theory for cot 1S the average, over the largest energy averaging
interval I, , of the matrices X , i.e., <i3( :5- . In this subsection we
_ 1 Ay Ty Il
yive detailed account of how the above average is calculated using the

P
. . -1 . . .
"optical-background" representation for 1 discussed in the previous
. P i o P

r
subsection. Our final results for(ig&l;z , which will be shown later to
: 1
be related to the <fX :>> with m=1,2,...n~1 in a recursive way,
~vm - Ly .
lecads us to a very simple and appealing physical interpretation in terms of
probakility flow. In what follows we shall, for simplicity, assume the
absence of direct reactions and thus deal with a diagonal optical S-matrix,
(+)c . L
q7 . The generalization of our results
cc cc' opt opt ; .
to the case where <<S :% is not diagonal will be given at the end of
this subsection.
Let us recall the defining equation for Xn co! ,Bg. (2.13), which

2T .
PnDn ‘ 71'1

glves

(3.68)

nl c
1€X

where the i-dverage is over the states ni contained in In. Clearly the

energy—-dependence of X due to the doorway modulations, is now an
gY P n.co'

r
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Eni-dependenqe since the g 's are evaluated gt_the pole position namely
E = £5i (see Appendix A). This, howeveﬁ;_does not prevent us from using
the optical-background representation of the g's worked out in subsection

3.2,
Pn—l
Using the general result for gni o of Eq. (3.59}) in Eg. (3.68) we

’

~immediately obtain the following simple representation for <i?n cc::g

_namely
: : ) n-1 :
<x > = x°Pt E o (3.69)
n,cc I n,cc n,cc
1
m=1
where cross terms have been dropped upon taking the average over Il' in
Lg. (3.69) Xopt stands for
n,cc
opt 2T // opt t '
X = -5 / g . (3.70)
n,cc 7 \\:\ ni,c I1
n ie1 )
n
B 21 opt
-~ ni,c /
I
[LDn L€ 1
£l
and X (m} stands for
. n,cc
. L 5\
1 2 // £ i>, 20 £ 2
Xi o™ = j’“ \éi gnf c(%n)l A j>— = gnf (4]
r r 4 ' ¢ T
r?"Dn té In I1 l-'nDn T€ 1

(3.71)

where the I-average in Eg. (3.71) indicates an average over intervals In
. \ . opt .
centered on energles within Il' Clearly Xn oo must represent the direct
I

coupling of channel ¢ to the nth class of resonances, on the average.

Xf’E (m} ,

n, cc

The terms on the other hand, represent the non-direct coupling

of ¢ to dn that proceeds via the classes of doorways, dm, dm—l""dl {m{n) .
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The explicit form of gfﬂ c(dm), Eg. (3.61),clearly demonstrates the
I’

above fact whlch can be fully ‘shown as follows. . 'Sﬁbst.itrrtiﬁg E‘q '('3.615

into By, (3.71) we £ind o g R TPTNE
£4 N / (- )c
X (m) = N 2.“ A X K .
Snyoet r, Y ‘<?Pm_ -Pm 1% fz% Vd d ’q/n>\> >

A= Ye
NPy
\

P- d <=
m-1m- -jEdm grii

ST lthi><:j'ml V I‘Fni>,2261

jeIm 1

& wml\/dd .
R [0 |

B G (@it on

In the above equationQ /., . is the effective coupling interaction defined
CRCH ’

2]’_ LGI

. Q{m[% o [ W)

il

ZI

in Eq. (3.57). It contains both direct coupling, V and non-direct
' ) dpndn
coupling, Vd p % VP q + that proceeds via the classes, dm—l"' ., d
m m-l ~1 m-l n

and the open channels, all contained in Pm—-l'
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The key results of this section are contained in Eqs. (3.69) and (3.72).

'Pn-- 1 .
ni,c ® given by

1

Eq. (3.59), manifests itself in recursion relationibetween th_e_Xn s of

different classes. This relation is given:expliCitlyfbﬁ'Eqs. (3.69) and .

(3.72), and is highly reminiscent of the previously-noted recursion relation
between transmission coefficients, Eq. (2.30). Both relations appear to

carry the same physical information, which indicates that the transmission

coefficients T, which we would like to extract from the analysis of the

present section must be proportional to the Xn.
The structure of (3.72) suggests that a reasonable guess for the pro-

portionality constants (one for each class) might be given by the definition

~ . .
j21r Y2
TR I <<% :>> —1 lg n 1‘ (3.73)
n,c D I, cc b ni,¢
n Il n I1

for the full transmission coefficients Té e 88 well as
! »

-~
2w
4 In opt 27
n,c D n,cc D
n n

for the optical or "direct" transmission coefficient. If we also employ

opt
ni,c

(3.74)

1

what seems a reasonable definition for a branching ratio nén ,

42/ - - l<\]’ A4 ’
mn -'r*;D mj [\Wa a_ l“{"ni> (3.75)
m n
I
1
then Eqs. (3.69) and (3.72) yield
-]
T =1 4T on (3.76)

1
n,cc N,o¢ m=} m,C: mm

which does indeed have the same form as Eq. (2.30), and means that the

[ ] . - » * . - - - -
T a transmission coefficients are linear combinations of the T'n coefficients,
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h, -
Toe = :E:: oM (3.77)
4 .

me - mn

]

with M' 1.
: mn

So far we have assumed no diréct reactions between the channels. If such
reactions été'preSent,‘Tﬁ and Tﬁ become matrices in channel space. The
calculation of their non-diagonal elements exactly parallels the above

calculations, efiploying <X cet’p » and produces the result

cc 1
. 2rf1
Tl — n X
n,cc' D n,cc';:> :
n I
1
1 (3.78)
] A 1
= T
'tn,cc' + g IIIm,cc:' ?mn

Returning to the case of no direct channel coupling for simplicity, the

fluctuation cross section is, in these terms,

£2

' T & Xn,cc Xn,c'c" (3.79)
D,

=} — T! T, . (3.80)

n, ~ n,c n,c
2nl'y 7 i

Since Eq. (3.79) is the standard one for Giﬁ' s it is guaranteed unitary.

Eq. (3.80), which is jﬁst a re-writing of it, is equally unitary and provides
an acceptable form, but one which differs from Eq. (2.29) because of the
normalization of the T'n,c chosen in Eq. (3.73). Comparison with Eq. (2.28)

shows that this was not, indeed, an appropriate normalization for this

. £,
purpose and shows that, in order to write Of in the form of Eq. (2.29),

we must define transmission coefficients Tn . which are so normalized that
H]
Tr Xn Tr Tn %
T = e X = T X . (3.81)
n,c -y n,cc - n,cc

n n
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no, (3.82)

where = ¥
Yn m>n  nm

in- terms of quantities-nnm to be defined below. In order to retain the

form of the recursion relations (3.76), we must gimilarly re-normalize. the .

T; by the definition

X .
T = — X . : _ .. . (3.83)

An examination of Eqs. (3.69) and (3.72) shows that they can then be written

in the described form,

n—1

T = T + % T n {3.84)
n,c n,c¢ W=l “m,c mn

provided we define the channel-coupling coeffients by

1 1
"y X 1 - Y —_
[ZW 2 r ' m VS n 2n pJ
nmn =i 1 - 6(* 1’Um' %/;md Ilj)ni,>|2> T X ~
T Ym J o I r 'n ' D
L m m i n n
(3.85)
The definition (3.81) implies that
<:rPn,cc - Pn+1,cc;>1 - Tn,cc (-7 (3.86)
1 .
and hence that the cross section has the desired form,
e Tn cc ‘m,c'ce!
On,cc' - T T (- Yn)’ (3.87)
r n -
and satisfies the unitarity condition,
N
I o , =p =% T . (3.88)
ne' n,cc I,cc =] 'n,c

The definitions (3.81), (3.83) and (3.85) are distinctly not intuitively

obvious, but it is clear that they are demanded by Eqs. (3.69) and (3.72)
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in order to produce Eq. (3.87). In this cdnnection we might obser§e,
first, tha@fin AWM [4a] ,gthe transmission coefficient Taoc is not
simply. xi =T Py |<fn|v1q> |2, but rather has the "re-normalized" form
Tn,c = 4%; [(1 + E ?&E)z, which is somewhat reminiscent of our Eq. (3.83)
in that it involves all classes in the "normalization constant"

4f(1 + E ?ii)z. Similarly we recall that nnm is not the direct branching

ratio from class m to class n, but involves paths through other classes

as well, as Eq. (4.25), e.g., makes clear,
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. . . /
3.4  Calculation of the Downward Branching Ratios 7
” —&mh

iIn this subsection we give a full account of the structure of the
mixing coefficient 7 mn introduced in Eq. (3.75). As was already mentiocned
the coupling interaction Qvﬁmdn that appears in 7;ﬂlcontains two pieces;

the direct coupling interaction, V
+)
Y s " : " . + +. ..
ﬁi&) VP a ! which proceeds via the "continuum Pnrl P dl
-1 m-1 m-1 n

+dm—1' This non-direct coupling is a generalization of what is callied.

aaq’ and the non-direct interaction,
mn

Vd P
mom
- ; . . . +
external mixing in the one-class case, in which it has the form Vééé )V
i.e., it involves the open-channel subspace p. It would be useful, there-
(+) @)
fore, to extract the components V VvV from V v
ol d P P d
m m-1 m-1 m~-1 n
and then define the basic coupling interaction to be
+ 1 .
v =V + Vé&% )V instead of just V. This way ?7mn can be considered to
be given in terms of the matrix elements of v which will be seen to result

in a simple interpretation.

]
Recall the defining equation for'?mn
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1

4

U e Ve 1

—

2
Il
(3.89)

o =<<¢jm \ .l(;]dn_.ldn +. Vdmpm_lﬁpzil V-P'm-.ldn) Hlln>]2>

where the Vd g are given in terms of effective interactions that contain

all doorway classes_n%l,n+2}...,N'on the averagé; as discussed in subsection
#+> - 3

3.1, andéjiﬂ is an (mxm) matrix propagator associated with the p+dl+d2 +
m~1

..+a —-subspace. We now introduce the projection operator

m_
- ()
Clearly the term Vd p :5%7 VP a
m m-1 -1 m-1 n

1
N} =P

- p=da+ d+ ...+
m-1 " Fp-p TP T 4 4, q

1 m~-1"

can now be written as
. : )

' (+) -
) gﬁpp ﬁ/}: -1 P

v v ) &)
-+
dmpm—]).% -1 Prn—-ldn dmp dem»l -? _g// ) v
D
Pn-1P Dm—lenl, d

i
=
<

(3.90)
o)
where, as before, the propagatorsc;égp, ete. are defined by
(-f-) (.1")
% pp = pé%m*l p
_ (3.91)
)

+)
ﬁ-po—-l = pﬁn“l P17

etc.

Now we use the KKM method to express the above Green's functions in terms

(+)

opt defined below (see Appendix C for

of the optical Green's functionzgf

details)

() '56(1*%5“3; v v gg“i (3.92)
pp op opt gD, 7LD, D P Fop
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: (+)
"5{9%-1 ¥ éfopt jvam_I%m_l (3.93)
‘ 7 +) |
g m-ll” _.O!% Y lp%Pt o (3.94)

' I (3.95)
Egmd -1 O Pmed
- P ' _ (+) -1
’%; = (E Dm_l}’{_ Q) D, “'VDm_lp‘g[OPt Voo AT (3.96)

where

m—-1 m-1

and

+) ' .
,'g{opt = [ - p K(.Qm)p. - p}é’(Qm-)Dm_l

l \
—Dm—l}e(Qm)Dm—l /

g

-1 (3.97)
o el

(+)
= +... = e .
where Qm dm+dm+l +CH\I ’]]_ P Dm—l Clearlyé’f opt can also be

.written as (see E1. (3.34)).

%y; = @'l pHp - pHQ ( > 0, Hp) = (3.98)
o E~0 HQ.

=D = d.+d_+...d_.
where Ql DN dl d2 dN
The form factors Vv D etc. are defined as usual and are given in
m-1
Appendix C. Notice that % is a {m-1)x{m~1l) matrix propagator with
m-1

an effective interaction,

(+)
Dm— lJe (p)Dm—l'-Dl'n—-]_j'z (Qm) Dm—l * VD p,g'opt VpD , that

m-1 m-1

contains all dooxway classes in Qm on the average as well as the coupling

to the open channels contained in p. Substituting the above expressions

for the Green's functions given in Egs. (3.92) - (3.95) into Eg. (3.57)




s we find

_ (+)
Yaa “Vaa *Vap Fopt Vpa
mn omon m M n

+ (v + v \Y ) ﬁ’/
. -dem- 1 dmp opt 'po—.'i, D!.n 1

= A lpf;fopt Vpdn +vo) (3.99)

m-— m~1 n

Defining, as was explained above, the basic coﬁpling v hy

(+)
v = V + v v .
d_d dd d p.gopt rd ! - {3.100)
m'n m n m n

«w¢ thus find the following form for VA 0\ :
m-n

=V + v ’? Y
_%/dmdn dmdn dem—-l Po-1 'Dn-:dh (3.1001)

Notice that in Eq.(8.100) vdmdn and Vpdn are related toEZf(Qn_u) whereas

vdmp is related to QZ{ (Qm+l)'

With the above expression (Bg. (3.101)) for% g We can reexpress
113

n
! as
mn

~ .

! FmD;l <N 2

?m 2W N { ijlvlq/nj) Il

(3.102)
~ ‘ N2
+ < 1 v% \'% .
Wil Vs YW¥ni) | "/
1
which is the fundamental result of this subsection. The important

advantage of (3.102) over (3.84) is that, in (3.102) we have introduced
as the interaction responsible for the "direct” coupling (mixing)
betweeaen dm and dn' the coupling potential v which contains both the pure

"internal” mixing interaction, V, as well as the pure "external" mixing
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. + \
interaction V (+) V. Notice that the doorway classes, dl'd2""d

opt m-1"

which are present explicitly in% , couple among themselves via
m-1
exactly the same interaction v, of Eg. {(3.100), The above discussion

clearly demonstrates that? can be expressed in terms of the basic

]'an_'l.ng parameters which are proportional to <l<‘{’ l lt}’ >| >where

n' = m, m1, ;1 and n > m. In Sectlon 4 wé shall give a detalled

- account of the relationship between ”Z' and the basic mixing parameters
B nm . B ) .

. referred to above. Before ending this section we give below an estimate

2 .
for the external mixing part of - d. v d , l.e,,

|Gl v g v, W | )
2 rrz_{(\hnjf apl P 2 [Hui]va Mﬂé;i“ﬂi}j
" }—_ R il el P> 12

m
2
(+]
47t2<l<lyni Vdﬂp‘?o;tc> l >1
D
n
(3.103)
~ ne

~t
where we have approximated <krmjl by <l}/nit and used the defining
equations for /t" and v, (Eg. (3.74) and (3.83)).
It is guite gratifying that after a rather lengthy algebraic manipu-
lation we were able to express the fundamental gquantity of our theory,

namely <Xn,cc > , in terms of the downward branching ratio, '72 —

and the optical transmission coefficiehts ltnc .
)
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4. A PROBABILITY FLOW INTERPRETATION OF THE NESTED-AVERAGE
'MODEL AND COMPARISON WITH OTHER FORMALISMS '

In the previous section we developed expressions for the fluctuation

£

L eo in the nested-average model by making extensive use
, - HESLEC =) = J -

of the Feshbach projection operator formalism and the generalized optical

background techniques of KKM [8]. With these procedures we obtained formal

4

et In addition,
L

expressions for all the factors necessary to construct Cri
since the Feshbach projection operator methods were used, comparison may be
made with the multistep compound theory of FKK [3] which employs similar
projection operators while proceeding along different lines.

In this section we establish a direct comparison bhetween the nested-
average model and the probability flow picture of non-direct reactions

developed in Ref. {6), called here the "flow approach", (FA). In achieving

a formal link between the nested-average model (NA) and the (FAa), we shall

provide intuitive interpretations for the factors we have formally developed

in the previous section,

In Ref. [6], a formal connection was established between the flow
approach and the work of AWM {4]. The model states and mixing matrices
of the latter were identified with the structure obtained in the flow

approach. It was furtheér shown that a redrdering of the sums appearing in

AWM [4] leads to the same expressions as obtained in (FA). Thus by demon-

strating, in this section, the specific relationship between the nested
'average model and the flow approach we will, in fact, achieve contact
between the former and AWM. 1In short, the projection operator development
of Section 3 permits comparison with FKK [3]: the wérk of this section,

which relates the nested average model to the flow approach, allows for
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comparisqp with AWM,_since thellatter is :elated to the flow approach in
Ref.[6];.fhué by the.end of this section we shall have related the current
major approaches to multistep compounqtreactions.

In Subsection 4:1 we summarize some of the salient features of the
prébability flow'épbroach déﬁéloped iﬁ'[éi'and.indiéate thé formal siﬁilarity
between the reéults of [&] and ﬁhbéé'df.the nestedvaﬁerage.model of Section 3.
In Subsection 4.2 we bresent a détailéd'formai comparison between the reéults
téf'the.different approaches to multigtép compound processes. Finally, in
Subsection 4.3 we.inaicate the kind of problems that one faces when trying
to relate, iﬁ full.detail, the quantities that were obtained in Section 3,
QhOre statistical assumptions were made on the S-matrix parameters, with
those guantities that result when statistical.assumptions are made on

model states.

Gl o The Probabillity Flow Approach to Mulllstep Compound Processes

In the flow approach, the probability for a non-direct reaction
leading from channel ¢ to channel ¢' is determined by summing the individual
probabilities for all processes which begin with ¢ and end with c¢' where
a succession of classes is visited along the way as the system erlves
along various routes. The sequence of events leading from ¢ to ¢' is
assumed to be governed by probability conserving branching ratios, independent
of the previcus history (Markovian), which connects the classes of levels.
To facilitaté the link between the nested.average model and the flow
approach we have already introducod, in Section 3, several symbols-- U, T,

91——which we shall later connhect with their counterparts in the FA. We
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next simmarize soméldf the major resultsiof-Réf;H[Gl,‘inhpreparation'for
making these ‘connections.

In the general flow approach one considers .any set of classes of
states.  For the'discussion here we let those states be orthonormal model
states which span the spaces of the respective projection operators dl,...dN,
introduced in Section 3. For example, we take the set i ]?r“£>}to span

the space of dn such that

=ZIEM><}EWI (4.1)

‘The branching ratios governing the flow at each stage involve: the average
probability for passing from the states of class n to the states of the
continuum (channels c¢); and the average probability for passing from one

class of states to another. The former is provided by transmission co-

(F> A
efficients, Tfn,c; the latter is provided by = —*)
M ‘:"(F
the branching ratio for going from class n to class m. We assume that
each class is characterized by a width (inverse lifetime), [ﬂéF) given by

(F) (F)T (F)
ror F ZFF/unm (4.2)

Where

D
(v [/ 'n ) (F)
r1n,c “\a2mr ‘tn,c . (4.3)

with Dn providing the average separation between the states of class n.
_ (F) (F) o - .
We take f’ — /ﬂ » @3 glving the transition rate for passing

from class n to m. We further take fjn—)m to include the effect of

direct coupling and also coupling through the continuum ("external mixing")

. F
both of which are treated in AWM [4]. Note that the width Iﬂ; ) here

o~
does not correspond to the correlation width rjn characterizing the
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fluctuations of the;ﬁi# ;- Notice also that the above (“;F)'s (Bq. (4.2))

calculated with the model states (Eg. (4.1)) may be different from the
r;'s of Eq. (3,50), which were calculated with the eigenstates of the
non-Hermitian Hamiltoniadn . dﬁg«e( Pn--’l) c1n of BEg. (3.40). (A fuller dis-

cussion will be made below.)

S _ _ n
It was shown in Ref. 6 thalt a partial compound cross section, 0Jé¢{
£ . . - . '

{there, CT’nﬂcc' ) includes the contributions from all routes leading

from channel ¢ to channel ¢' that reach states of class n at least once

but which reach no states of classes m,@n > r} The above definition of
fi . . . ‘ )

T o obviously requires an ordering of the classes from 1 to N (see

Fig. 3b). In the genefal flow approach this ordering is arbitrary. For
the specific study of the nested-average model, however, the ordering will
be based on the widths as presented in previous sections.

It was shown in Ref. [6], that Ogiﬂcc' can be obtained in the form

T(F) T(F) _
-~ ER n,c n,c’ - (F)
Cnecr = — . 4r- zg:l?ny ) (474)
! T(F) yyn
c" n,c"
where

JAEY (F) {F) ()

Tnﬂf - tnﬂ:+ 1;uc M (4.5)
m{n

(F)

The symbol an can be most easily interpreted in terms of the product
(F}  (F) . . .

Pm Mo which gives the rate for going from class m to n (n»m)

directly and also by passing through staktes of class n',@ﬂ < r} The

P . . . . .
factor M‘,) is obtained directly from the branching ratlos,/}z ; by the
mh mn

following iterative scheme,

(F) (F)
Moo =/umn+ g /;m| Moy * (4.6)

n'¢n
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The quaq?i;y.ﬂz;tj appe??iﬂg i#IEq- (4_45 g}vgs the.fopd; p;pbabi;ity.fqr
going from_class_n to class_)),( Y>> n) dixécﬁly apd also.by first passiﬁg
through the states of class n' with n' 4Lr1 We call thisg quantlty the.
"downward" branchlng ratlo.. In Ref. [6] '7(F) was also related to the

normal branchlng rathS,/L%H“ by

" (F)T
f? F) . ,/ﬁﬁ; n'¢ n nn /L% Yy

ny © - - - (4.7)

nYg n

(F)T . : ( o
where M( ) (the time-reversed version of Mé?i) represents the probability

for going from class n to n',(n'( n) ,directly and also through the classes

nn} (n.n< n).’
(F)
W I e (4.8)
nn' rAF) D . Marn )
n

It can be shown that,with Egs. (4.6) and (4.7),thé expression for

; l, given in Eg. (4.5) can also be written in terms of ?;ﬁ; as follows
(F) (F) (F)
= 4.9
Tn’c e + }:_:n n " ( )

As a means of elucidating the structural similarity between the flow
~approach and the nested average approach, we devote the remainder of this
sub-section to the study of a particular quantal realization of the flow model.
It is defined in terms of matrix elements Y . . connecting the model states

3
lg > with the channels, which, using the projection-operator techniques of
Section 3, are shown to obey the recursion relations of the flow pattern.

Thus in analogy to the amplitude gni N of Section 3, we define [:recalllng the
3

deflnltan of w( )e in Eq. (3.23)]

n—]
¥ou, c ﬁ<?nd’ |97(+i° ' (4.10)
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The sole dif ference between X and 3ni . of Sec'tio'n‘ 3 is
. -

the appearance of a model state <T? ’(a member of an orthonormal ba51s)

as a substltutlon for(i“l , (a member of a blorthogonal ba51s) In

both amplltudes the same channel state QF( e is uséd.

n-1

We develop an expréssion for“}%x o analogous to the one glven in
. r

Eqg. (3.59) for 3iﬁ_c but having a form more sultable for finding the

r
ntities M d : . .6).
guantiti o 2 A deflngd in Eq. (4.6) We begin by partitioning

{+)c

(+)c (+)c : . _
into n D 3 e in subsoect - 4.
Pr RN and D . P, as was done in subscction 3.4

n-1 n-1 n-1

Wae then solve the coupled euations for these components, using as the

cffective Hamiltonian Pn“iyf(o )Pn—l given in Eag. (3.34). To simplify

n

the expressions we use h to represent the effective Hamiltonian P P
xp P ective Ha n—l%(Qn) -1’

and find,
(+)c {(+)c (+)c _ 1 (+1c
Pn-l c?pn»l n lﬂgp n- E - D h D -l Pn—l
n-1 n-1
{4.11})
{(+}c {+)c
The full optical wave function Cp . Eg. (3.44) differs from p@P
n-1

and satisfies the following egquation,

1 {(+)c
(E ~ php - phD < D _hP) P =
n-1 E ~D h D g n- opt .

n-1 n-1 1
(4.12)
- . : bl ' (+) .
The corresponding optical Green's function, opt’ Eq. {(3.19), is the
reciprocal of the operatof multipl-iiuj (')DO(;E__C in EBEg. (4.12) . We next
+
solve for p(P in terms of @{ Je . using the steps leading to

n -1
Eg. {3.52) and (3.53), and find

(+})e _ mi+)c (+) (+}c
pCPPn~1 - Jopt %opt (ph Py )g; frp gpopt (4.13)




) wheré .«C?Z'D " is defined in Eq. (3.88),  The approkimation indicated in
n=-1

Eg. (4.13) is that of dropping the ubiquitous factor,

when it would appear in the effective interactions. This type of approx-
imation h'é:s been consistently employed in earlier sections when the
interval: I'l was taken to be much larger than the level spacing., With this

approximation we obtain
{(+)c
(+)C _ Opt , (+)C
lCP _ >‘ [E‘Popt) + (1 +,&Q’C v)%ml o1 l opt > (4.14)

where Vo is used to represent ph Dn p or Dn lhp as needed. (In this

section we are more concerned with the structure of expressions than

. | formal rigor.) The representation of ’ P ]§+)c
n-1

provides for a convenient separation of Xno( c into two terms as fecllows,
. . . r
(+)c
= -,’211' v 4.15
Knu,c < E‘no(l opt > ( )
(37] (+)
c
+ 42 + Vv v
m <Fn|xl v %t )%n—l v opt

opt

> given above, Eq. (4.14)

The first term is clearly analogous to 3 of Eq. (3.60). BAs in

r

+)
Section 3, we use here the basic interaction, v =V + V%;tv’ given

in Eg. (3.100) which includes external coupling, and we obtain,

=2k |9 ‘+’°> (4.16)

l’lq/C

+ ﬁ; Z}frnwlv T Eeg) Lugl? 1P

when a complete set of states {\Fm/;} is inserted into Eg. (4.15).

We next consider the average <)an’ l >, which we obtain from
L
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Xn« c"’qu (4.16), retaining only expli_gitly positive definite.terms, The

result:mg expressa.on :.s,

<I me, mlv |€F’(+)c>’ > (4.17)
¢ S Bl 955 }d <‘<3‘mﬁ\%n._f’ ‘§HV>|2>M

With Eg. (4.17) we now make the following definitions to provide tiuantal

2'17

expressions for the FA quantities 7,Y, M:

n (F) - J(Ym, l> (4.1§)
"f?)c < Bl [90) was
- Kl o, 7, of > o

where _Dn is the average level spacing in class n.

With these definitions Eg. (4.17) is equivalent to

&) _ (F) (F) &)
Tn,c a L ‘rm ¢ Mn (4.21)
(F) (F) (¥) ;
Notice that the guantities T T , and M are expressed in terms
n,c’ n,c mn

»*-
of the model statesl? > rather than the eigenstates l\*} > which in
ne nt

Section 3 are used to define T', ', etc. It is convenient to define
(F#.
Pn}fc as in Eg. (4.3)

¥

D -
['"'(F)’I‘ _,r}. 'f(]’) (4.22)

n,c

which with Eq. (4.19) gives

L (T RO .23
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{Note, this quam_lty :d.iffe:rs...fr.om thét Vin Eq (3 79} in that model states
appear,and the coupling is dlrectly to the channelq }.. The ébove.
express_lon gives the average_z_r-coupling of the 'm_odel states of class n to
the optical continuum. This definition also séems coﬁsistent with the
model-gtate Y 's of Ref. [4a,br]. As we demonstrate in Appendix D the

(F)

above definition of M » Eq. (4 20) does satisfy the flow approach re-

cursion relation Eq. (4 6) provided we defln(d

/umn - ff_ |<Fm«|v I }En(;> Iz (4.24)

A

wite re Pm is given in Eg. (].29).
We next consider the factor 7::;:1) which can be constructed directly

from the coupling matrices through the identification with the FA relation-

ship T(F)
(F) /H nm Z— nk/ukv
= 4.25
o (M 1) i S { )
Z)Mni in nn
This expression differs from the one presented in Ref. 6 , Eq. (4.7),

solely by the addition of the factor Cnn which provides for the coupling
among the states of class n via the continuum channels (external mixing
within the same class). This was not included in Ref. 6 since external
mixing was not discussed in that paper. Using Eg. (4.8}, (4.20), and (4.24)

in Eqg.(4.25) we obtain

yF) zrr(<;n,<; mep>!> el N7 PR DY

h D N LT

(4.26)
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This exi)re:-':sion could have also been obtained from the following equation

by retammg only pos:Lt:Lve def::.m.te terms,

2 Tt 7 * vg,%n__ |rm,,>l>,¢,p_
r1 (l Z/unl in. Cnn)' D’m

(4.27)

(F)
?nm

The expres'sion in Eq. (4.28) is similar to the ”Z:m defined in Eq. (3.75).

The terms <§notl \‘? > descrlbes tho coupling (1ntcrnal and external)

between class n and class m (m> n), whercas <}7 ] éf x >
S
Ne I'n—l !mﬂ

describes the coupling which proceceds through the classes d]. . .dn 1 by

D

means of the Green's func‘:tinngZ’ . (See the discussion Following
n-1

L. (3.102))

(F) . '

Comparison of ; B (4.27),with’ Eg. (3.75), reveals that
/ wn 2 !

model states appear in the former whereas cigenstates appear in the latter,

~
Furthermore, while [7 appears in the latter the analogous factor in the

former is [Pn(l Y /’{nn' Mn'm h Cnn)]'

Wwith the ”Z(F). of Eq. (4.26) one can, as demonstrated in [6], obtain

(F)

l‘

. EY {F) (F) (r)
I‘n,‘c a tn,c_ * mZ<_—; Tm,c ,}Zmn (4.28)

o an alternatlve representatlon of T Eq. (4.21), namely,

/

which should be compared with Eg. (3.6)).
We now consider the flow approach analog for the average width and

) of Section 3 is given in

the correlation width. The average width l-_'I

'_ Egq. (3.50) as

o Gl e,

f
1 P . - '
where (dn"j{{ n-«l)dn) has two terms, Eg. (3.40)

P
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dnrg{(Pnul)dn = dn';((gn)dn + dn Y p v .
_ - n-1
For the flow analog we siniply "re'place-' the eigenstates by the model states

‘an> and average over o<, so that

1
Pr{‘F) - <_2 <\S‘ o ;.m(?.:{:(gn) + Vﬁéil'v) "gnos\/\ >¢( (4.29)

Note that in evaluating Eq. (4.29) all that is reqguired is the imaginary

part of dn';l{{Pn_l)dn. To simplify matters, we assume in what follows

that the V which appears in Eg. (4.29) is Haermitian, and we obtain

() {+ _
=2 ¢ o g -
r'n < }‘M]Im;{f(gnﬂ) V(Im )y v ]\;M>> {4.30)
x R
As we proceed, we must exercise ¢aution in the treatment of Imﬁ; since
n-1

“+)
ﬁ‘f; is the Green's function for a non-Hermitian Hamiltonian,

‘n-1
Pn—-l:’q‘(gn)Pn—l' It is proven in Appendix D that, for any non Hermitian

Ilamiltonian,ﬂ,the Green's function given by

g{” - (E‘"’")-—;g)"l (4.31)

has the following imaginary part
o L+)+
T ,OQEH) :___“_,(Z l+(+)c>< l_f/ (+)Cl)+g(1m—}{)£ (4.32)
C

+
Here (E - EL{ ) \V( ye = 0, and ¢ labels the various continuum channels
with energy E. For the case of a real potential Eg. (4.32) provides the
familiar form, but for complex poten'tials the additional term from Im ¢
provides a very important contribution to the width.
e 1 i d which arise from the
The imaginary parts of both %(le) and ';((Qn)

respective energy averages over In and In' are required in order to

+1
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evaluate the width ]7éF)

. By following the arguments given in Appendix D,

-we find

e S e WRRGD
m ot D

(myn) m

Likewise we obtain for InQ ), -
Im#H(o,) = }__ -T = - .
m o m

(mpn)

(4.34)

Notice that Tag. (4.33) differs from Bg. (4.34) by the inclusion of the
m=n term in the sum.
When Egs.(4.33) and (4.34) are inserted in BEgq. (4.36) by making use

of Eg. (4.32),we obtain the following form for the average width[ﬁéF),
(Fy _ < _ (H)c 2
n e S|l 120 [F)
C n-1 oxX

s el

{4.35)

v 2w l{, v %:{/I?m)ﬁ - ]Z

+ 2W<K?“°‘IV/§[PW1 v l}-ﬂ/?>‘ Z’/g.

Since we have assumed the matrix elements arce randomly distributed, we

/

can simplify the expression involving the sun over m, as

| 2 <§v FIREF A Iymr3>r> <
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Using Bgs. (4.20), (4.23), (4.24) and (4.26) which define 1" I"(F) ,

, and ( ), we find the following contributions to the average width,
mn mn g.

r'n - %Pﬂc ¥ Z r’n'c Mn‘n (4-36)
e, h'
A .
+Z (1 _Z ﬂnn' Mn'n - Cnn) :P_n 7nm

I ’
hidn
A
* Fn( Z /‘lnn' Mn'n * Cnn)
n'¢n
where

27T

9!

nn

no(l 0})tv‘§np>, >,< (4.37)

involves the external "self" mixing for the states of class n. In Eg. (4.36)

nn

the first two sums on the right hand side come from the first sum in
Eg. (4.35); the third sum comes from the second sum, and the last term
is from the last one in Bg. (4.36). The four contyibutions exhaust all
of the processes in the flow approach which can occur upon leaving a
state in class n: a) coupling directly to the continuum; b) coupling to
the continuum via the class n' {n' <n); c) coupling to class m (m>»n);
d} coupling back to c¢lass n via the classes n' (n'<n) or via the continuum
(Cnn). All but the last were enumerated in Ref. [6].
~
Finally we consider the flow analog to the correlation width, I:

o~
of Section 3. For this comparison we define r’ by the following equation

FB(S Gl ey

1

-
wiich is equivalent to [? = P > used in Section 3, if I"‘" represents
ni

the effective Hamiltonian dny{ n—l)dn of Eq. (3.40) for which ’\’Vni>

*
See, however, Ref. [11].
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are the elgenstates. For the ["( ) we substltute model states l ‘E :x>

for the elgenstates 1n Eq. (4.38),

& (L Gl Y e

Since the model states are not eigenstates of H] , Lt is convenient now

[1N]

N

to break M| into a part diagonal in lynu> (calledl-ﬂb)

I'ﬂD - Zj\gno(> ,)z:(<?€1wl ' .. .. ' | (4.40)

where ,
n X : i 1—1'1

= <Enol H IFH«> B T - (4.41)

il

and a part non-diagonal in l X:nof> (called H]ND)

Hyo = MZ{; l?nx> Wﬁ(p<¥n(3 \ (4.42)
<‘§’_W! H l¥1'1p> (4.43)

Proceeding with the evaluation of Eg. (4.39) we make several approx-

where

imat ion§which are discussed in Appendix D. The critical assumptions con-
cern the random nature of the matrix elements wa( and the narrow dis-

tribution of r'nx '"s. We show in Appendix D that

~ (F) (F) {F) :
= - M E: . 4.44
r’ r,n Pn ¢ i t‘ni in Cnn) ( )
n <Il
—(F} . _ {F) N e e :
whi¢li shows that r' is less than Pl— by wproecisely the self coupling
'L
contributions, Now combining Eg. (4.44) with Bg. (4.35) we have
TE) (F), '—” FW (1) = (F) (F)
* 0 B }T‘
rln EP ) r'ﬂ‘c Marn! I—,n Z ny (4.45)
C,n oY)
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‘which can be rewritten as

2H ]ﬂ(F) . ;Z:Y

n'n
n !

u
or\yq
- =

g
Ou

5:_ ’t(F)c wEY L 48
n'

The swnzg'réFi is the one that appears in Bg. (4.4).

- To obtain. the guantal expression for the FA fluctuation cross section
we simply collect. the relevant factors developed above. The flow approach

partial cross section of Eg. (4.4)

(r) T(F)
(r) - nc nc (1 - ‘Z(F))
n,cc
. ZT(F)
L1}
ne
o

can then be written,with BEg. (4.46),as

T(F) T(F)
gw ¥l . ng mel (4.47)
n,cc on )
5— [

Next with the definitions of Eg. (4.18) we obtain

& vl ()

{F) _ (4.48)
Crn,cc' h 27 rq(F)

D
n

Then, with Eq. (4.39) we find
: 2
G:;ch, < “"‘l ><Z‘< lﬁ—"ﬁlzl§““72 <lnﬁ‘ >ﬁ (4.49)

Finally, with the assumption that the matrix elements in the model basis

(F) .
are randomly distributed we can show, that Eg. (4.49) for OJn et 8

equivalent to the results of Section 3, namely,
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8] (a.50)
n,cae’

=T

oL@ Ve B

Pn--l
We have found above thatIWe can associate "quantal" expressions in
the flow approach with each of the facﬁors identified with the nested
average in Section 3, provided we replade the biorthogonal eigenstates
[\Pn£> by model states, Erux>’ and assume tha# matrix elements inv§lving
these model states are of a random ﬁatﬁre" Thé latter assumptibn is |
especially important in obtaining the identification in Eg. (4.50). The
ﬁecessity for this assumption would indicate a possible fundamental
difference between the formalism of Sectioﬁ 3 and that of the flow
approach and by implication [6] the work of AWM {4]. This difference

. is discussed in Section 4.3.

4.2, Comparison with the Results of Other Formulations

As we mentioned in the Introduction, several different approaches [1, 3,
4] have been advanced for treating multistep compownd processes. It is
therefore of interest to understand the relationship among the final
results of these theories.

In this subsection we wish to emphasize the importance of the S-matrix
antocorrelation function (1.2, 1.3) in establishing such connections and
to point ocut that the fluctuation cross section alone is not sufficient
for this purpose.

I d late the oo, calculated
In a recent paper, Lane [12 has attempted to relate e 0. .r

in different approaches for a particular (isospin mixing) 2-class example of
multistep compound processes. Ref. (7a) subsequently showed that conclusions

‘ . . . L .
drawn from such a comparison are not unique if based on Ouet alone, but 1t
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also demonstrated that they do become unique if the t-dependence of Ccc,(e),
the auto-corrolationlfunctidﬂ,.iS'included in the comparison. In the present
section we extend this latter gomparison_betwéen the NA and AWM approaches.
Unfortunately the FKK approach [}] cannot be included in this comparison
because it has not been extended to calculate the auto~-correlation function.
However, a detailed compérison is not really necesgsary, since the FKK results
are "included" in those of the NA model, and can be obtained from it
directly, simply by imposing the additional restriction of thé chaining
assumption, as was shown in ref. 5. (See also further details given in
Section 5,)

The result given by Harney et al. [db] forcyfg and Cs(e) can be

written in the form

£ Avoang 8
ofd vt ey {4.51)
and
— a3
) = (7] amemie n 7YY, (4.52)
A A A A
where £ T| = ("[’1, ’],’2,....) is a row vector and . = JBT with ¥, the
1 i 1 1

penetration factor and Di the spacing for level class;i. {The matrix Mij
is labelled by class indjces.) The fluctuation cross section, cffl, can
be cast into the structural form of Eq. (1.1) provided M can be brought
into a diagonal form, m, by a congruence transformation {not unique)

T -
1 1 AT

A"MA =m (or M~ = Am }. In that case o'fg can be written in the

single-sum form of Eq. (1.2)

1 1
£{ X, X, {(4.53)
o =z_ 33
. J
[} T A
where X, = Z\‘l/m. AT .
_ ] * 33 jk "k
Clearly, to obtain the structural form of both Egs. (1.1) and
1.9 i) S . . .
(1.2) for both @ and C”(€) requires, in addition, that A be an orthogonal
transformation, 0, so that OT(M + i2rEI)0O =m' + i2TWEI. The elements
of m' are the eigenvalues of M. This transformation is unique and leads to

terms which we may call eigenclasses of M. If |n> are eigenvectors of

~t
M with eigenvalues 2TWTI7 . then .
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BEAAETCAE D

o) =)

e (4.54)
211"'['1’1 + 2Ti¢ '

- X X
| =Z,.., nn__

nol+ i'i—/f;"’1

T -1/2 A,
whoere Xn = (27 Iﬁn) Z%\nlk> 1k'

These Xn's then provide representations of both Eq. {1.1) and (1.2}. We

emphasize that the requirement for achieving the structural Fform of Eq. (1.2)
§ . . S

for Cg(e) leads to a unique sct of Xn's. The pole structure of C (£) allows

for a simple physical interpretatioﬁ for each term, namely, each is associ-
ated with the characteristic life time (i.e., %/Fn ) for that class. The

. . - £2
requirement of achieving the structural form of iq. (1.1} for o does not

tead to a unique set of Xn‘s with identifiablc properties,
In order to make our discussion more specific we consider the recipe
proposed by Lane [12} for relating the results of Harney et al. [4b] with

those of Grimes et al. [4c]. This recipe amounts to the choice of a specific
transformation A. The matrix M in Harney's result is given by

f‘”
F1 - 1F2

M= 21 (4.55)

where Ti and F; are widths given in Ref. [1]. Lane's recipe is equivalent
to diagonalizing M through ATMA with
-/ Wy

{4.56)
0 1/%&)2
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where |, = F:/F]_ and Di are the class level spacings. This matrix A allows

one to obtain a result in the form found by Grimes et al. [4c]

f P s 4
= 4.57
o X] X{ + %5 X ( )
with
1/2
, (-0 / HTie * T
(X3) = - ; (X2)
Vee 3 1, 0t/? 2 e | 1/2
e (gnu Tpen * Taen)
(4.58)

where T are the transmission functions. Notice that A in Eq.(4.56) does

not provide an orthogonal transformation and thus the Xi's are not associated

with eigenclasses.* In the special case, however, that the widths appearing

in M (Eq.4.55)) are such that Tl/Tz >> 1 and Dl/DZ >> 1, it can be shown

that the unique, orthogonal transformation of M does provide precisely.the

same forms for X as given in Eq. (4.58)}. In that case the correlation lengths '
Fid Ty

hecome Fl and F2 (1 - el
r. r

1 °2
We turn to the guestion considered by Lane regarding rela-
tions between the transmission coefficients T which appear in various
approaches to the multistep problem. Lane [11] in order to relate the
notations of Harney et al.[4DP} and Grimes et al., [4c] made the plausible
assumption that their T's were the same and hence concluded that their
u's were, as well. Whatever t's may be introduced, each Xn will be a
linear combination of them, X, = Z <n|i>Ti. Since the choice of states
i

|i> which define the T's is tantamount to choosing a specific model for

calculating them, many such models are possible. Although it may be illu-

lhe relationship between X“and X (the eigenclass expression) 1is explicitly

given by X = (m)~/? afomn)t/? %/
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minating to relate one ﬁodel toé another, the above discussion suggests
that the only quantities wnich can be extracted from experimental data
are the positions and residues of the poles of C:C;(e), i.e., the co-
. ~ . .
herence widths r;'s and the eigenclass Xn's.
An important.conclusion that we have reached is that consideration
of the S-matrix auto-correlation fuﬁction iﬂ?ﬂéﬂiEiQE to the averaged
fluctuation cross section would assist in interpreting, and comparing among,
.the results of the different theoretical approaches to multistep compound

1

L . f
processes. This is guite clear from the general forms of GJC and

Cl
o8

cr‘(é} given in Egs. (1.1} and (1.2), through which one inmediately recog-

[

o if considered by

— : . ] , f
nizes an inherent nonuniqueness in the form ofg
C

. L . L e
itself. This is so since there are many ways [7.al, of writing U’CC,

as a sum of products of two Xn's, one attached to the incident channel, c,
“and the other to the outgoing channel, ¢'. Of all these X 's sets one

n

identifies the physical one as being the factor in the residues at the
poles of the S-matrix auto-correlation function. This last observation
comstitutes the sufficient condition that one needs to impose on the

X-matrix, which taken together with the necessary condition implied by the

o would determine the physical X-matrix

form ofg’fﬂ' =Z X X
ce' £ m,cc e

uniguely.
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4.3 General Remarks

In subsection 4.1, we presented a rather detailed comparison between
the nested-average model (NA) and the probability flow approach (FA). We
accomplished that by first defining, what was called, the quantal version
of the FA quantities, Egs. (4.10 ),(4,18),(4.19}) and (4.20) which are the

equivalent to the NA gquantities, Eq.(4.49)}, (4.73),(3.74) and (3.77) and

subsequently demonstrating that they do satisfy the FA relations, Egs. (4.5 ),

(4.6 ) and (4.7 ). Since the quantal versions of the FA quantities are ob-
tained from the NA guantities merely by replacing the eigenstates‘pyni, aniy
in the latter by the model states {ﬁFnu'% we consider the results of sub-
section (4,1) as constituting a formal connection between the MA and the

¥A (and thus AWM} and providing a physical interpretation of the results

of the NA in terms of probability flow. Any attempt to going further than
that and trying to make term-by-~term "numerical” comparison, is bound to lead
to conceptual and mathematical difficulties which are discussed briefly in
this subsection.

In the nested-aveérage apprcach presented in Section 3, the statistical
assumptions were made on the parameters of the S-matrix. ©On the other hand,
in a formalism like AWM {47, the statistical "ansatz" was made much earlier
in the theory, namely, on the matrix elements of the interaction between
model states. To a certain extent, the FA is closer in spirit to AWM,
in the sense that the various transition rates are defined for model
states, not for the eigenstates, Therefore, any attempt at relating the
nested-average approach with AWM or FPA will involve,necessarily,a study

of the relation of model vs. eigenstates of the problem. As we have
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seen in detail in Section 3, finding the poles and residues of the S-matrix
is equivalent to diagonalizing a complex symmetric matrix (éeé Eé;.(3.45)),
which can be accomplished by means of a complex orthogonal transformation.
The implications of the above fact can be illustrated in the particﬁiar case
in which we have only one class of levels,

If we call C)ikthe gomplex orthogonal matrix referred to aboVe, the
relation between the gic of Eq. (3.16) and the corresponding gquantities

)

T Gefined for model states A is
A N
ST . ; (4.59a)
Tig OL'X KA,C !

e =1
arl,c = y2r <§;] v I?(+)c>

(4.59%)

As an example, consider the E’;\c JA=l,...,N as a set of N random
¥
. A
numbers, which are transformed by means of a fixed matrix © :<‘P'r> into
another set of W random numbers 9. . i=1,...,N.

C Let us now perform the following two calculations:

N .
1) Assume that the ensemble average of XACJ is:
: !

ol

<2(7\c \0/;; > = SM’“< \ chf): SAF<[3;]1> (4.60)
where<1¥1CI2> =<jbfclz> is assumed to be independent of the index ) .

Let us now calculate the ensemble average of lg. lz, using {(4.19) and
ic

{(4.20). We find

| <l3:i)c|2> il Ni<wc52> (4.61)
" :(ZAJOMII L_ - Zl@’;”,\”l> ‘:«%1%%21(4.62)

where

The inequality (4.22) is a consequence of Eqg. (3.p).
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* .

2) Absump now that the ensemble average of glcgjc is
<g.1.C ic Slj <lg1c‘ > S:Lc<,gc| > - (4 63)
where <,g l > <’ ] > is assumed to be 1ndependent of the index 1i.
We now ‘calculate the ensembl@ average of IX’A ‘ ublng the inverse of

(4. l‘Ja) namcly,

XAL :;gq;gic =Z<§,\HJ1> gic | i o {.4.64) |

together with the assumption (4.23). We find

60w s> e
XA .66

We can write Eg. {(4,.65) in the form

<lgc]2> - %’-‘<]3Acl 2> (4.67)

where

where (1/N') é 1.

If we now compare the two calculations, namely, Egs. (4.61) and
{4.67) and insist that they should give the same result, we are forced
to conclude that

N' = N = 1. (4.68)

Although the result {(4.68) is certainly attainable, we know [15]
that, in general, {4.68) is not true. In particular, the calculations
of Ref. [15] show that for strong absorption N, N' > 1.

In conclusion, statistical assumptions made on the Xkc's calculated

with model states may not be consistent with similar assumptions made
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on the‘gic's, caléulated with eigenstatesr Conseguently a direct comparison
of results based on using model states as in AWM (ox équivalently the flow
apptéaéh), with those baséd on using the_trﬁe eigenstates of the system
as in Section 3, requites_very special‘care.

One such comparison is made in ref. '[20] ’ bemeen the S-matrix auto-
correlation function of the present NA approach and that of the AWM approach.
It.is there noted that the multi—class AWM auto~90rrelation function is given,

in [ﬁbj , as a bi-linear expression in the transmission coefficients from the

(model) classes to the channels, and a linear transformation to "eigenclasses”

brings it into the class-diagonal form of Eq. (2.14),

AWM
5 £2 Fa
CCC,(c.) =% Oa’cc,(AWM) EAWM s e (4.69)
o 3

If Egs. (2.14) and (4.69) are sufficiently accurate that.their analytic
continuation: to complex &£ can be equated, then from the equality of the

positions and residues of their poles in€ we conclude that

fNA-= FAWM ’ {4.70a)
n n
and _
8 _£8
n,ce' (NA) = O ec (AWM) . (4.70b)

It does not, however, appear possible to conclude that the transmission

coefficient T
n,cc

themselves are identical in the two theories, which is
satisfactory, for the very definitions of the classes will in general differ

in the two approaches. This was the point of the comparison between Eqs.
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(4.61).and (4.67}, which even suggests a possible incompatibility between

the statistical assumptions employed in the two approaches,

It would be extremely interesting to find out whether a careful
analysis of experimental data can shed some light on the above gquestions,
and teach us something about the distribution of the overlapping resonance

widths.

5. APPLICATIONS

As was made clear throughout our discussion, the energy auto-
correlation function is the fundamental theoretical and experimental
vehicle that could, in principle, sort out the intermediate-structure
content of multistep compound processes. This sorting out becomes guite
clear in the nested-doorway approximation in which one distinguishes among
classes of resonances through their corresponding average correlation
widths,

Although the above conclusions were reached assuming the validity of

~ ~ Fad
the nested-doorway approximation, i.e., [1l$> sz..:>ﬂ;, we have evidence
to suggest that they are of a more general nature, (see below) Once this

is recognized, one might then resort to simple models to actually evaluate
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: ' NS 5 o
the Xn‘s that appear in D)ci' and Ccc,(e}. This will be needed for
a consistent analysis of experiments aimed at extracting the correlation
- .
widths, f‘n. In the form of the exciton model considered by the MIT group
[3] one can calculate the model transmission coefficient, T% 's and the
mixin arameters . F the JL.'s th d t 1-
gp ’ /ulj rom JAE}, one may en proceed to ca

culate the 11'5 and M's defined in Egs. (4.4) and(Aﬁ- #) finally, using

the fundamental relation (7T =§21.M), the transmission coefficients, Tn

£2

. oc! is then easily obtained (see
' :

can be evaluated, From the Tn's, o
Eq.@Z-Z‘?)). Clearly, to make such a calculation feasible, several approx-

lmations are in order. These approximations have been adapted by FKK and

they amount basically to a weak coupling limit whereby the 02'5 are ye-

-placed by th%/L's throughout (which is valid if one ignores the upward

Coupling,4/qnn,3 11'(11 {see Subsedétion 4.1)). Furthermore, the two-body

‘nature of the residual interaction dictates the way class n is coupled

to more complicated classes (the chaining hypothesis of FKK would imply
that n cogples downward directly only to class n+l), Finally, one may

also use the fact that for reactions with light projectiles fe.g., nucleons)
the incident channel couples predominantly to the simplest of all doorway
classes (e.g., 3 exciton-states). With the above approximations, the
transmission coefficients in the entrance channel becomes

n-1

T , ‘ 5.1
n,cc it snl tl,cc * 11,cc /ui,i+1 ( )

i=1

Note that only T& appears in Eg. (5.1), implying the strict doorway
assumption. As for the outgoing channel transmission coefficient,

the kind of channel considered would dictate the class of

y

v
nsC ' C
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doorways that couples more strongly to it vis.,

(5.2)

Finally, TKK ES] construct the fluctuation cross section Gigcc'. as
: ?
_ 3 _ )
OJ(JJ 4 _rh,cc Tlda ce’ (5. 3)

(' () )
h,cc’ - /fi“;“+1 : 2{; 1_03

h 3 C'.j/c”
o

where they use (5.1) for T
n,cc

and (5.2) for T v .1 and in the sum. Con-
¢ n,c' c

L

co! is broken. Notice that
r

segquently time reversal invariance of 0”§
in Eg. (5.3) wé have explicitly indicated the total angular momentum,

T, that should label all quantities. To make this paper as self-contained
as possible, we list in Appendix E some of the pertinent expressions for
the ’rﬁ 's and /ﬂ{nn+l's that show explicitly their dependence‘on the
strength of the residual interaction as well as on the number of excitons

assumed present in class n and the details of the angular momentum coup-

lings. THe detailed derivations are found in Ref. [3].

In confronting theory with experiment, we suggest using Eq. (5.3)

J 5
for the factor Xn o Xi cret to calculate the spectrum of outgoing
: s ’

particles and thus fix the strength of the residual interaction as well as
the number of steps (terms) required. Once this is done then one may
use these calculated ann terms to construct the auto-correlation function

with the correlation widths, ljn' left as parameters to be extracted by

fitting the experimentally determined Ccc,(&). This procedure should
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supply a consistent check on the theory.
Alternatively one may use the ann factors in the autocorrelation
) _ . ~ |
function as parameters, assuming a priori knowledge of the rh 's, and
subsequently compare these adjusted parameters with the calculated ones

used in reproducting the average spectrum, i.e.,crfﬂ

e This last one is

" the procedure followed by the Milan group.

Although we have'presented a rather detailed account of. the results
of FKK {8 ], which were based on weak absorption, we do believe, however,
that some of the restrictions inherent in the FKK results, may be easily

T
c'e! and E%; n,c'e’

the expression (5.2), which resulted in the time reversal non-invariant

£4

n,cc'

removed. One such restriction is the use, for Tn

form of (f , Eg. (5.3). By using our result for T oo’ M- (3.8%)

, both for the incident and the outgoing channel as well as
for Tr T , we recover time reversal invariance. The chaining approx-
imation may also be reasoned easily this way. Improvements hay easily
be made by using instead of/AA, the‘? as given in Eg. (#4).

To summarize, in the absence of the autocorrelation measurement,

the only available information, namély, G’iﬂ , inveolves the sum over

ot
all classes (Bg. (1.1)}. It is therefore of paramount importance to

extend the preequilibrium studies to involve experimental investigation
of the cross—-section autocorrelation function as it would.supply useful

information about the individual terms, ann' in the sum. Furthermore,
: ) 2m [ 2 -
through the approximate relation 5 ~ (Tr Xn) one may double
n ~t
check the results, by using the fitted I: 's.
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&. DISCUSSION AND CONCLUSIONS .

We have sucqeedgﬂnin constructing a formalism that describes the
miltistep compound contribution to preequilibripm_processes, when the_comf
pound system exhibits intermediate structure with correlation widﬁhsnwhich
are widely diffe;ent from one another. However, the recent analysis of the
Milan group [2] suggests a widgr range of applicability, In their attempt
to ana;yze the 27A1(3He,p) reaction with a simple Lorentzian form for the
auﬁocorrelation function, Bonetti et al. [19] found it necessary to use an un-
acceptably large number of correlation widths, ranging in values between 55
keV to 230 keV. They subsequently reanalyzed [2b] their data with our gen-
éfalized autocorrelation function, taking the ann 's as parameters. The
assumed values of tﬁmefi;s were 230 keV and 55 keV in all excitation function
analyzed, The larger value of 230 keV is attributed to the simplest class of

- o~
.resonances {a 5S5-exciton doorways), whereas the smallerfjn of 55 kev is attrib-

uted to what is called theY’—process[3] which, in our model refers to the
most complicated, equiliberated stage or N-stage. These values are quite
consistent with simple estimates based on the exciton model. Some of their
fit curves are shown in Figs. 1 and 2.

The results of the Milan group suggests the kind of analysis we

envisage using our theory. Namely, after fixing the values, and more impor-

2

. . £
tantly the number, of the X _X_ terms (i.e., the number of classes) in o .
nn ce

required to account for the spectrum of outgoing particles in the different
exit channels [19}, one would then postulate.the existence of as many
.correlation widths as there are classes. Subsequent énalysis with the

assumed form of Ccc,(E ) should then furnish a wnified description of all
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excitation functions considered.

The reaction studied by the Milan group involves a light target
(27A1).: lit woﬁld bé.iﬁtereéting tq.extehd.tﬁé-analysis f&r other energy
resélutions, tﬁ.really see whether the.compound nucleus éorrelation width
ﬁ; disaépeafs ané.dﬁly the rEmainingIFLfs show up:' This could also be
studied by éhangihg the mass of the target. We believe that a more direct

demonstration of the presence of a heirarchy of correlation widths would be

more easily attained in reactions involving heavier target nuclei. As one

.. o~
"knows, the equilibrium correlation width, f’N,'is related to the mass number,

A, and excitation energy, E, according to the Fermi gas model result 29

f"N = 14 exp[-4.69 (A/E)”z] MeV. (6.1)

Thus with not too high an excitation energy, and with mildly large mass number

~4
f; should become quite small. In such cases, the autocdrrelation function,

‘constructed with energy steps larger than fj , should exhibit only intermediate
structure~related correlation widths. This wduid indicate the presence (or
absence!), in a given nuclear reaction, of the heirarchy of coherence widths
referred to above.
The planned experiments with intermediate-mass target nuclei at

Milan and S8o Paulo should supply gquite an interesting test of our theory.
It would also be wofthwhile analyzing cases involving heavy projectiles.
A study of reactionsinvolving heavy ions of mass numbers around 12 is under-
way at Oak Ridge and- ININ-Mexico.

On the theoretical side, we have considered in some detail the relations

between the three major approaches to multistep compound reactioms: the nested—

average (NA) model, the MIT approach (FKK) and the Heidelberg approach (AWM).
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All three are based on the assumption of doorway classes to define the reagtion
stages, and all three agree in their conclusions about the structure which
theseé classes impose on the form of the expressions for the fluctuation cross
sections proceeding through these classés. All three, that is, describe the
entrance of flux from one channel, its percolation through the system of
‘doorways, and its exit back into the channels. All three approaches begin
with fully quantum-mechanical formulations,but, as ref, [6 ] has emphasized,
their end product, obtained as a result of a variety of statistical approxima—
tions related to energy-averaging, is a classical flow pattern which is
Markovian in its class-class connections, and unitary, i.e., probability-con-
serving. It is by no means trivial that all three approaches should have led
to this same structure, for their starting-points are very different and their
approximations are not cbviously equivaleﬁt. Indeed, the results are changed
substantially if the approximations are altered (e.g., by inclusion of higher—
order terms in 1/Tr(P) in the AWM approach). Our conjecture is that this
unanimity has resulted from the physical similarities in the spirit of the
approximations which were employed by the various groups, which one might
characterize as being "maximally statistical"™ within the constraints of unitarity.
Maximal in the semse that, if all three groups were to attempt to include
corrections by retreating from this "Hauser-Feshbach'-like limit, it seems
almost certain that their different approaches would lead them to far less

unanimous conclusions.
Finally, as we mentioned in the Introduction, we have not considered,

in the present paper, the multistep direct contyibutions to the average
cross section. It would be interesting to explore the application of the
techniques developed in this paper to the analysis of multistep direct

reactions.
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APPENDIX A
THE EXTENSION OF. THE KKM ANALYSIS TO

L

THE .CALCULATTON . OF -<(nn ) >

ce! Il

LN N L

n,cet /1 averaging directly over the
1

largest interval, Lot us take the case of only 2 classes of levels: doorways

The purpose is to cvaluute<3r

and fine-structure status: FOf s:'l'mplici'ty "Ln notation, the index d runs over
the levels of the first class and q over those of the second class. The KKM

procedure can be carried out in the way indicated below. We first calculate

P L e g 1) 8 o) g1 (E) §
JeteetDe = 1L e -
i o] (E- q) ( = -qr ) 1
' (A1)
Iy
2 2 B+ =
e (B)|“le ., (B)] 2 T /2% 5
qe qe' =7 %E% LB i Ig (F)l ngc.(ml
R 2 2 q 1 o _'_1 S T
4 (r;-r;q) + (I‘q/Z) 1, B~ 5 (B r,q) n(r /2)°

where the randomness in signs of the gqg's wils used teo drop the terms with
#q'.  The energy dependence in the gac(“] 's ooccurs on the energy scale of
the first class. The average over 1 was performed with a box weighting
function. The Lorentzian that occurs in the integrand has a width [7
which satisfies qu <§’ra 4@11:; f; is therefore much smaller than

the energy scale over which the g(E) varies, so that the integral will

essentially select the energy E':Eq, except for a few Eq in the edges of

the interval.  We then have
) v = L Pl i 017
2 cc' 1 : q
1 q
2
- 2n M|g (f)ll o (B (A-2)
q qel
1
27 2 2
i :
= 12, B | 1800 (B |
Dzr; ac" q qe! T q qﬁIi




94

We now expand the states q in.a basis set of states |g> that diagon-
alize H |
- QQ

lq> = z Cg Q> ' . (A.3a)
Q

=¢ .
te(® = (F®IVIe> - é G <Fp, ‘e lviay

1
{(A.3b)

= q M

= g cQ gQCFL)

We now insert fA3D) in (A2):
6, =<lg B lg  (B)]> =
ce q¢"q qc’ T q qel
. | (A.4)

cdcdm el of ey (B g () g1 B £ ()
Q Q2Q3Q4<:qu G e Qe a Tget e Qe e :%ZId

Because of the complex many-body nature of the Q-states, we argue that the C's
have random phases, which select the combinations Q1= Q2, Q3= Q, or Ql= Q4

Q= Q- Then

= q |2 3 }12 q 2 2
. <gicQ| PR A AR ENRTAT I
aely (A.5)
f NP g (B gx ) T 10 1P g, (B Vgk, (E ;\
Q' "Qc g’ *Qe' gt 5, QT "R'etq Qe q

Q Q // qel

1
If there were no doorways present, the ch(Eq) would not depend

on E 3 the sums occurring in Eq. (AS) would then be uncorrelated and

- they would factorize, yielding the chxc ter ¥ ch, Xc'c structure, just as
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in KKM. If doorways are present,'théy may produce correlations through
the'EQJdépéﬁ&eﬁce which can prevént this factérization. To investigate
this, we need the explicit Eq-dependencei it can be obtained from the

analysis of Section 3, which gives -

_— (-}
gQC(Eq) = el
( }| 1 1
. I+ V, itV Q>
p, pd dp . _ p+d,q
f- dgfopd-vy) 2 v, P

Mc ap P

or, introducing a complete set of eigenstates in d space:

£
d,Qc
b ?
ch(Eq) = gr; + Z . 1)
d Eq— Ed+ 1Td/2
| opt .
n the extreme c¢ase of an isolated dOOTWdy and taking gQL = {0, FHag.
. . . 2 2

(A.7) implies ( (F )| l d Qc/fd,Q’c'l ng'C'(Eq)I » i.e., that all

g's have the same Eq—dependence. In this instance they are completely
correlated, and the sums in Eq. (A.5) do.not factorize. However, the case
under consideration here is the one in which many doorways are présent and
are themselves overlapping. This w111 randomize the phase of the £y d,qc

a function of Q (enough, in fact, that <@Q >b=0} so that the g4 QC( )
lose their correlations, and the lack of correlations hetween the Cq'% then

Q

'Eeuds, éxactly as in KKM, to the desired factorization. That is,

Geer & flc | Ich(E )|:>> \\ Q' IgQ c(E )[ qFI *
. . Q
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31 gye (B e .c53> -_.---'IC‘* brer () &3 (EJ
<Z qc Pl 8ge a, Z Q" Qc_ Qe qﬂi

) .cF)I (B 8ier(B)
qc | >qEI <qc qel, <qc a° >‘1€I
-_ < e )g;c(rq> .

and defining

| (r i>
L
<2 (,c:> /lk qc qFI
we finally have

2cc.|> <2cc> G, <cc> o)

(A.lOa)

The <X2 cet 2 are the quantities calculated in the second part of
» .

I

Subsection 3.3.
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Notlce that from Eq. (A5} we obtaln dlrectly

Z,CC'I ;>I <: 2,cc xZ’C'C?>I o <%2,cc! Xy c.;:) (A.10b)
o L SRR A B

1

where

K000 = /o {rgele)) Eren(e)
2,cc! ~52D2 Qe 'q "qe' g’/ qel,

Therefore our result (A.10a) implies the statement that the average of the

X's that appears in (A.10b) factorizes as in (A.lOa). The difference between
D

fi

small) and in 1/N (which is also small in the KKM analysis). But this has

(A.10a) and (A.10b)} is clearly of hlgher order in "~ (which we assumed to be

also the following implication. We can write the ave:rage<P2>I'-
~ 1

HEPRTY BRI I
<...2>I1 42 -2 I1 w2 wl

where we have assumed that the number of channels, N, is large. Therefore
when the cross section is written as an average involving penetration
ﬁatrices, as in Eq. (2.26), the average can be taken on each factor. This
last fact can also be shown by evaluating the avefage explicitly, as we

shall see below.
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The definition of Py is

5.1 s

IR R (113)
where S_ stil‘.l."-\}:a.'r.i.es'dn. fhe énergy scale ;)f. the doorwa.ﬂ}s and can be written
as Eq. (2.2)

:S;n. =5 §f£ | (A.14)
Substituting in. (A.11) |
Lot G PG s

The quantity to be studied is then ( N being the number of channels)

— £Q . £
I:l'za (Sl,ac+ b1 ac) (Sl,ac+ S1 ac):l [1 Zb (“1 bc'*sl hc') (Slbc'“‘ 51 bc)]

1 = L% = £L
N[l - % §8(§”B + Sl""P) (g,’aB + smpﬂ

S - £ = fg\ = T £
‘ _ﬁ‘{l - <§ ‘(Sl,ac+ Sl,ac) (Sl,ac ac) ) (Sl,bc' 1 bcf) (Sl.l)c’+sl,bc>

- = L - pig
i g S ,ac S1 ac) (Sl ac 1 ac (Sl,_bc'+sl,bc')(Sl,bcﬂ‘%’bca> '

(A.16)
* fS?,
g( o('o 1 "‘[5) £S1 a([s 10(/3

1
ol ) -
)
Cx £ | .= £L 0 * =3
{ ’1c:c 1a.c ) £Si,ac+ Sl)ac)(silolf;- S’].,D(F.J (Sfllolﬁ 1e(f3J
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* . L -
e Y (5 £2 3§ fﬂ, ) (3 Sfﬂ,

/) (8 S 5, (
B Brne’ % hed G pe l,bc' rxp % opT T Lep ncp

=~

(A.16)

1 o 5fe £0 ”
W -ufzaya(-sl’“ﬂ ! “@) 1,551 “ﬁ)(sl 5 ql rs) (51,45 *51 xs>

| The terms 1,2,3 and 5 ins.ide the bracket are already in the form

that would appear in an expansion of <2 C> < >/ l‘r\ 2>.‘ We shall
Iy Iy

thus concentrate on the ana1y51s of the terms that invelve fourth powers of

§, which we shall call 4, 6, 7 and 8, in the order in which they appear above,

|“1 '|2+ ZISl ac z<1 be! Ibc'>+ _
AETRETRIGAE I R AL WL RGP 1)

v gb gl,ac* <Sf,iac "1, be! >

+ gb %,ac _§1, be '* <Sl ac 1 bc' éb —él ac.§1 bc<sf,gac Sf,gb:>
| ' gb %ac <Slf,gac Sf,gbc Sl,bc> ¥ gb gl,bc‘*<51f,gac ’ Sigac Sigbc> |

¥ <1 ac ’>ZI 1, bc' + g -Sq].,bc<slfﬁlc ' Sf,gac Siﬂbc' > ¥

PR G PR ) (A.17)

£
We neglect the terms involving <ng' S v and <Sf 5y 5 25

. Term 4 gives

(4)

1]
W
o

+
o~
!

so that
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2o 2 ve 2o /e v \
@ x s | Els],b'c.' _+f |1,ac| g(sl,bc' 51=bc>

+
a | o
£ * 2 .
<l,ac 1ac> £ 1bc'| +_, - |  (A.18)

5 " gE2 » 5 B x S 2 .
+ gb 5 aC, 1 bC‘él ac 1b(..' 7 T gb Sl’ac Sl,bC 1. <‘31,3C Sl,hc> +
£4 * £ £L -
¥ g <Sl,ac lac Sl be! _ S:l,bc>

The order of magnitude of the above terms can be estimated as follows:

: = - -—
(4)1 = (Sl S1 )cc (Sl, Sl, )c'c' vl {A.19)
(4), = (S s —}) 7 X X + X X ) =
2 ! 1 cc o T l,bb7l,c'e! 1,be'"1,c'b
. o — ‘I‘ 2 1 (A.ZO)
=G 5 e [Xl,c'c'Tr SREISCE DADFSTYY I A R
considering that X ~ P/ ¥Tr P is basically of order lf;f—u‘.‘ A similar
analysis applies to (4)3
4y = gb S1ac Stpe’ 1, ab *1 e ™1 ac ™1 o)
' {(A.21)
g1 s S. r)( X, S B
= By, Xp Sy Jier Xpeet 8y Peer K181 Jee o

A similar analysis applies to (4)5. For (4)‘6 we shall apply the rule found

in Appendix B

f ) a2 ; *
SN ] Slac 1ac 1bc' 1b<:' +
abL (A.22)
*
<81 ac lbc> <Sl ac 1bc' >

1]
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:% [, 2a%t, ec* Xi,acX1,ca3{"_1',_1,1,*1,(:,C-.+X1’bc,x1’c,b) .
i X1,3bx1,CC'+ Xl ac 1 cb)(xl ab 1, cc' .l,ac'xl,cE)J
[XI’CCTT Xy (0) )cc ] ixl’c-,"c,Tr x1+ CHE T

2 R
) Tr(X R xl,'qc.f (,¥1X1X1)_cc'
Xy, cer (X X' o b (XX f) tx‘L X{) o

ce

+

¥ (xl,cc'

cie!

m -

[ *1,ec Tr Xy (X )cc]‘3 X1,,.c'c' fr X+ (X)) )C'Ct} + 0%@)

£R,% 4 fox >~
ab <q ,ac ac> <SI he! 1 h(, =1

Collecting terms we then find

' fi
(4) Z (“1ac M ]1c )* (Slac SLac:;> X

g £ 1 (A.23)

.which is again in the form that would appear in an expansion of

<p2,cc >Il<p2,c_'c'>11/ Tr<P2>I

Terms 6, 7 and 8 of Eq.(A.16) are exactly of the same form as term 4

e have just calculated (except for relabelling of the indices), with extra

summations and factors 1/N. We have

fe : .
o <:fz(“l ac” 1 ac ) (51 ac” s1,aC i> '
(A.24)

= fﬁ
x{s TG +st @ )>
<‘N és b ﬂ b
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_—y £2
7y = <z (Sl bct 1 bc’) (sl,bc'f Sl,bc'>
n . {A.25)
£ g (T 1
ZB (1’ “{s sl,“ﬁ) {Sl,ag-p Sl,o((s) + (_)(N)
7 — £8 N, = o of8 _ i
(® =.<- L Gro Sop” Crugh Sl,,-,(p)> . @26

1 o= . L &ft 1
XG wzfa(sl’-ar,s*sl 550" G * 135)> " 0%

The treatment of the higher order terms in (A.16) would proceed along
similar lines.
We have thus proved that, for a large number of opén channels ,

we have, approximately

2cc2c><2c> <2cc>11 | (A.27)
Tr P
2/,

Finally, we prove that, in the case of no direct reactions between

. channels ¢ and ¢',

\ '
l(kcc' X 'e Il << <ch Xc'c'/ Il > ¢ e (4.28)

so that the second, or "off-diagonal" term of Eq. (2.15a) of (2.26L) can, in
this case, Be dropped for ¢ # c'.

To simplify the notation we consider only the case of two classes of
states, identified by their running indices q and d, and start with the opticai
background representation of gqc given by Egs. (3.65) and (3.66), which we
write as

g, V
_ .opt de 'dg 2
Bae T 8qe T E_E -z, (4.29)

-
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. opt _ . =)e _ '
with g .~ = /EF'<5wopt |qu|g:>f a o E (A.30)
As usual we assume random phggq,for Bee? <?c/;1d 0, so.thaF

_/
(Xq)cc' “‘/

.:?{

g qe r

‘g
-gqce 1

27
DT
¢ q q

- i o 2
T

\ |
a(PY e A ey :
q Jec' */E d\ I PR -
q | q 4! / q

: '(A". 1)

Since (XOPt) , 1s defined exactly as in KKMN, it vanishes for ¢ # c¢' if there
q ce

are no direct reactions between these channels. The remaining term is a sum

" of positive-definite quantities if ¢ = c¢', but of fluctuating quantities if

e # e'. In this latter case,

; e v, |2
<(X) (X ) > _ o om ) Bac Bde' Bdte Bate' lVdq
T 1 I ‘~ ’
q ce gce }_ Dq Pq dd lEq - Edlz IEq _ Ednl2

' A.32

2m ]gdclzl gdc'lzlvdqIq ( )
5 T 4 - b
< Tq |Eq gl

This sum contains only ~ (T,/D,) terms, whereas in contrast X X o
d'7d q,CC (,C'C

will contain ~ (Td/Dd)2 terms and hence be ﬁTFd/Dd) larger. For this reason,

is negligible relative to

X X Tt
g,cc g,<c cC

X 1 X T
g,ec' Tq,c'c
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'APPENDIN B

£4

'AVERAGES OF PRODUCTS OF. § '~ MATRIX ELEMENTS

.in Sectﬁxjﬁ.Q  Qe'héeééé aﬁégéééé of prédﬁcts.of S;maffik éieménts,
in_ofder to caiéuié%éwévé#égé ér6§s seétioﬁé ﬁhd ﬁhéAqfdééJSGCEidﬁ auto-
cqr?elaﬁion function. In this appenﬁix WE shali indiéqte how this can be
.aécoﬁpiished by méking use of.reaéonégie'statistical éésumptions on the KKM
terms that builds up 8

Consider the energy average over an interval of a function f(E)

<f(E)2 = |w_(E~E’) f£(g')an’ (B.1)

Miere_wl is a weighting function of width I.
We shall first consider the average over n points (n$ 1), B iBypenny
~
well separated compared with the correlation length 1 . We shall denote

it &
it by N

-‘“_1?_
f(E) = g f(Ek). - (B.2)

Let us assume that f(E) is random enough and has uniform statistical
propertiés so that the average (B.2) does not depend very much on the choice
of the n points. If this happens it is clear that (B.2) will almost coincide

* . *
with energy average (B.1l).
In what follows we shall take, as the function f to be averaged,

products of matrix elements Sjﬁ.' In the KKM formalism, S:g can be written

*Notice that f(Ey), £(E,) etc. define an ensemble of f's and what we are
stating is precisely a condition for the validity of the ergodic theorem.
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as a sum over poles; which we Shall gehef511y=denote by q

SRS

ab ‘Bk {B.3)

Fig. 5 shows the absolute valuo of the terms that buvild

For a glven Ek'

up the sum (B.3). _The average of (B.3), as deflned 1n_{B.3), is :
ab _ Z ;:E; ab q k _ ' N (B.4)

and we know that this wvanishes by the KKM coﬁstruction. .I£ ié.convenieﬁt to
group the terms that.éppear above, sé that.wq first SUm.over all the states
q lahclled with a “0" in Fig. 5 (the staﬁe closest to Ek), then over all
those labelléd with a "1", ete, 1In é sense, this introduces an ensemble of
states “0", one of states "1", etc. Consider then a fixgd q, in the sense

of this ﬁéw labelling; we shall make the reasonable assumption that

5fd 1 8 _
ab,q = sab'qtnk) =0 E (B.S)

k
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-This has as a consequence that (B.4) wvanisheas.

The next degree of complication is the average of guadratic functions

of 5, i.e.,

* ; . n * .
£ £ ., 1 £1 £, e e
5, (B} 8 _4(E ‘} = < k§=1 S, (E) S_F(E' ) (B -E = €= fixed)
n .k
1 Z E £2 £3 '
= - .5 (E. ) 5°% _,(EB'" ) . (B.6)
n&— = ab,q k' Tecd,g k

The various contributions are shown in Fig. 6. In analogy with what
we did inh connection with Ey. (B.4), we can group the terms that appear in
(B.6), so that we first sum over all the pairs labelled asg "0,0" in the

figure,..., over all the pairs "0,12", etc. Consider then a fixed pair




q # q ; in the sense of this. new labelllng __Wé shall make the following

assumptlon of., statlstlcal Lndependence‘ﬂ

S fﬁ T

ab q(L)'Scd,q’(-E y = Ek)
_ ';"'f_p* f-ﬂ : L L ,
~ Sab,q  Seaqr T @7

whe re we have applied (B.5) in thé'Iaét'éﬁep. wé"ﬁhén'haﬁeTtHé.fdllowing

implication for the average in Eq. (B.6):

-4 *

SIP J SERSIE S K £9 135 S fQ I 5 S

Sah (£) Scd(L ) _;§i_ Sab,q( ) Scd,q (B") ~;§: alb, q(E) Sca,q(n)
aq’ q

Let us next consider the fourth order in ka :

*

®
2 . £R £0 B2
sab (E) S (E) S (E ) bqh(E )
fj* B 1* _ ij '
£ £
= g7 (E} s (E) s (E') s (E') =
' . ab, g cd,q ef,q gh,q
9=, 79479, _ ‘ = -
_ 941749, 477495 4179
# # #
&q3—q4 9,74, 4 ay
r A
4 =a,=d, Ay~ 47, qy79,79 579,
# #
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(B.7)

(B.8)
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We analyze each éne of the above terms, w1th the assumpt:on that for

ql%qd.

B9y

hand, if the

them. Since
tion, we may

with (B8) we

adad to

(B9} 3

finally have

terms in (8-9}3

and (89)4

d (B9
and )4

do not wanish, there are N(N-1)

‘N §>]q we only keep the latter.

involves N terms, W being:the number of levels.

the contribution 4,74,

dlfferent 1ndlces we have statlstlcal 1nd ) ndence, ‘A8 we had 1n (B 7) £6ér -
products-df two S's
fﬂ £ T i1
(8?) AN ab g (E) Ci (E);_ seﬁ (E ) s.# . (E") =0
o o (B.10)
. _:JL.T‘77Q—--, .i  39 ‘ SN REE
(B.9) = E B ae sff &) sS @y sy a0, (B.11)
2 vyt ab,q cd,q cf,q thq - -
g, #q: 1 3 3
1773 .
. ) ! : . o . *
‘'since in the spirit of KKM; averages that involve Sfﬂ Sfj {(instead of Sfﬂ Sfl)
are neglected.
T
L e *
B), = _ s sg‘ (£ f:fi (E) ff ® (B.12)
(B.q)qL = > ﬁi . ® ;ﬁ o (B Lig'q ®) stf LED (B.13)
g7, 1 1 2 2
The terms (B.‘i)5 "(B'q)lo vanish, sinﬁélthey are of the type
*
Z sTF (g fi (E) sf’a ey s ®y =0  (e.14)
. ab,q cd =8 ef, dy gh,q4

On the other

of

Within the same approxima-

Comparing
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VAR I ﬁf R
'\‘ ..)ab (B Cd ) {F ) qgi {I" > %

'r:: “(m s”(u )><f’l E fﬁ(m->> '
gh
- o £ i £0 N _fﬂ-'; £ Ny j> y } | - ]
+ <f§ab (1) Sgh(E i> <i s 3(E) sef(L ) , (B.15)

which is the result found by AWM [4]. The extension: to higher powers of S

proceeds exactly along the same lines.




" yofers to the second term.
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' _APP_ENDI_,x _é

' ' L o)
OPTICAL BACKGROUND R]:.PRESENTATION or THE MATRIX PROPAGATOR é”

ne|

- In thls append.lx we give a deta:.led dc‘rlvatlon of Fqs (3.92) to (3.95).

Considei: thé_"le_lc’nWing opexitor of _Eq. (3 18)

2~ (+) & Ay 71 .. o
%h-l = [E _-*fs'_,?{’_'CG?.,)l’m_"] (c.1)

whc-:erct.lP‘;{(Qn)f is an effective operator for the space E . Now wa
h=| n-i '

decompose Pn-l e Dn—l + p with Dn-l = dl-l- d2+ "'dn-l' Then

it

pn-—}.;C(@,)‘ Eh_, [F 7’(C6?.1)P + ‘Dh_t;t(((.?hwm_‘] +

[p #CBI D, D ) P

(c.2)

Ht

%(Qh) * %@f(ak)

ere ;{(Qh} refers to the first term in brackets in Eq
o

/
(c.2) and ¢ (G’L’

Making use of the following relation

)

: 1
' - + Q )ﬁ/ (C.3)
%n—-l gL ;Z()(Qn) M

pZ{(Q )

) H‘) +}
we could then calculate the elements of the matrix% ; L.e., p% by
n-1

n-1
W
l’,-% Dn-l' etc. '

fi

oY n-l

)

, o
. 1 i

b7 - {+) * {+) - p}’({g ) Dn~1 5/) ¥

j/‘ “‘lF E. - p%o (Qn)r B -*p;{{a(Qn)P n fh-p
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(‘?“) ) . : . )

| -
p D . = ' Pzl(Q)p 4D (c.5)
%nwl a-1 E(+)— F'\('Z(( “;,)F’ nwloﬁgﬂ«lndl

() | +)

. 1
" p =D D
_Dn-l_ﬁni .?_1% o1 .,7((@) b reCey | (C.6)

)
1

ey
.[:: ). Dh—-l (;(OCQ")Dh-I

n- 1P Dn—] {C.7}
TN

-+

* 1 (@)pf D _
et L,.JE(&)DI Pmy !

The above set of equations constitutes a solution since we can, for example,
&)

insert (G5) into (C7) and obtain an uncoupled equation for Dn fifbn 1
-1¢%p n-

. ) n=i
The same can be done for the other elements of p + For our purposes,
n-f
however, it would be more interesting to write pé%4 p as a sum of an

n-—!
average optical Green's functlonééfépi and a fluctuation Green's function

(due to the presence of the dl""dn—l classes of doorways). Our final
aim is to express Eqs. (C4} - (C7) in terms of’2§2:£;1 and another Green's
function associated with the propagation in the D .1 - subspace (where all
classes in Dn-l now would acquire an escape width). The above manipulations
can be accomplished again with the KKM reduction scheme. To see this we

first write Egs. (C.4) and (C.7) in the following Fforms

(+) +)

(B - pL)p) pjp e p ot (G? ) D 1% p (c.8)
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| < -+

(E- - ‘D W(G?J u—| Tl 1/0'% n- l =1+ :D gg (Q ) P%" -1 (C.9)
- o L _ U @
Using Eq. (C6) in (CS) we obtain an effentlve equation for %ﬁﬁf P
. : Ti=1

Foa Loy '...:: '.1 : '; e /-
(E -vl::gﬁ{{(q)P] pj/p =1 +p ZCG’ : B y_ -CQ,,)]o
i, -y W@
flféﬂ . (c.10)

""*1!

We now define the optical Green's funétionézf(f) which satisfies the following

opt
equation

. / | _ 1 / ~(+)
E-pS(Q Yy~ bYLCGD . ] K =1
[ PRI P03, E-D 4D, xlb"-'m“’“”’ |-Zh ot

(C.11)
:Qhere the average above indicates that all doorway classes in Dn_l have
' Bcen rifreséntcd by an effective, smooth, interaction. Clcar1y2£2§;1 -
s PH}I .- Simple KKM manipulations done on Eq. (C10) would then permit

. h-1 1 ()
us to write for p,@f p the following .

y A(+) : {+)
v v Z (C.12)
ngyPn Oé‘c()pt e opt pD f(n-l Dn-l &éopt

where the form factors V D are defined by
PYhi1
il /2

/
@3, e
F [C\T/‘g h E - :D Eg(‘éﬂ.) 'pm—-i.'- il /2

v
ph, 4

1

and the propagator% is
S n-1
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- .
“Dn-r 73(’@5) D, - an_lpgopt Vp{)n_l ] (C.14)

(%n—l
o

With the above optical background rep;’escntatlon for p p P We can reexpress
n-1
Eqs. (C5), (C6) -and (C7) as follows (up to the square root factor. appearing

in {C13)) . . R
: (+) ( ) ' '
+
vV _é.),/ (C.15)
fn ! Opt pDn—l ’ Dn-l L
) JETEE T
(+)

n I? p f 1 Dn—lp %opt .

and.

+)

n lg n 1 j | €17
n-

which are (together with (C'12)) just Eqs. (3.92) to (3.95).
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AﬁPEN DIX D :
. U RV
L e 7 . ol 6
FA. CALCULATION OF IMgé M.( ) AND r‘( )

“In this appendix we present a detailed dérivation of some of the flow

approach quantities used in Subsection 4.1._

o)
Dfl Im%&rfor Non=~Hermitian Hamiltbnians

We shall derive here a useful repréSentation for the imaginary part of
the Green's function associated with an optical Hamiltonian, i.e., one having

a. complex potential. Let us répreSent the optical Hamilteonian by

Zf =R+ iw {(D.1)
opt

where B and W are each Hermitian. Let us also define the following two
Green's functions:

-y
;%” (—M: (EHZ ZClop £) (D.2)
C—}Cﬂ — (EH')_ £ )ﬂ, (D. 3)

Then from Egs. (D.1) to (D.3}
g("*'}: G(+-),Ln’ (lW) G{+) . (D.4)

The continuum eigenstates associated withr;?gpt and R, called here:

o _ o)
{4)&)’ C}L)‘ﬂ} and j[,c arc defined by
¢ [o

& (+) () ¢ ()
e _%pt”‘f’c y =0 & (B Opt)] o =0 (0.3

& - R [)(:r)) = 0 ) (D.6)
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with tl'ﬁé“éig‘,:::a—:tétes for the two Hamiltorians related as follows

l‘P(H_ (1 +%1W))']C ((:+)> | ~ (D.7a)
<Icpc§+) | - <9Cé+)-] (1 '(.iW)T’gg?)" a : {D.7b)

LR

With Eg. (D.4) we have

)

I;,,,’g[ m G ™* v o _£d+)(iw)c;(+) ) (D. 8)

We next define the quantity A as  follows

A = Imég) +I§l¢é+)><4’ s (D.9).
&«

Using Bg. (©.7) we find

.+_
Imﬁ )
7

. (+) {+) con T o A
! +%1wn|x x 1+ (' g +
L o 2<X¥e | v Z
Im(1 +%iw))G(+) (1 + (iW);@ﬂ + D (D.10)

Finally, combining Eg. {D.8) and Eg. (D.10) we obtain, with the aid of

il

Uq. (D.4)r
D = . Im/(g(iwﬁéff (D.11)

&4’

Thus we have the desired representation used in Section 4.1

Im&,‘“ - -fimsf})(qb o) %{ﬁ;{ﬁf’f (D.12)

Note that when Im ;L/(QO ¢ the result is the usual one. Note in addition that

it isz‘qﬁé+)> <qb((‘+)l whtich appears in Eg. (D.12) and not
- -

5 [+ (hL

, which in general is complex.
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The optical potentials of this paper arise from the energy averaging

procedures discussed above: Let us consider the result of this averaging

‘when thére is 6nly ohé class of compound levels. For this dase, using the

conventional prbjectibhidperators p and g, we obtain for the optical

Hamiltenian -

p o=+ (D.13)
opt PP .
so that i{s given by
o tha Dn;qut is given by
. Vd "
. P 1 \\\
Im A = ImHd__ _— H
“zsznpt-_ g N E - i / ap
. qQq I
. ' ' ) D.14
- lw I/2 u { )

2| qp

2 2
E-H }“+ 1
{ aq pn

" ‘Upon inserting the eigenstates of qu, ]\Yﬁ S, and performing the sum over

‘them, we obtain,

I
D
q

.I:m";’:{’opt -7 Tpa | \ti> <\]/qi| Hap | (P-15)

1 is th : i : . d the b
_W?ere quls the average level spacing for the states [LPq;‘> and the bar

indicates an average over these states. When Eq. (D.15) is combined with

Eg. (D.12) we obtain for the specific Hamiltonian of Eq.- (D.13)

g, < m BT <]

{D.16)

D .
q

= |
—WﬁHpq [Yq:> < Waul ng[



&
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. . F
D.2, Recursion Representation of Mr(mz

In this uppendix we demonstrate that an given in Eg. (4.20}, i.e.,

D _ 2 o

B isfies the iterative expression of Eq
D 4<§:m°‘l£ v I‘?n >| > ,satisfies t X1 )
n n=1 (3 «, 8

(4. 8§ ) with the proper identification of/umn. First consider the Grecn's

{r)

", Bg. (4.20).
mnr]:*q(42) Let

funamh% which appears in the definition of M
- n-1

us partition the space D "into dm;_f(any one of the classes contained in

-1

n-

n~1

D l) and the Ccomplementary space Am, such that dm+ Am =D . It fclloWs

from the procedures of Appendix C that

[}

dm(% )"\m G, *+64 d st A, JQ/D AM _ (D.17)
n-1 ™ " i

b o~ n-1
6(5’ ) d =6 A;{’dé{ d., (D.18)
m Dn—l m AM m ” Dn—l "
whore
-1

G4 = (8 - 4 d) {D.19)
(‘m Wy £
6. = w-AZfAa? (D.20)
Am .

and whoere % is the cvffective Hamiltonian corresponding to the Green's

functiona‘% , in which the states of class n' (n' 2 n) appear only on
. -1 ' .

the average. HNext we define the following Green's function for class m

-1
‘ﬁd = [& - d}:offdm' d‘MEL{’A‘K Q, >I AT A ] (D.21)

lna

We assume that the off diagonal elements of dhqw Am{ GA >I Au.ﬂdh
ha

.

with respect to the model state basis, are zero as <GA >

acts solely
m I

as a sink for these states. The widths, r’mﬂ arising from the

Hamiltonian in Eq. (D.21) can he expressed as

= T+P'(Q)+|’"(A) (D.22)

'mp: ey n m& )




llée

where r‘ tf.,.r’d (g,) arise from the term ‘!ﬁ%dm in the Ha'\_r'niltohian

Eq. (D.21) . and r' (A ) iz defined by

SO -':5~21m<?¢lﬁ<3 WH”M) (0.23)

With the Green's functions defined above .in Eq. (D.17) - (D.21), we obtain

d,g[' /Q/vf/' f/ - _.  (p.20)

A ¢ d,

d g d = L v(ff ' (D.25)
‘ "MAPpy M (ﬁ/dm Am ’ '
. - _—
- (E-A H oA -4 vf vA) (D.26)
C{M n—-l m O/A m m m dh m

In obtaining Egs. (D.24) to (D.26) we used steps identical to those employed

in Appendix C to obtain Egs. (3.92) to (3.95). with Egs. (D.24) — (D.26)

we obtain thé. following representation of(?m'o(i‘g_ "U'I}'>by inserting
' . A

a complete s.et of states, n-d "(x
<§ md(%n—lv le5.> : (D.27)
DIV RS M LY,

7 | |
2 O o V>l Lo 15

We next square the expression in Bg. (P.27) and take averages to obtain

(L T,
RS R I >M<I<% 5,012,

A< 15,01, KK m!‘vl‘fw .
(S;,:) X <| E L o‘%w vV lyy.f> 'L>y;ﬂ
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In arriving at Eq. (D.28) we have kept only those terms which are mani-

festly positive definite. Using Eg. (D.21) fbr:ﬁ{; ~ we f£ind

<[< '5[ l\g“‘/3>]> :_,n- : (D.29)

:) and rﬁno( is given in Eq. (D.22). With Eq. (D.28)

A =1 -

where r’ = <
m Mo
. mex

and By. (D.29) we obtain

ma,’(;%n“l Vtshﬂ>l2>°<,/ (D.30)
ol B0l
2 R )

s{n {s#m)
{K? sr}%H v

2

7

By identifying/umn as

Mo = ﬁg@;rﬂdv |an>’2>;,p (0.31)

We finally obtain,

= Jhon * Z/ums (F’ (D.32)

s{n

Note thaﬁ/u. n involves averaged absolute squares of the matrix elements
/m

of the basic interaction v, Eq. (3.100) (which contains external mixing)

D

between model states. HNotice also that the Green's functionzﬁ?’ which
n-1

appcars in Fy. (4.20) accounts for the propagation among the classes dl"'dn—l

in the evolution from class m to c¢lass n.
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0.3 Flow Analog for Correlatioh Width

Here we construct the r'(F) giVen in L. (4.39)

~(r=3 -1 /M,((\;‘M‘n..m ?«:“15* H"’n"‘>>

We first break H}into a paft dliagonal in the stat'es [? M>' called Hi,

and a part nondiagonal called MND defined by Es.(4.40) to (4.43)

) ,§n¢x> '? <;’Iq«

Whl—' re . l

<¥np‘ l H’]Y‘Jm E - _3.6.

= l; 0 W < %n
,Z o{> ‘xﬂ J2 l
where

Wep ™ SN ‘}“up >

in H]D and H]ND'

We next expand

1
E~H

. 1 ) n 1
= (—i— H. ) (D.33)
% E- H]D ND E-H,
~t
so that [‘IV\(F) is given by

?;. - <Z<§nu BN E%_Q_D—WNDE—]H; AEREEN

(E“H]g +E~H]j‘; HJND E—H; fees) I\?mx>>1

(D.34)

‘ . h
This expression can be rewritten in terms of ')Z and W

“f

r“}(F)"l . Pn S g 1
r:,' 27 (Z > E_,ln Wo({g E'l_/,zn *
| o p
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Finally if we assume
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o 7 bt tA # - (D.35)
1 1
n* o Uyi . nr T I
E- 7X/ E- 02&( o i
In taking the sums over d,ﬁ, b PR and in taking the energy average

over I, we assume that only manifestly positive definite terms survive.

Hence

I SN W S SRR S S N
r‘n 2n %— IE_ /2:'12 %[5“%‘:’22:1 x{gi ‘E-"l;lz
Y 1 S' 2 1 g 12 1 “___>
2: EARVA [E-—n;lzzl ! ff T

ﬁ J (D.36)

If we assume that the Par_ 's, Eg. (4.41) are narrowly distributed, and
ni . '

A
approximately equal to Pn

2
7anl” 2rt (lw [z> (D.37)
(85 ) (ErH2 T Py P prY Iy

2
< lwﬁa‘lz>ﬁ,a’i WL = < ]\A/ﬂb,} >{;}J (D. 38)

‘We can sum the series in Eq. (D.36) to obtain

o~ (R - 1
AR — — 0.39)
) r—’ (l—-zlr- ik )
n R
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| ot ; o wE.
9]

when the model States are the. eigenstates of dﬁ H dn (where H is the full

Hermitian~Hamiltonian)} the nondiagonal elements W are approximately

“#

given by (

W"\’f ‘=..<}:n«| V%nml\/ !}ﬂhfl> o (D. 41)

(See Eq. (3.40)) From Eqs.(D.41) and (4.36) it then follows that

Wl A _ .
2 D - r“,n( xu‘Tn /unn' Mn'n ¥ Cnn : _ (D.42)

Using k. (D.40) and Eq. ({D.42)

N \ | . |
f”f) <P (1- > M, —¢C ) (D.43)

n'< n/ nn' wn nn

~ .
and with 7 « [";F)we finally have

~~ _ .
L LA D S : |
rln =1 n | n ( n"é iq/"‘nn' Mn'n * Cnn) (D. 44)
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APPENDIX E

SUMMARY OF THE FKK RESULTS

J

. J
The expressions for 7 —
’

and
n;ce /“

obtained by FKK [3] were based
on a simple model for the excitation of the compound systems., To describe
the system of p-particles-h-holes one uses the "equidilstant" model for the

density .f (E,J) of single particle levels at excitation energy E and

angular momentum J wvis
: 2
_ {a+s)

FAE,I) = g -2-9-21-5 e 072 (E. 1)
no

-1, .
where g is the constant average distance between levels and the J-dependence
is suggested from the Fermi-gas model of the density of states. The parameters
g and ¢ have the following approximate values

_—3‘; Moy T

4

[Le]
12

2 0, (E.2)
0= 12 ”7(61:7’ ]

with
A5/3

¢
S

%
Notice that at large A values, ¢ attains the E-independent value of 0.57
1/3

A With the above density of single-particle levels one can construct

the density of p~particle-h-hole states wvis

N-1
f e = g (gh) R () (E. 3)
P . pt Bl (N-1)!
. (3 2 gt
= e

RN(J)

J N3/2O'3
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where N = p+h = total number of excitonéil By using a simple 5‘—form for
the residual 1nt0ractlon, the exprGSSLan for t /Mn n+l ore
found to be

2 1J

A = J Voee
.‘Zlycc _‘ . Tl,CQJO)" - < > l(fro)
1

2zr) @J - _
:~—-——~—-—-—~———> (20+1) 'F(Q) (2] ;+1IR(} ) (E.4)

(P Ry e

“where %}J is related to the strength, Vdﬂ of the assumed S—residual inter-

sction via

EEPIRE

oy
6 -2 &y U u. U, d—g (B.5)
‘x r

The Uj 's are single particle radial wawe functions (there are three of
these specifying the 2p-lh doorway state)’ and Eb_J is the radial wave

function of the incoming projectile nucleon. The function RS(J) is

defined in Eg. (E.3) and F(Q) is given by

F(Q) = E : (231+1)(23 +1IR(] )R(1 ) (E.6)
3,3, 0 0 0

The expression for the outg01ng channel 1? 19 similar to 'Zl except
h,e’ '
that, now, the spin of the final residual nuclear may differ from zero
and the nurber of excitons in the final channel is generally large and

di fferent from the number of excitons present in the nth class of doorways

py t2, 0. In the case of inclusive spectra considered, the Afh oot
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must be considered together with the density of levels in the residual
nuclear (average over final channeéls) and therefore one should really calcu-
late, instead of I%,c'c' ; the following
a fw B Z»— 3
/<’L n,clcl CI .-c' - S L n(ﬂtsp”) fS(U) (E-,?)
| Feoked

_ . T
=/ an(QﬁvGU{f;iU)
Y

where » labels the possible ways of connecting tho anexcitonﬁ doorway,
Iater to the final exit channel. .As can be clearly seen in the above ex-
prression, three different processes contribute incoheyently to the average
decay of the nth class of doorways, namely a process in which the number
of excitons contained in the compound system, Nn' is not changed as a con-
sequence of the decay n-7 c', another process in which this number is
changed by +2 and a third cone where the change is -2,

We list below the detailed expressions for an(f,s,y;U) and

fév)(u) obtained by FKK

T, W00 = 520 (2 +1) (2s+1) @2

<iDmJ:> 2 RN(J) !

'ﬂjan
_ (2Q+1)F(Q)(2j3+l)R(j3)RN_2(j4) 0

— o 0
2343,

2 (E.8)
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’[ (J.,s‘,+2 iUy =

2 (2 +1) (2s+1) 2, ”2“' ‘ .
— 2’ R (3) "'g (u) (20+1)R(Q) (23,+1IF (3 )

Lo, > —
cow 2 . 2 (E.2)
Re 3,0 (2% 33). L 330
N-17d \o o 0/ Y3, I s
217 N 3( s)
9 $,-2;U) = m———— 2W ‘b (u)
< Ry R (7Y
ng )
" 5. 04 |
S ornro) (23 SDRG ) (’f 3 ) (E.10)
0J _ 0 0 o _ :
3 .
and
o N-2
)y = p-1 _ _ N2
fa = @Erme-n¥ 0 - FEE)
f(+2)(U) - gh p(p-1) (I__\]_—l)! FN—-tfl (1'F)2

n 4% (&.—4)!

— ' | (E.11)

£ w0 = g "

with §‘= U/E and N = p+h, Notice that the total transmission out of class

~n to channel ¢' through mode Y is given by Z'E'J(Q,s,y;u'). Another

J

important guantity in our theory is the mixing parameter/un el which is
given by
| | J- (FnJ\l,>
= (E.12)
n,n+l <r,nJ >
(3.,.0)
J _SEL @ 3" .
- 9 5oy 2w e R(Q) (2 ,+1)
: 334 :

(E.13)

XFEIR, G AQI F)

&



and

’t {ts,v; U)f ' 0y au

. 2 .E' <in >
/ran>=< \I/) . [ J
: ¥=2,0,-2 -Qso
(E.14)

The symbol A (QJ j4) is defined so that
o . 01 ... for Ila-b, Le é_a + b
Hlabc) = _ e

-0 -, otherwise

and ED(j3,Q) is given in terms of the radial inteqgral for bound-bound trans-

L 2
iticns, EBQ,B (see BEq. (E.5))
. e

) . 2 £ Y3 942 5
& (5,0 = Z (20 +1) gle {o 0 o) (F.15)
A

A uwscful approximationfor the radial integrals that appcar in C?J and é&
would be to assume constant wave functions in the nuclear interior and
zero outside, This is the approximation adapted by the MIT and. the Milan
group in their calculation of the averaged cross section. with the above
formulac one.should be able to calculate X X as given in Eq.

n,cc n,c'c’

(5.3)




Table 1

e TABLE CAPTION

Comparison of the fluctuation cross sdction and duto-

' correlation fiunctions afong the differént approaches.
the cdefficiehts'éﬁﬁ-are“ﬁhe elements of the orthogonal

trangformation that diagonalizes the matrix M.
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Fig. 1

Fig. 2

- ~ Fig. 3a

Fig. 3b

Fig. 4

127

FIGURE CAPTIONS

Correlation function for the reaction 27A (3He,p)298i, leading

to the (a) second and (b) fifth excited state of 298i. The

continuous curves are Ericson's formula C(é—)::(E?+ F?)ul,

with a correlation width of 55 keV and 230 keV, respectively

(From Ref. [2b]).

Correlation function for the reaction 27A (3He,p)2gsi, leading to
. 29 ., - .
the fourth excited state of 8i. The continupous curve represents
~

P
a plot of our Eq. (2.17) with r’l = 230 kev, rlz = 55 keV and

6‘1/0’2 = 2.3 (From Ref. [2b]).

Partition of Hilbert space.

Left:; usual Hauser-Feshbach partition.

Center: Nested doorway partition.

Right: Generalized Hauser Feshbach partition used in the
evaluation of G'n et -

Schematic representation of the various classes of levels used

in the nested-average approach. In this diagram, class (n-1) is

"above'" class n, and (n+!1) "below” it; we adhere to this terminology

throughout.

Schematic %epresentation of C(¢€,I} for two classes of levels with

~
.‘12 <Zr1l' where I is the energy averaging interval employed. The

curve in the C-I plane is what is known as the "chair of Pappalardo”
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Fig. 5 Schematic representation of the absolute values of the terms

that build up (B3), for k=1 and k=2.

Fig. 6 Schematic representation of the absolute values of the
£ L o
fact 5 E D! T BEg. (B - k= d k=2.
actors ab ( k)’ Scd(Fk) of Eq. (BS), for 1l an |
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