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ABSTRACT :'we prove a Goldstone type theorem for a wide class of
lattice and continuum quantum systems, both for the ground state
andgat non-zero temperature. For the ground state (T=0) sponta
neous breakdown of a continuous symmetry implies no energy gap.
For non-zero temperature, spontaneous symmetry hreakdown implies
slow clustering (no ul clustering). The methods apply also to

non-zero temperature classical systems.
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1. INTRODUCTION

_Given a physical system with short range forces and a conti-
nuous symmetry, if the ground state is not invariant_under thg
symmetry the Goldstone theorem states that the system possesses
excitations of arbitrarily low energy ([ﬂ,Eﬂ). In the case of
the ground state (vacuum) of local quantum field theory, the
existence of an energy gap is equivalent to exponential clustering
({31). In this framework the Goldstone theorem was proved  in
([4) and [ﬁ]) For general ground states of nonrelativistic
systems, the two properties (energy gap and clustering) are how-
eve:_independent and, in particular, the assumption that the grqund
state is the unique vector invariant under time translations dqes
not necessarily.follow from the assumption of space-like cluste-
ring, as remarked in ([6]). This point was not taken into accoun£
in the assumptions of ([7]) and ([3]). Another related aspect,
of greater relevance to our discussion, is the fact that the rate
of clustering is not expected to be related to symmetry break- :
down and absence of an energy gap, since for example the ground
state of the Heisenberg ferromagnet (Bﬂ) has a broken symmetry
and no energy Jap, but is exponentially clustering (for the
ground state is a product state of spins pointing in a fixed
direction). On the other hand, for TLO no energy dap is expected. .
to occur, at least under general time-like clustering assumptions.
( ﬁ?l ; proposition 3); these assumptions may be vefified for the

free Bose gas | D&]).



At non-zero temperature it is the cluster properties that are
important in connection with symmetry breakdown. At non-zero tem
perature we may thennfbrmﬁlatefthe Goldstone theorem as follows.
Given a syetem with short range forces and a continuoﬁé'éYmmetry]
if the e@ﬁiiiﬁrium state is not invariant under the eymMetry;”then
the system does not possess exponential clustering.

It is our purpose to explore the validity of the Goldstone o
theorem for a wide class of spin Systems”endfmany—bedy systems,
both for the ground state and at nonﬂzero'teméerafuré:' The main
tool we will use at noh—zero'temperature is the Bogoliﬁbov ine -
quality, which is valid for both classical and quantum systems
(see, for example,'([g]). We shall however pfesent the discussion
in the framework of quantum statistical mechanics. At zero tem-
pereﬁufe'oﬁr method is related to that of ({7]), where a version
of ‘the theorem was proved, valid for one space dimension. A dif-
feren£ proof, valid for the ferromagnetic Heisenberg Hamiltonian '
of finite range, and in greatef analogy to the'quantum field thedry
proofs of ([4]) and ([5]), was given in ([6]), and generalized'ih
({sh to quantum spin systems of finite range.

| Our.resulte epply to states which are invariant with respect“
to spatial translations by some discrete set which is suffi -
ciently dense. {For Ie££ice'eystems éhis could be a sub-lattice
and for continuum systems, a lattice imbedded in the continuum) .’

More precisely we require the following condition.

-

Condition b . There is a constant f such that for all suffici-
ently large cubes A.,

VA '
where \A,\ is the volume of N ’ ‘AL\ is the number of points

in A£ = ﬁ\‘\uﬁ\




We will ‘prove that for interactions which are not too long
range (see sections 3 and 4 for examples), for the ground state
(T=0) spontaneous breakdown of a continuous symmetry implies no
énérgy gap. For non-zero temperature (T> 0) spontaneous symmetry
breakdown implies no exponential clustering (in.fact no.‘Ll clus-

tering).

For continuous system our results cover the case of the break
donw of translational invariance. However at .T=0 and non-zero .den
sities there is never an energy. gap due to the breakdown of Gali-

lean Invariance as remarked in.(PJ]).

Finally, we should like to stress that, although we present an
informal treatment of the continuum case, cur results for guantum

spin systems are complete and rigorous.

2. GENERAL FRAMEWORK

. .The state of the system is described by the vector{L in somé
Hilbert space. There is a symmetric Hamiltonién opefator H and
Hf2 =.0. ,To each cube A< ﬂzd there is a set of observables

OIA such that[a, B]= 0 if. A€ B‘-N, B E m/\g, apd l\-l_;:/})‘_
‘are disjoint. The set of all observables is o %) O%k

We define g - a- (f2 ,A&fi-). WeAsuppqse Aij; is in fﬂe domain of
i ror al1 Aé o. -

Let T:* aeﬁbté spétial transla#ion.by x:¥(In thg.cohting#m:

case X €& RA in the lattice case X &€ 2Z ). The state {2 is
iﬁvgfiantgunder traﬁéiétidﬂs in the discrete set d , sétisfying‘
condition J: of the introduction. .
Coimes (Q,TAR) = (Q,AQ2) VA E 0, Veed

There is a one-parameter group of symmetry transformations Og



of OL commuting with the Hamiltonian and with all spatial trans-

lations-

o o o @)
Os Ty = Ty'%"" x ¢ Pd"‘('Vxé'Zd) S

We suppcese the symmetry G-S is generated by a current
‘where :ja & 0]:0 (lattice case) }
jo (:-GLA (continuum case); A is a cube of side § .
(In the continuum case we may suppose ‘Tx is smooth in ‘x by first
avefaging the current over the small cube A ).
Thus, if A € Ol
S (51, g, a0) = ¢ (2, L3,,A1Q)

ds
where 3 Zé/ir (lattice case)

3 _S-d'x ‘TX (continuum case) AS = set of points within
A ' AR R distance & from ‘AL
By the group property, the invariance of (2 under the symmetry Oy

follows from

(—Q [JA A] Q) : for all Aeﬁl , and all cubes A
The equilibrium property of -Q. is gJJﬂren by ' Y
a) ﬂ is a ground state; i.e. (’U} H"'.P\

for all \P in the domaln of H.

b) T>0 : £ satisfies the Bogoliubov inequality: i.e_.’_fc_)r_ all A,

B & (L

I e Sl




where B = i [H,B} . Note that —%‘— (.Q [B B]Q)may be written in
the form (B_Q HB_Q_) 4 (Bﬂ. H BtQ) |
The basic hypothesis about t_he s_tet_e.f_l _which_ leads to the .
absence of symmetry breaklng is ¢ |
a) T=0 : there ig an energy gap - E_) O, L e. _
(\\’,H"P) Y E for all “k in the domain of H, orthogonal

o2, Ivl=1
b) T>0 ::t£ere is 1l clustering; i.e. for each observable A,
2 b, afpan) - (0,a) (a,ga)l <e
CeL | o
The basic strategy is as follows. For each self-adjoint obser
vable A € Ol,\ define | \S (ﬂ O‘SA.O.)
we must show J=—= 0.

Now by the translation invariance of.(l w1th respect to ,c_ we
have for each cube N (a“"’l- Os T, "'T'— as )

v- 4 4 (0,6 Zm AL
™ oks\s..o A )
where 'E /\nf and V\fl is the numpber of points i_n I
Thus.
v L v (o t:rN Zr A]m
7 IR S
where A": Lé/\T /\ .

We estimate 8 as follows.
a) 7=0 :

rd 4 ~ )
R AR AR (JA

0) (Z AN, 2T

LENg | &5.".::

>C" 2

}



Now for any observable B, (Q ) BQ) :EO . Thus the assump-

tion of an energy gap &>01mp11es_ '

(Bﬂ,'BQ)-“ (Bﬂ H Bm <
E-

< _%_[(én, 182) + (B'e,u )] .
4 (016" Mell0)- L (2,0 &10)

P < ﬂ o7 W% 3x10)). ——-\lIJA TALI
| . ()

b) T70 : u51ng the Bogoliubov 1nequa11ty |

171° < ei J_(n[:r hrgl) “ “
' 15 36A
fex)

Notice the similarity‘of'inequﬁlifies (*) and (**).“

In one case the coefficient involves @ , the inverse tempe-
rature. In the other case the COeffiéEept involves _i. ’ thg_-f
inverse gap. .‘ |

To prove absence of symmetry breakdown we will show in both

cases (T=0 and T»0):

_\L. @, T, 3I0) >0  w AZRY

and

I1) ___, \\Z T /\ ﬂ_. " < C uﬁiformiy in /\, .
\A&\ 1€/ o




I) follows essentially from properties of the Hamiltonian.

II) follows from Ll clustering ( T»>0) or from properties of the

1

Hamiltonian and the energy gap (T=0). ‘Indeed from L~ clus-

tering, and invariance of L2 u_nde_r_..%?. ; j EoC

1= v Aa) <z |, A’t AQ)- (QAQ)(QAQ)I@:

|/\,¢\ j€A, jel

In the case T=0, from the energy gap & , we have

| 2 Al <L -L- (ﬂ [ch A z TKA]Q),;'

l/\dj\ TEN, ‘e V\ 1€A, ké/\

2 | (Q,[A T A1)
é

vE

The finiteness of the sum over 2: will follow from properties
of the Hamiltonian.

The system is said to have property (;T if

Ve Z% vez
lk-417D
L ey [J,‘):rm)\—w) s DS
x6| o
ly-x{> D .

The system is said to have property (;o if p?opertY’ G;rholds__

and for each selfadjoint observable A,

> (2, la, 1 Adn)| <=
KEL | |

We may now state Goldstone's theorem in the form




THEOREM 1. : : , - : o :
a) T=0-: If the system possesses an energy gap and property

(30 then there is no spontaneous symmetry breakdown.

b) T>0 : If the system possesses'Ll clustering and property
G;F then there is no spontaneous symmetry breakdown

Proof & We must show that I) follows from

S dfty \ (O, EJx, Jy]ﬂ“

Xéiwa )Voa
\y-xi >
(The lattice case is analogous).
_. .Wr.ite | 3(7(:'3) = (Q,_[J_}(,_ Jyjﬂ)
Then .' : e |
Sd"ty |9(><,'5)| {ee awd SUP y \3xi9)| — O
XE€RT > D/ oo

\:{-—x\ »D

,XCL x § (x, % d,\ (}Z Gs F{QI ;2) d;N GQ*L*Qéj&ng
| o (o)
Also by the Jacobi identity -g 3 (g, ) : |

Then since ‘AL\ D;\/\\ _T \/\\ we estlmate |

i L (q, [;r,\,-y,..,m)__ __.ja&xotyoux)oc ) 0=

;
- _m ( 44 4ty 96~ )..—-xf,\es(x)f_g(x.

where 9( is the characteristic function of J. , using (***).

A

Thus



l._*__ (2, L33 ) i»]m\ <
< -i‘--—jo\*H* *3)\ (22)

|Al

We write S (y‘ S &i S cyl

where /\2 is the set of po:Lnts in /\g within distance D:of: the.

boundary and /\ = AS - A

Then | fd T e
en < swp [ty 190 + 1l aup fuly gy
< Ry A
The first term goes to zero by property and the second
term goes to zero since |Az‘ —_ 0

Al Roed

The theorem gains content by analyzing when property Cil_or G

holds. This will be done in the following sections.

3. QUANTUM SPIN SYSTEMS

The interaction é is determlned by specifying for each finite _5

X 6 ZO‘ "connected” X - body interaction E(X) e 0\

fThe Hamlltonlan B is then deflned by

HAaN = 2 "LoH(X), A aQ
XN A# & "
for A € (1 . Lets D(:K.) denote the diameter of X :
D)= sup lv-§1 . R
i

The system satlsfles and if Xl “ (X) Lo
aml_ GT Go xgb. oo &
“W;Z\X\\@@)lhio &:d/?m.
‘ e }

DX)»d




10.

Note that if the interaction is translation invariant

(@ (X-}'b) T. @Q(“theﬂ the above :follc.aws 'fr_o.rr.{
Z 1ROl <°<=

X30
If furthermore the interaction is at most N—body (g)bq._ VI \{ D(\?N)

then the' above is-equivalent to )(?O “ @(X)“ (oﬁ ‘

In particular for the Heisenberg Hamiltonian: 2 J(L"}) O-;_.Gj .

we require Z\J(b)\ | { oo .
s-.a';'¢¢Z¢_ 5

Prqof :

a) We must show . -

-Szi_J; {: 0 -;;}(5. o
52 KSZZ '{g 'E > J}}vin DAeo .

k-417D
Z L3 33 < 2 2 11y, 18, K]ﬂ’ <
'\k i>, s K )(Bk}
4 S Ik j1=D
<Ay, Z Z, \\@(x) <4n:ro | \l@(x\
\le B o D(X)7D
which goes to zeroc as D/’oﬂ by the hypothesis of the theorem. -
b) We will show 1 l(-Q-, [A,tj"/\‘-] -O—)\ <°°
16 Z :

for each observable

. The proof is similar  to a). Let A€ OL

2 NEA AT € 4TAF 'z r 1wl
ezt A QEZ_‘L)(O'EJ/\O#gf
XOAAS




i1.

+ o 41AR Z 2 el <
3 Xﬂ't A i B ’
MO AR B o
< 4NAR AL swp 3 IXTL )L +
S X :
+ 41A12 1A% 1A, sup KZ I &N
3

< BUAFIA, F’ Su.pz | X1 1)
CX3L

A

4. CONTINUUM SYSTEMS

In this section we will proceed in an informal way, emphasizing
the prccedﬁre and type of estimates. In the continuum case un-
bounded operators will arise and, having constructed a particular
equilibrium state, it would be necessary to verify that the cor-
relation functions are indeed well-defined.

The Goldstone theorem is applicable to local quantum. fields at
zero and non-zero temperature. Indeed, properties G;T-and (;o
are immediate consequences of the finite propagation speed.

Non-relativistic many body systems may aiso be treated. We
consider first the breakdown of an 1nterna1 symmetry in a trans—
lation invariant system at non-zero tempgrature The bose and
fermi cases are treated in the same way. A particle with M 1n—..
ternal degrees of freedom is descrlbed by the field 0perators

’ﬂf(x) 3_..5.,2,-..)9"\

which satisfy

w00, ¥ 1], = 8 SUey)

P

A : _
Let 6) ,G'? be the selfadjoint Mx H matrices of a
representation of the Lie algebra of a compact semi-simple Lie

quup,gg with (totally antisymmetric ([}Q]) structure constants:




12,

[6% c*F = ™¢ 65_) |

: ¥
Define < (X) = jz/ '\% (X) ﬁk ’\y (X)
We also wr:Lta trxls as.. +(X) 0" ’Y( )

- o ol ' R )
The operators S (X) ‘are the local generators of the L1e group

transformations on the fields YK (X)
The Hamiltonian has the form H H +V- /M. N ', where

S AL R AN A A
V= 2 Scl«"’x cL“'y . 9% () ¥ (¥) \/(x—y) :
e | |
2, §d'x W:_(XJ ﬂ_kd. (x)
A

If the internal symmetry g is spontaneously broken, then the

absence of.Ll-clustering would follow from -

Siy |, 3,00 <=

where Jy — SOU'X ‘fb()/ X)Q ('K) and h is a smooth function of -

compact support and SOU'X h/(x) =
A
Wlth

1 (x) = 5“—;(*\)*’0""3.7*9 - gyeTy)

we have the following algebraic relations which hold in both the

bose and fermi case :

E? (x) ?9@ 1-— i 8()(—9,) l‘”“a =2 (y)




13,

[N) g"(x)] i}
e, 3% ()1 = 4 V (IP( x) Lo o—e].., Qp(x)g(x_y]
FUTE 70 su e o

() [9 (x) \/'_n_ g(y K)Z (—‘“@

ers

. KAZ V(X“&) . {g (x))g‘b’(z)]; .

i:.

_ 5‘;5 rtre Vi-y :[g"(ﬂ,'g?(ﬂ]ﬁ_‘-

where we have used

st = £SO - S(x-gw*(y,)“cs-"w ¥ (y)

To show SO\,Y \ (-Q [Io) Jy]ﬂ_)l <oe we need only consider

the non- local term A

e%a ) @ M5 Vix-g) (0, : <) s S(gt) Q)

So if S o\)l \V(.x-g)‘ _I.(_\Q_J.;: gh’(x) ?5(3) _Q)\( oo

the result follows.
- - We note that there is a qualltatlve dlfference between abellan

)
and non-abellan groups since in the .abelian case rﬂ () and

Y



14.

only local terms occur. {A similar analysis applies to the T=0
case, although here the distinction between abelian and non-abelian
groups does not arise because the term (Q [A A]Q) will in

. general have a term with V’(X, 3 ) even in the abellan case)

R We con51der now the breakdown of translatlon invariance. We
will for simplicity not consider 1nternal degrees of freedom, 80

that now

H o= H o V- g N
where Hy = _4_ S oU" VV(%) V& )
). Y0 ) |
N = ' x k) -
V= So(”’x Aty V(x- yr) : €(x) e(4) .

The local generator ¢f the translation group is

£ )= L V0oV ) -V $K)]

We consider the case T>0 With_similar conclusions for the -
case T=0.

We must show
sup S (o, [Jm I — O
X D;”am'”'
\y-x\z«D B _'-__ |

wm - JW= a4y k(x-y) 4, (y)

Now

CTH, ] - 230 e (ary 3 V(e so) B
R R




15,

where

Sq 1) = -4 (2 VK 3, ¥k) + 2 ¥ ) akw>]+

+ a& (v qur(x ﬂP(x) 29 w+(x vmwmv ﬂP(]

where QkV(g) = dV )
o=,
Now since SKQ ié .a local term it'will not' conti’ibute te the

estimate, as D/ao

(400, TV, 1] = 2 [ Vi (ey) :300e0): +
4+ Sd‘”‘ V. @- y) N 9(2)9(5) (x g)}

where . v - CLQ. V(E) '
= Va B S
Thus the only term of 1mportance in the estimate is
sup Solg, Ve o) (1L, 1860 £CY) ¢ Q)\
lu-x>-D | |

Thus if S\g? \(Q ?(X)gw)u{)_)‘ <oo
and S (.'LX IVKK (X)\ <°<:

the result follows.
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