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"INTRODUCTION

The scientific work of J.A. Swieca* constitutes a

fascinating bridge between the thorough investigations of the

~-general principles of Quantum Field Theory carried out in the

late "50's and early 60's and the more recent attempts to unders
tand the dynamical subtleties of the relation between particles
and fields.

In order to recapture the motivations of a young

theoretician who entered active research at the beginning of

~the 60's 1t is helipful to start with a panoramic view of Quan

tum Field Theory in those days.

Several years after the impressive success of per-
turbative renormalization theory in Quantum Electrodynamics
physicists started to question the adequacy of the Lagrangian
approach for other interactions, in particular strong interac-
tions. The first step taken was toliberate the principles under -
lying thé Lagrangian approach from their perturbation wrapping
These attempts culminated later on in the framework ofWimﬂman“)
and Haag(z) and that of Lehmann, Symanzik and Zimmermann (3)
In the first one,emphasis was placed on vacuum expectation va-
lTues of fields (or Tocal observables) and their properties where--
as in the LSZ theory the cornerstone was the asymptotic con -
dition for "interpolating" fields, thus relating fields with

5) as well as Hepp(ﬁ)

particles. Some years later Haag“”andRue]Te(
demonstrated that if there are no zero mass particles in the
spectrum, the LSZ asymptotic properties (without the asympto -
tic comp?efness) can actually be derived from the locality pro

perties of fields. In addition to general structural theorems

* deceased on Dec. 22nd 1980




as TCP, Spin and Statistics and generalizations involving inter

nal symmetries, this framework'of.Genera1-Quantum Field Theory

furnished the foundation of Dispersion Relations. The - distrust
-and to a certain degree misunderstanding of‘QFT-among some phy-
. sicists was so great that attempts were made, to disconnect  the

Dispersion Approach to elementary particle physics as the "S -

Matrix Bootstrap® from the "contaminated" Field Theory . Even

though those ideas are almost forgotten, they played a certain

“role in the 60's and sometimes even led to useful observa -

tions which were later on incorporated into the majinstream of

-QFT.

Only at the end of the 60's it becowmes abundantly
clear that the short distance singularities of QFT, far from
threatening the mathematical existence of the theory, were ac
tually necessary for its internal consistency; renormalization
theory became synonymous with the study of short distance pro-

perties.'The results of Wi1son(7) and other . physuﬁsts(g)

played an important role in regaining confidence, not only in

the general principles, but even in the Lagrangian approach
which thus reached a new Tevel of sophistication.
These remarks furnish the background for unders -

tanding the motivation behind part of Swieca work, the part

~which I will present under the heading of "Structural Theorems

in QFT". These results are largely independent on Lagrangianmo
dels.
In order to appreciate the other part of his work

which I will discuss under the heading "model studies as a Ta-

“boratory for developing and testing new dynamical ideas" it may

be helpful to point out that during the 70's  the emphasis in



QFT changed from shortudistanCesqtowatds properties of physical
states. The driving motor for this was the pressing need,espe -
cially posed by non abelian gauge theories,for understanding the
re1ation‘of Lagrangian fields to the physical spectrum in a more
profound way. After the renormalization properties(g) (including
the observation of asymptotic freedom(loh were clarified nota-
bly by 't Hooft, many physicists concentrated their attention to
the vacuum and particles properties of these gauge models.

In this context it seems to me remarkéb1e that by
pressing the internal logic of a two dimensional gauge model(]1)
Andre Swieca together with John Lowenstein were able to capture
some aspects of many of the modern concepts as © vacua ,theLM})
problem, charge neutrality and confinement long before these
words were coined. This line of research later on was refined in
a series of papers dealing with the functional integra]apphmch“z);

the issue of "screening versus confinement"(]3)

and the U(T) pro
blem in a solvable model with mass transmutation and its relation
to fractional winding(]q). I will have to say something on this
work in the second part.

Being convinced that the study of models furnish a
useful Taberatory for new dynamical ideas, André enjoyed tho -
roughly the discovery of a certain c]aés of nontrivial two-di -
mensional models whose S-matrix and Form-factors became computa-
ble. He realized that the appearance of exotic statisﬁcs(]S) in
some of these models is a manifestation of the order - disorder
duality of Statistical Mechanics of which lattice model studies
were first performedby Kadanoff and co]aborators(]G).

In the fast year of his 1ife, he was particularly interested

in  understanding the rather subtle renormalization aspects of




kinks and'disorder'fields in the euclidean functional integra-

tion approach.



I. STRUCTURAL THEOREMS in QFT

At the beginning of the 60's Nambu and Goldstone
discovered that spontaneodsjy broken symmetries in theories of
short range (Tocal Lagrangian) interactions are always accom -
panied by the appearance of zero mass bosons.

Symmetries in QFT in those days were discussed in
complete analogy to symmetries in classical field theories. The

starting point was a Lagrangian
L(bgs 2,9;) | (1)

Tezding via the principle of minimal action to the Euler - La-

grange equation

3 5L ol
u 33u¢1 I

=0 _ (2)
ax

The invariance of the Lagrangian (1) under a N-pa -
rametric invariance group G (for simplicity we restrict our at

tention to linear realization i.e. matrix groups):

d

dhk

with generators:

leads the Euler-Lagrange equations invariant under G and to N

conserved currents given by Noether's theorem

“ oty 1 (5)




The Poisson bracket relation at.equal times .

KR, 01y = 4 1  ey(Drs-H o (8)
and hence for the conserved charge

ok - jI@k dSX (7)
the relation

0f, o1 = 11N 8 (8)

are a consequence of the classical canonical formalism

(o (X)omy (V)3 = 6,5 6(X-¥) (9)
with
N 1

Via exponentiation of the charges one obtains a re-
presentation of G in the phase space of the classical field
theory.

It was standard praxis prior to Nambu's and Golds-
tone's observation to obtain the construction of unitary ope-
rators in Hilbert space U(X) impiementing the substitution

Taw

U0 () V0D = v o0 e (10)



by replacing Poisson brackets simply by commutator brackets ,
thus writing:

..ok
1AkQ

U(Ar) = e (11)

with

k

0¥ - } 1,%(x) d3x (12)

and the equal-time ccmmutator relation:

LK o] = - 1R e G s(E9) (13)

This formal procedure of constructing unitary symme-
try operator by simply copying the classical steps is correct in
a quantum theory with a finite humber of degrees of freedom i.e.
'Quantum Mecanics.As & result of the uniqueness theorem of John
v. Neumann (every irreducible representation of the canonical
commutation relation is unitarily equivalent to Schréddinger's),
an algebraic symmetry i.e. an invariance of the Lagrangian and
canonical relation under a symmetry group is always implementa-
ble by a unitary operator U(A). This is the basis of Wigners a-
na]ﬁsis of symmetries in Quantum Mechanics.

The situation is different in QFT. Fortunatly, in or
der to understand symmetries in QFT,we do hot have to study the
intricasies of canonical representation theory. [t is sufficient
to be aware of two aspects in which the QFT discussion deviates
from classical field theory as well as from quantum mechanic:

1.) The Lagrangian, the equation of motions and the definition




of currents involive product of field operators at the same point
and therefore are i1l - defined quantities whose proper meaning
should be obtained by limiting procgdures starting from diffe -
-reht space-time points. |

g;) The construction of the "tlassical' charge (12) from its densi
ty requires the vanishing of the field of large distances, a re-
quirement which always can be Fulifilied by appropriately re -
stricting the Cauchy data of classical solutions,

The existence of particle-antiparticle fluctuations
occuring all over space (translational invariance) in QFT pre -
vents the general use of eq. (7) as a definition of a well de -
fined charge operator. Even in the absence of spontaneous sym -
metry breaking the convergence properties of this integral depend
in a very subtle way on the properties of the states(zo).~

The short distance properties(7 ) had been understood
in the frame work of the operator short-distance algebras by the
end of the 60's . Apart from the anomaly phenomenon,which from

(21) they

a cértain point of view has a classical 1ntefpretation
do not enter the discussion of spontaneous symmetry breaking. It
is rather through the f?uctuatfon;properties'g;) , which fall
into the category of Tong distance behaviour, that a per -
fectly conserved quantum Noether current may lead to honexis - =
tent chahges and spontaneously broken symmetries. Thus the Nambu
Goidstone phenomenon is an evasion of the Wigner gquantum mecha-
nical symmetry.mechanism due to subtle property of field theoretic
fluctuations and as such very basic to e]ementary particle phy-
sics.
(22) '

The standard argument concerning spontaneous symme -

try breaking and Nambu-Goldstone bosons is abstracted from the



O(N) Sigma model LagrangianiConsider the renorma1izab1e O(N) sym

metric lLagrangian,

= coH RN :
L = au-¢i 0% ¢ V(o) _ (14)
V(8) = A (85 0 - B) (15)
this Lagrangian has a O(N manifold of classical minima

(N-1
Quasiclassicaly one constructs a QFT by‘re]atjng one of the mi -

nima(zs), say

¢min = VB é (16)

-t

to the field theoretic vacuum in zero order

Performing a shift in the Lagrangian

(18)

i) >$1 + <¢i>
one finds a Lagrangian in 3 which admits a renormalized pertur -
bation series(ZB). There exist Noether currents Iuk which are con
served in every order of renormalized perturbation theory(23).

| The model contains N-1 zero mass bosons and the symmetry isbro -
ken as result of (17). In order to relate these two properties .,

knowledge of its detailed the dynamical structure is not required.The




=710 -

-fstandard'argument-is theffo110wing(2?);'TherVacuum;expectatibn
vilue of (13) yields
k, = > S . >
< T (%) ¢{(y)1>.= <1 iN:§¢N>'6“by) (19)

~On the other hand, the Kdllen-Lehmann represéntation for the two

point function:

<[1uk(>:), d>1._(y)1> =.1".a_uJA_(x—y;mz)_pKi_(‘x?)dxz

S (20)
with the conservation Iuk:

e pfT(e?) = 0 e o8ty = kst (@)
yfelds,together with (14)

AL APRTIE (22)

f.e. the existence of N-1 Nambu-Goldstone bosons related to the
N-1 unbroken directions.

The argument may be easily generalized to renormali
zable Lagrangian with other symmetry groups and unbroken sub-
groups. The essential mathematical input'is the existence of non
vanishing expectation values of elementary (canonical) fields.
The shortcomings of this method as an argument for the general
relation between spontaneously broken symmetries and Nambu-Gold-
stone bosons are the following:

1. For composite fields, commutation relation of the form (13)



are not a priori reasonable. The use of operator short distan-
ce expansion for the construction of local composite fields and
products with currents,which many years after the Nambu-Gold -
stone observation were investigated by NiIson(7 ),with suffi -
ciently many additional assumptions would perhaps allow for a
more general argument along the above lines. |
2. In the case of no symmetry breaking which should be suitably
formalized mathematically, one really would like to have an ar-
gument in favour of hermitean charge operators as generators of
the corresponding finite symmetry transformations.
3. The renormalized Lagrangian perturbation theory of a sponta
neous broken symmetry situation does not allow a conclusion con
perning the true existence of the broken symmetry phase.

The problem of existence is the most difficult one.
With the help of techniques known in statistical mechanics,field
theoretists were able to make some progress(24).1n a way thispro
blem does not concern the Nambu-Golstone theorem, because the exis
“tence of the broken symmetry phase enters as an assumption.

Shortly after proofs running along the indicated

lines were given, Swieca®3) (26)

and Ezawa and Swieca gave a proof
using more powerful techniques and thus removing the short -
comings 1) and 2). The conceptual-mathematical basis of this
proof is contained in prior work of Haag Kastler and Swieca @7{
One difference is that the Wightman framework is used instead

of the C* aligebra methods and the new impqrtant ingrediente is the
use of a more powerful spectral representation, that of Jost—Lehman-Dyson(zg).

I will indicate thé main steps of the derivation. One starts from local Wightman

polynomials of the form:
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N | ”
A= Jhn(x1.‘.xn) dx7)4 Va0 (x) dxq.dx, o (28)

where h —are test functions from the Schwartz class of compact

support D. In this way one obtain well defined operators which

areaffiliated with a compact space-time region and which, ifap -

plied to the vacuum,generate” a dense set of states(zg)}

We su
press in our notation all dependence of the fundamental field
¢ on indices. AT its most basic Tevel a symmetry of Q.F.T. 1s a
correspondence

>A (24)

A

inducéd by {3) which Teaves invariant equation of motions and the
Lagrangian. However from the point of view of observable con-
sequences (partic?e multiplets, symmetry te]ations of cross sec
~tions etc) one has to elevate this a1gebric symmetry, as Wigner
did in Quantum Mechanics,to a unitary operator U{») in the phy-

sical state space

1t

UO) A UT) = Ay (25)
U y|0> =|0> | (26)

Formaly U(») is expected to have the form (11) Q being related

to a conserved current with

-<%%%1— O> = <i [Q,A]> = 0
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Since A has compact suppott say 6, any operator which is loca-
lized in the causal complement ec of 6 commutes with A. There-

fore the unbroken symmetry should be characterized in terms of:

<|:I°(_fd,fR-},AJ Ror," O C(2r)

~for all Wightman polynomials A (23).

The I°(fd,'fR0) = JIU(XU,§y%(xoT&O(§) is effectively the rele -
vant part of the charge which does not commute with A.
fR(I) is a smooth test function
(1 x| <R
_
fp (%) = (28)
J 0 X >R + ¢

thus preventfng violent surface effects and

fd(xo) =0 Ixo] > d
(29)
[fg(xe) <1

is a smooth compact support interpolation of the o-function in
time which for noncanonical field operator as the current isne
cessary in order to obtain a finite operator. Ro is simply the
radius beyond which one enters the ec region (augmented by d
where 2d is the thickness of the time smearing). The independence
on R,once R 1is largef then R,,is a trivial consequence of causal
commutativity whereas the independence on fd is simply obtained

by using first the conservation law (with say d>d')
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T (fgs T) = TO(RS, Fp) = V(L TR 50

%(X“) ='J (.fd(xld)_' '.fd'CX'O))dx'-d .'Dd

- OO

and the causality
|T°(f, vfp)s Al =0 | CR>K, (31)

One says that a theory exhibits spontaneous symmetry

"breaking if for a conserved current there existsan A such that

giz <[I°(fd, fR), Al> # 0 (32)
Part of the Nambu-Goldstone theorem is the

Lemma 1 A spontaneously broken symmetry in the sense of (32)
requires the existence of a Nambu-Goldstone boson.

The remainder is contained in

Lemma 2 If (27) holds, the formula
Q0 AJO > = [I%(Fgs £ ), Alpig, 10>

“defines é charge operator (on the dense set of local states )

whose exponentiation yields a one parametric symmetry (sub) group.
In order to prove Lemma 1, Swieca used the Jost-Lehman-Dyson re
presentation for the commutator in (32) in the form derived by

Araki Hepp and Rue]le(sol.
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-+ . . . .
pi(uz,y) are measures in u® having compact support in ?, this sup

port being related to that of A. They can be split:

0 (4%,Y) = B ()8 (F) + ¥ Eur.Y) - (39)
5. (07) = oy (wh) a%y (35)

Gi(”2’§) has same support in y as oy

The conservation law and causality yields

d 20 [[59(x,.5.), A] 0> =0 36
m l_J 0 R) ] | R>R0.(x0) ( )

and therefore

=
lduz eryy (v®) ifosuxD} -0
v {2} Sin UXy

which is only consistent with

X&), A0 from (32)

A can also be written (xp=0)



Nk | |
[ [, 250 9 () @ (38)

0

CR
fi

n’

<013°(0,g) P(M2) A| > - <O|A P(M2) §°(0,9}]0)

Here g is a O-test Function with g(?) = 1 in the region of supp

G.

P(M?*) is the projector on to the subspace with amass

The validity for every M? > 0 leads to the existenceof
'Ja discret zero mass intermediate state.

Note that the L-covariant properties of the conser -
ved current were not used up to this point. In case IU behaveés
Tike a vector (i.e. has no further suppressed L-indices) the in
termediate state is necessarily a scalar boson.

In the case of spontaneous symmetry breaking there
exists therefore a Wightmann polynomial (i.e. a product of fields)

Aswhich couples the Nambu-Goldstone boson to the vacuum:

Tim < pl AJO0O>=1¢c#0 (39)

p~+0
This is impossible in two-dimensional space time since (39) im-
plies a infrared divergence in the two point function-of A. This
impossibility of two-dimensional spontaneous symmetry breaking
was known to Andre and is implicit in his proof. Within the con
text of the standard wethod of proof it was derived by Cole-
man (31).

Let us now make some brief comments on the second

Lemma. This lemma has a moderately simple proof in the case of



- 17 -

fhe mass gap hypothesis.

For special quasi-~Tocal operator A the formu]a(34)

1;‘{%_<0|A I (4 3]0 > = 0 T (40)_7_.
is a rather easy éonsequence of (27). 1t is only nececsary to.
demonstrate that (27) has a generalization for quasilocal Ais
and convince oneself that by using the spectral gap there exists
quasilocal A which applied once to the vacuum create a one par-
ticle state and whose hermitean adjoint annihilates the vacuum.
The next step is the convergence:

Clim <O]A 1°(f ), B||0>

= * 0
in 4° fR) B|0> = 1im <O0|A |I (fd, f

R=eo

R
(41)

i.e. the existence of lim I“(fd,fR) between quasilocal states.
In order to exponentiat2+zhis operator one has to enter the tech
nically rather complicated discussion of essencial selfadjoint -
ness on the dense domain of quasilocal states(Bz). For internal
symmetries which do not change the localization properties of

- states ,Swieca used the fact that A|0> is an analytic vector for

Q which leads to the convergence

U(r) AJO> = T (’—Q-Ln AJO> (42)
n.

The discussion without the spectral gap (i.e. QED )
and the construction of exponentials for space—time‘symmetries
is more involved and mode1-dependen£. An especially interesting ca-

se will be discussed later in connection with global conformal-




was reasonably well understood -in the relativistic case, Swiecd
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symmetry. Then the resulting global representationsturn out to
be representations of the covering group with operator phases
(i.e. reducible representation) for the center.

After the spontaneously broken symmetry situation
| 33)
studied this probTem for nonrelativistic many body problem. For
this purpose it s illustrative to consider the Fourier-trans-
form

: i B "'iB-X + 'ip()xU
L(Bapo) = -J<Ollj“(§,Xb)A‘|O> ] 4t

By enterily formal manipulations (dropping boundary terms after

using the conservation law) one obtains

1im  po L{P.ps) = 0 (43)
p+0 ,
and hence
L(0,ps) = Ad(po) (44)

This zero energy excitation is the E = 0 part of
an excitation branch only if L can be written as g(ﬁ,pa - E{p))
(or a sum of such function with different dispersions } where g
is smooth in the first variable. The use of the spectral repre-
sentation (33) shows that with E(p) = ¥|p| this is the case in
relativistic causal models. Smoothness properties in p-space are
related to fall-off properties in x-space. Swieca showeé34)that
with
+

1im  X? <g1[ﬂ(§)p] ik

¥

(%),P,]10 > = 0 (45)
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in particular for: U(?)P] U+(§) -+ j“(x“,?) where P, are quasi-
Tocal polynomials, the above forma] considerations leading to a
continuous g can be legitimized.

So the relevant question in connection with nonrelati-

vistic theories is : what property of the interaction say for

i = J‘——% T gy er"(xw"'(y)v(&*-&")w(&*)w(&’) d®x d®y -uN
2m (46)

u = chemical potential, N = particle number operator.
will Tead to (45) '

Swieca showed that the potentjal V has to decrease at in-
- finity faster then Coulomb. It is well known | 35) that for Coulom
bic ranged potentials the “would be "Nambu-Goldstone exitations
may be transmuted into plasmonic excitations with a finite ener

gy gap above the ground state.

In any many body system with a finite density,Galilei
invariance is always spontaneously broken; this is a consequen-

ce of the velocity term in:
<j> _ <3’> + ;f}<p>

So there are always phonon Tike exitations. Using the techniques

of sum rules Swieca showed the following theorem(33’34)

Theorem : For _%IE V{p)——> 0

r

one obtains for the spectral density

d\)p(w) = dup(m) +ody (W)

p




. . ‘ ‘ ipx
with - <Qip{x,0) p (0,0}[|Q> = [?e dup(w) d¥p

_for E+0 a concentration'of weight at the origin:
=0, a*>0 arbitrary

In order to alledge that these excitations have a qua-
siparticle. nature one needs further dynamical information.

Thus in contradistinction to the relativistic case short
range many body interactions always imply the existence of Nambu-
Goldstone excitations,those of broken Galilei-invariance. To ob -
tainladditiona1 information on the zero energy excitation spec -
trum from other spontaneously broken symmetries is a delicate and

~certainly very model-dependent matter.
What does happen to the charges 1in a relativistic theo

ry with long range interactions? The only known relativistic mo -

dels in this category are gauge theories. It had beeh known forso

me time that there are two types of abelian gauge theories withen
tirely different physical behavior . In conventional gauge theo -

ries as QED the identically conserved renormalized current jv

u s

3 Fuv"Jv (47)
leads to a nontrivial charge forma]?y given by (12). Using a phy
sical description of the theory in which no unphysical states ap
pear (example: The Coulomb gauge) one immediatly realizes that a
physical charge raising operator cannot be Tocal with respect to

the ejectric field strength
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G0, WS s 0 emco )

In fact the Gahssllaw réqufres F; fall-off of this com
mutator. In the usual povariant gauge formalism (e.i Gupta-Bleuler)
the Tocality 1s arti#icfa??y obtained at the expense of ghost sta
tes.i.e. the formally Tocal operator Y(x) applied to the vacuum
leads out of the physical Hilbert space. In QED the physical elec

tron states carry a charge
<p [Q Ip'> = <p [p'> G(O)

~Here G(p-p')?) is the physical form-factor

For a scalar particle (for simplicity of illustration):

<p 13%(0) Ip'> = (p#p'), G6(t) (49)
(36) '

In 1964 Higgs proposed a completely different abelian
gauge model which is formally obtained from scalar QED by allow-
ing the scalar field to develop a nonvanishing expectation value
via the nontrivial minima of a potential (15). This model has a
physical spectrum of finite mass particle (i.e. the phototi turns
into a relativisticplasmon) and the charge of all physical parti
cltes is zero as a vresult of the vanishing of the zero transfer
formfactor. The formal mathematical aspects of this model, inclu
ding its renormalization theory, are well known. Because of the
formal analogies with the Nambu-Golstone models, the Higgs model
has been often refered to as spontaneously broken. gauge model.

In 1976 Swieca(37) proved a general structural theo-

rem relating the mass spectrum with charge sectors in theories
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with identically conserved U(1) currents (47)

Consider the form-factor of FHV.

<p| £ pt> = r(p-p‘)“'(p+p‘)”f_(b+p')“'(p—p')y‘ F(t)

(50)

" From (47) we obtain

Fity = i &) (51)

t

If the stétes carry a hon trivial charge, we have
G{0)#0, and the pole in the pﬁoton—vertex may be taken as an in
dication of zero mass photon state. However the dispersion theo
retical formalism linking poles in on-shell quantities with phy
51ca1 particles is only valid if the particle |[p> pocesses a 19
cal interpolating field, which, as we have already stated, is
not the case in QED. So one has to find a method avoiding any
prejudice suggested by disnersion theory. For the purpose Swieca

studied the commutator
°"(X), i'(a)| Ip=0> - (52)

Jf one wants proper states, one should imagine the

TE=O> s being normalized packets which are narrowly centered a

Pound p=0. In a asymptotically complete theory without zero mass
states there is necessarily a mass gap between the one particle
hyperboloid and the continuum in the"would be“charge sector.With
such a gap one easily finds a fast decreasing smearing function

g in x-space with the following p-space properties:
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g(py =0 7 lpg]|>8, 6< mass gap
g(p) = §(-p)
g(o) =1

Local commutatives now yields

JCi(;)I < T:T?— s any k - (54)
X
This is now confronted with the direct calculation
{({only one-particle intermediate states contribute in a theory

with mass gap)

L
. . 1pX - -
C{x) = 4mi Jdap e+ 6 (t) g(p, Vp24+ m2-m)p
Y Z4m t
(55)
: 2 n/2 . -
Tim cl(x) = i 6 (0) E__TLMZ) (T2 3
., Y

ntl = dim space time

Hence -for QFT in more than two dimensions the compa-

tibility demands
G{0) =0
i.e. charge neutrality. The charge of an identically conserved

“current is therefore screened, only if there are true photons

do there exist nontrivial charge sectors.
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Swieca noted that, similar to the Nambu-Goldstone situation, the
two-dimensional situation is exceptional since any conserved cur

rent may be written in the Maxwellian form with

There are many models with conserved currents and mass gapse.g(.'°8

Ty b= g e, 30 (57)

$.= Quantum Sine-Gordon field.

It is interesting to understand the screening proper¥
ties of the abelian Higgs model in more detail. Perturbatively .,
the two fundamental particles of the model are the massive vector
meson and the Higgs meson. Their gauge invariant local interpola-

ting fields are:

+
Fly - 6% (58)

"the composite field developing a nonvanishing expectation value.

‘The formal language of broken gauge symmetry is physically some-

what misleading. In contrast to the Nambu-GoMstone sijtuation when
the symmetry is broken:

,
[$0(x) d*x = = (59a)

thys
as a result of long range properties of states (even, if one han-
dles the integral apprOpriatQWS), in the Hiags model we simply ob

tain

)
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Jju(Xstx 'thys =0 (59b)

The resultihg'p{cthré fs.in compiete harmony with the"first law"
of gauge theories: _ o

"Gauge symﬁetries“ of the second kind can not be broken because
they do hot constitute physical symmetries but rather a mathema-
tical formalism by which the physical content is sepdrated from
the spurious properties of the mathematical description.

The formulation of the dynamical laws of gauge mo -
dels solely in terms of physical (Tocal) observables is presuma
bly a very difficult task and anyhow has never been ach®ved in
mathematically managable form.

A simple derivation of this almost philosophical
point as a consequence of the mathematical consistency has been

(39) in the contéxt of lattice

given by Elitzur and  Luscher
gauge theories. This view point was known for a Tong timéqg%o
most physicists with a background in General QFT. I remember

disCUSsion§ with Andre which we had more than 10 years ago. It
is interesting to recall that one of the inventors of the mi -
"nima1 model of eletro-weak interactions at a High-Energy Con -
ference(4]) called it a "moot point". Recently 't Hoort(#2) ma
de the screening aspects of the Salam-Weinberg model more ex -
plicite by exhibiting interpolating SU(2) neutral composite

fields for all the physical particles appearing in every order

of renormalized perturbation theory:

physical Higgs particles: ¢m>,e“¢.¢” e.¢.+

.],
13177 ijhi d’j




- 26 -

- & +
physical vector mesons: :sij¢i(Du¢)j ) By ¢i(Du¢)j

. * -
~Tin comb. of (¢°D 6.8 )

~ photon: " 1in comb. of (¢*Du¢;8u)
¥ phys: XN
©phys” € %Wy 0 "R

Here Wy and wR are the left handed doublet resp. the
_right handed singlet and Bu is_the gauge potential of the y(1)
factor in the SU(2)xU(1) Satam-Weimberg model.

Does this picture hold ifsimple gauge group are "spon -
taneously broken"? As an example consider the Giorgi-Glashow 0(3)
model:; it is believed that the physical particies (without fer -
mions) consist of the Higgs patticle, 2 charged massive W-meson
and the photon. The previous construction of local interpolating
gauge invariant polynomials which perturbativly couple the vacuum
with the corresponding one-particle states only works for the

a a

Higgs particle and the photon: ¢+¢ and Fu ¢ . The relevantques-

v
tion is: can onegenerate ordinary electromagnetism with charge
sector for the W's from such a "sportaneous gauge symmetry brea-
king" or are the W's dynamically screened or confined? In
more technical terminology: does the Bloch-Nordsiet exponenti -
ation of infrared-singularities occur, thus leading to physical
cross section with a finite resolution for the plioton cloud ?

(43) concerning the occurance of non-Bloch-Nord-

Recent results
siek terms (non-leading infraved singularities) as a result of

the nénabelian nature of the gauge group may be re]evant for
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the identification of e]ectromagnetiﬁm' from simple gauge groups.
The question whether.the Tanguage of "spontaneously broken gauge
symmetries" is a consistent, albelt somewhat formal terminology
hinges very much on the outcome of ‘such invest?gationé. Up to
how, ignoring some incorrect discussion of 0002(44), this termi-

no1ogy has not Ted to misTeading conclusions. The theorem of

Swieca is applicable to the 0(3) model and other gauge models

with simple nonabelian gauge groups with monopdles; not to the

“problem of colour but rather to infrared properties of the mono-

pole sectors. With

o s PV HA a ., a
k" = 8\) € ka o) (60)

we have a gauge invariant identically conserved current whose

‘non-trivial charge requires the presence of "photons”.

It should be clear that Swieca's theorem does not ex-
clude thé occurance of séctors in massive theories whose conser-
ved current is not identically conserved. For example in QED with
a massive photon put "by hand", there exists, in addition to the

identically conserved Maxwellian current another conserved (but

‘not identically) U(1) current giving rise to sectors. We specula-

~ted before that nonabelian simple gauge group models with an in-

complete Higgs mechanism may have certain aspects in common with
QCD type models. Hence it is interesting to know whether color
neutrality of physical states is a general feature of nonabelian
gauge theories. This problem of "Kinematical color neutrality"

was discussed occasionally among Swieca and collaborators. The con

.sensus was that such a property pervades all non-abelian gauge

theories, "broken" or “"unbroken". The argument is as follows .
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Consider a lattice gauge theory (for convenience) in “the time 1i
(45)

ke gauge and the Hamiltonian fotmulation
U(time link) = 1 , i.e. formally Ag® =0 . (61)

fn such a formulation one can introduce field strength

E% which still transform under spatial gauge transformations:

Uop(ﬂ) f?;) UOECA) =1Af1§Jab eb (62)

On the other hand any physical (= gauge invariant)sta

“te on a lattice may be obtained by performing "gauge averaging"

starting from ahbitrary states.
uphys > = [u () > T da (63)
dAx = normalized Haar measure
_ The volume of the gauge group on a finite lattice is
finite and hence this averaging is well defined. Using the invari-
ance of |yphys> under Uop(A) and taking the expectation value of
(62) between physical states one obtains - a consistency condition.

<iiphys IE |y phys> = 0 : . (64)

The infinitesimal generator of U{A) is the lattice ver

. sion of the Gauss operator "divfa—pa (pa contains the density co-

ming from covariant derivations) and the gauge invariance of{wphys>
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is simply the validity of the Gauss law between physical states.

In the temporal gauge we obtain therefore:

<wphys. Q% [vphys.> =:§'d S <yphys. E*(x) |wphys.> = 0
: (65)

It is technically difficult to generalize this cons-

‘truction of physical states to the continuum. Such an idea can-

hot work if one includes the vector-potentials in the Tist of

operators; because of its additive piece in the gauge transforma-

phys. This is
the reason why even in abelian theories one has to resort to a mo-
re sophisticated‘construction viz. Gupta-Bleuler , if one wants to
incorporate vector-potentials. For objects which only rotate under

gauge transformations this most visible obstacle is not there. I

- do not know whether the Faddeev-Popov framework or other construc-

tions allow to introduce fifiite matrix elements E's in'a suitably
defined physical Hilbert space. |

| Such a "kinematical colour neutrality" does not resol-
ve the problem of "gcreening versus confinement". In the Salam -
Weinberg model this neutrality is abhieved by screening. In the

QCD the mechanisms is believed to be confinement. This problem of

- screening and confinement was the prime motive for carrying out

rather detailed investigations in two-dimensional gauge models
We will return to this in the next section.

There are many more structural properties of QFT

which Swieca investigated.

Together with R-Haag(46) he tackled the very diffi -
cult problem of asymptotic completness. On intuitive reasoning

it was expected that a certain property corresponding to the fact
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that a finite volume of (classical) phase space contains a fini-
te number of quantum states, appropriately formulated in QFT and
there called the "compactness property”, should play an impor -
tant role for asymptotic completeness. Indeed certain (non-lLa -
gréngian) models of Wightman  fields which fulfilled all "axioins"
except the compactness ptoperty were showh to be asymptotically
incomplete. Many yéaks later rather trivial applications of this
compactnéss were made in two body nonrelativistic potential scat-
tering(47). A "geometric scattering method"(48) based on the Haag-
Swieca compactness property becmmspopﬁiar. However even in higher
body potential scattering the prob1em of asymptotical completeness
‘based on the geometry methods is physically subtle and mathemati -
Ca]ly complicated.

| Another interesting structura1 problem arose in con -
nection with the so called "short distance algebra" of Wilson and
'Kadanoff(49). Within the context of renormafized pertirbation
theory the definition of renormalized composite operators  and
their short distance properties was investigated most ﬁhorough1y
notably by Z1‘mmermann(8 ) and Lowenshﬁn(SO). The result is a
Wilson-Kadanoff short distance algebra in the following sense:

N
Cy(x) Cy) = ] Fi xoy) G (y) + Ry(xy) (66)

Here Ci is a comp]efe set of dynamically fndependent
Ti.e. The ideal defined by the equations of motion is divided out)
composite fields constructed from products of basis fields {which
are included in the denumerable Tist of Ci) and derivatives. The
series of the right hand side is asymptotically converging: The

remainder term R, vanishes faster than any preassigned power.
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RN(x,y) - O(|)(u . yuln(N)) C o S : . (67)

if one increasés N correspondingly. For simplicity of notation
we have absorbed all internal and Lorentz indices into i,k,1.

In a scale invariant QFT thereexists a tight rela -
tion between the opetator scale dimension of the C%s and the sin-
gularities and the directional dependence of the coefficient func-
~tions. In fact by makinhg assumptions on the transfermation pro -
perties and the number of "relevant” operator with dim <€ 2 for a
short distance algebra in two dimensionsKadanoff( ) proposed a
derivation of the critical indices of the Ising model (abandoning
the lattice by passing to the scale invariant Timit of the model). These
ideas of using properties of scale invariant limits in order to
;obtain dynamical informations are the basis of the closely related
"conformal bootstrap" program of Migda1(51) and Po]yakov(sz).
Swieca started to get interested in conformal invariant QFT around
1972. By that time the causality aspects of global cdnforma? trans
formations were already understood(53 ). However apart from some
trivial caées, the form of the finite conformal substitution law,
which in principle follows from the infinitesimal relation, was
not kﬁown. In two papers(54) of Swieca in collaboration with others
authors it was demonstrated that in local QFT one obtains represen
tations of the (infinite sheeted covering group gﬁ?D,Z) of the con

formal group SO0(D,2) (D=dim. space-time). For irreducible represen-

~tations the local field A naturally decomposes into non-local com-

ponents:

~

A(x) = ldg Ay | (68)




e
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(the - -integral being a sum in all explicitly studied cases), such

that the conformal transformation taw for each irreducible compo-

‘nent is {we restrict our attention to proper conformal transforma-

tion corresponding to the parameter bu).

by AR(x) ut(b) = - ] AE(XT)

U+(bs%)d1?A_g GP(bX)E } _ (69)

~bx? )
with Xp = grgin » o(b,x) = 1-2bx + b2%x?.

and (oﬂ:)A being the analytic continuation of the corresponding

euclidean expressions with the *i¢ Wightman prescriptions

The & spectrum which also appears in the center of the

.conformal group Taw:

7 A%(x) Z¥ = exp-in(dimA - 28) AS(x) (70)

is intimately reTated to the dimensional spectrium of the theory
For free fields the t£-decomposition of A is the same as the decomposi-

fioh'into creation and annihilation parts. The fact that the integration of

Cinfinitesimal transformation properties of QFT may lead to ray representations

uf the covering group 1S interesting in itself. Without this mecha-
nism it would appear as a miracle thatifor example quantum soli-
tons in the O(N) Gross-Neven model transform as iso-sbinors(SS ).
In a subsequent publication Swieca( 56 ) and collaborators inves-
tigated the validity of global conformal operator expansions. On
the vacuum they have the form:
(71)
AE(x1) B“(x2)|0> = 7 [K[N?’ﬁ(x]Lxs,x]-xs)CTmﬁx3hb%|O>
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" Here the kernels K are some kind of globally conformal
invariant vertex function. On the vacuum only the £ = 0 compo -
hent contributes, on other states (for example those generated
by ‘the application of Tocal fields) also other E-components par-
titipéte. These expansions for free zero mass fields and  the
Thirring mode] turn out to be convergent whereasthe local Wilson-
Kadanoff expansions are (even for free fields!) only asymptoti -

cally convergent. :
Hence we believe that such global expansions exist with-

- out convergence problem. For the global expansion on the vacuum

(56 ), this tur-

it is fairly easy to give explicit formulas for K
ning into a more difficult task away from the vacuum(56 ). These
global conformal operator expansion have their euclidean counter-
part in the euclidean conformal bootstrap program in the form de-
veloped by Mack(57).

The massless Thirring modet furnishes a nontrivial so-
lution of this program in two dimensions. For every real spin

(the two dimensional L-group is abelian) and sufficiently posi -

- tive dimension (depending on the spin) the Thirring model in the

general form as discusséd by K]aiber(58 ) solves the bootstrap
equations. We thought (at the time when we worked on these pro-

blems) that this is the only solution. However, recently it be-

- came clear to us that there are many more conformally covariant

solutions. I will return to this point towards the end of the se
cond section in connection with the euclidean functional integral
construction for Kinks.

In the days of the conformal bootstrap program we were
interested_to'understand whether such converging global operator

expansions of the form ( 71 ) may hold more generally

Th any Wightman theory. They certainly are valid for massive
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free field and their composites . Establishing such expansions
would be surely  of theoretical as well as practical use.
Thegreticajly it is of great interest to reso1ve a generaj_QET
in terms of 3-point function Jjof the composite fields. Practi-
cally they may serve to'exp]ore.those regions of momentum space
which remained unaccessible by using CaJ]én—Symanz1k(6p )-tech-
niques fogether with Wilson-Kadanoff short distance expahsion
(i.e. infrared factorization regions in QCD).

‘We did not investigate these problems on a profound
level, because after 1974 there emerged other very interesting
‘problems in QFT related to the vacuum and particle structure.

There are three papers of Swieca and collaborators

falling into this category of structural investigations which
‘are concerned with stability and causality problems. In two of
those publications these problems are investigated in field theo
ries with time dependent and stationary external potentials.
This work is én extension of that of Schiff, Snyder and Weinh -
ber'g(61 )'and of Velo and Zwanziger('Gz). Some of the mathema-
tical methods were later used by Fu11ing( 63) in his treatment
of the Hawking effect.

The third paper on causalityis motivated by preceeding
work of Lee and wick( 6 ). These authors introduced complex poles
in an S-matrix formulation. Swieca and Marques( 65) studied these
problehs in a more field theoretical setting using the Yang-Feld-
“man equation. Although in fheir approach there was no problem
with unitarity and Lorentz invafiance, they showed that the basic
" microscopic causalities of the propagation are enhanced through
the contribution of virtual states and generally lead to an unac-

ceptable deviation from macro-causality.
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.MODEL STUDIES AS A LABORATORY FOR NEN IDEAS ON DYNAMICAL PRO-
PERTIES OF QFT

At the beginning of the 70's a renewed interest ﬁh
the age-old difficult problem of QFT: the ;onnection of parti-
cles and fields began to develop. Here the QFT of the 50's and
60's had little‘to offer; pertubative Lagrangian QFT
only accounted for those particles which had  ‘a sufficiently
simple ré]ation to the Lagrangean ffe]ds. On the other hand
the approach of QFT'based on general phySics postulates (some-
times referred to as Axiomatfc QFT) was too inespecific.In the
LSZ--and Wightman schemes particles played essentially (apart
from perhaps Nambu-Goldstone bosons) a phenomenoclogical role;
together with the causality properties and commutation proper-
ties of charges or currents one was able to obtain Dispersion.
Relations, Sum Rules and A11 That. "Constructive QFT", closely

_retated to Axiomatic QFT,was unable to produce new intuition for
“peculiar”(from the conventional viewpoint) dynamical proper -
ies of the physical state space, e.g. 6-vacua, kinxs,solitons
order-disorder duality etc. This is not to say that.those new
structures could ndt,'with mddest ease, be incorporated in QFT.
One of the first models investigated with this specific purpo-

66)intr‘oduced by

se in mind was QEDZ. This model was aTready(
Schwinger in 1962 as an illustration of his specu]ation that
U(1) Gauge theories can exist in another phase than the QED
phase and that the massless of the photon is not an automatic
consequence bP this principle of gauge invariance of the an

kind.
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I'n modern_functiona1_1anguage Schwinger's observa-
tioh can be parabhraéed“in fhé fo]iéﬁiﬁguﬁay. Consider(67)'the
functional determinant of the two.d1Méntiona1 euclidean Dirac
Qperator: |

| "—§§f~%—§"= e, =iy eYieny (1)
How can one define this formal object? In order to obtain a de
'finition for sufficiently general Au‘s one has to go = beyond
the Fredholm method. | |
- There are two known ways:
1) Use the conformal invariance of the massless Dirac equation
.;1h order to pass the compactfied euciidean space:R2+Rz = §?

Verify that all “"classical" auantities (e.i. Green funtion

Gé) of the compactified eigenvalue equation (R=radius of 52)

B = N =y (100) = [ 9T 06002 (2)

RZ2+x2 R2+x?
+
=7 ('= omission of X, =0) (3)
© k A | X
k

‘are the same (apart from conformal factors) as those of the
R> theory., Note: this holds only in the absence of zero modes

Ak=0 for which the precise condition is:

Non-classical quantities as the logarithm of the determinant

I are defined as:
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= £(0,A)) - £°(0,0) + (E(0,A) = £(0,0)In y
£ | _ | »

wi th E(s,A ) = 7 L (6)

o R B W A | e
The £ functions has enough meromorphic properties

in order to allow the analytic continuation necessary for de -

fining T. This definition is reasonable because

{a) it reduces to the usual one for finite determinants in which

casean analytic continuation is unnecessary

(b) In the absence of zero'modes(S)obeys the Schwinger variatio-

" nal calculus e.g.

when the left hand side is the (independently defined) induced
current. _

The same formula (5) is obtained if one uses Pauli-
Villas reguiarization( 67).
The resu]t.of an explicit calculation

e2

e -
r'= oz J Au(z) A¥{z) + contr., from zero modes

could have been anticipated (apart from the nonperturbation ze-
ro mode contribution) on the basis that in the Feymman-represen-

 tative of T




only the first "term survives as a result of the vanishing of

the symmetric part of the traces containing more than two two-

dimensional y-matrices.

For configuration with vsn (nontrivial winding) the first inte-

gral in (8) is defined by a "finite part” presc%iption using a

'sp]it N

N M Tax? (9)

Now we briefly mention the second method which is in

spirit closer to the thermodynamic limit method of Statistical

Mechanics.

2} Study the Dirac equation

PR A vy (o

.as a boundary value problem and compute the determinant as in(% ).

This approach is very subtle since the type of boun -

dary condition consistent with Ys and C-invariance is hecessarily
non]oca1(68) . The form of the determinant is similar to {(8) but
there is yet ancther contribution from the boundary.

This construction can now be used in order to compute

euclidean correlation functions. The mass term in (8) will lead

to a "plasmon", a model illustration of the "Schwinger mechanism",

Assuming for the moment that there are no zero mass contribution

(69 )

for I and G one obtains the Mathews-Salam rules for the inte-

gration over fermions with the help of the Grassmannrules.
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P xg) e x) Vg b Wy, Ay (20 oAy (2,)>

| | | (17)
1 (Tya ] amSo(A)-mmz M ; ey

=5 jZPAU]_e 0. N u ?FU%(Zi‘ Z‘G(x},y],Au) .....

The term in the sum represents the various Wick contractions be -

tween Y‘s and w+'s using(67);

p{x) T (y) = B0GY) = Go(x-y) exp Tin (A)
—
This contribution may also be written in the compact form:

<¢0(x1)....wo+(y])....> exp. lin. (Au) (12)

where the first expectation value is that of free massless eucli-
dean free spinor fields and the second factor containg the linear
exponential external Au*dependence whichs will be called the in -

ind.
Hence the remaining integration is of the form

duced part T

%JEC’AHJ exp - So(A ) - m2|A 2 T (Xy..-¥q---) (13)

U Jw ind

_ o f
A, = A + A _ (14)
where AUC1 is the (classical) minimum of the total induced action.
! inear terms in AUC1 do not contribute as a result of the classi-
cl

cal equation for A11 and the quadratic terms are source-indepen-
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dent. Their contribution to the functional integral is therefore
absorbed in the factor Z. In (13) one has the option of selecting
different gauges by adding theiappropriate gauge;breaking terms.
In the form (13) ohe obtains the expectatim values in Schwinger's

(transversal) gauge as (after continuation to Minkowski space):

< w(xT)...w(xn)@(y])...qiyn) = eiF(x’y)wo(x]...xn,y1...yn)

F(x,y)= m {Z YX? YX?(_iA(+)(XJ-"Xk)""iD(-”(Xj-Xk)

"j{'k 1 1 (-IS)

+ Yy: Yy[i (iA(+)(yj'yk) - 'iD(+)(.yj‘.yk))]

+ZYX? Yy; (iA(+)(xj_yk)' 1D(+)(.Xj'yk)}

L
where iA(+)(x) = ?% szp e 1PX S(p2-m2)e(po)} (16a)
| [ . 7 -1
and int(x) = 51 [47p &(p¥)0(po) E ‘p"-e(;c~po)] (16b)

is the infrared regularized zero mass two point function.
The towwmtehﬁ11%wieca analysis starts with these corre-
‘lation function of Schwinger. The reason for being more careful
than Schwinger in their derivation, in particular emphasazing the
subtleties of zero modes, will only become clear later on.
Lowenstein and Swieca were able to unkaveT the struc-
ture of the undér[yinq physical state space by a very ingenuous
trick. This problem cannot be settied by referring to Sﬁiéca
structural theorem of 1976 because of the two-dimensionality of
' the'prob1em. Naive intuition on]d lead one to expect some kind

of "screened" fermions. However the results of the LS investi -




gations give a more radical pfctute: the physical content is des-
cribed just in terms of & massive bose field }, the same ] which

appears in the transversal ma;sive_Autr

.'In a suitab}e operator
gauge, the so called "/» - gauge” which dpart_from _§ K1eﬁntrah§
formatiqn isé.uniﬁary gaugé.simi}ar to the.ohe fn the_H{ggsﬁdeéﬁ,
this physicéT coﬁtent beéomes Very.tfénspArent.-. o ”

Explicity one obtains(]] ):

v - _ V' \Y z = .
R D)) , (@ -m g[_o (17a)
. m = =

1 ] ; 5 - » 5 /ﬂ )
. w/ﬂ - /.%% e"zﬂ1¥ el/WY Z(X) g, U=l ]] (l7b)
G
2

¥=infrared parameter in(16b)

Here o is a two component constant unitary operator which commutes
with }. The presence of such a constant "spurious" operator in -

)

. . . - : 7
dicates a violation of the cluster decomposition property( as
a consequence of a vacuoum degeneracy. In a description based on
a unique vacuum, the operator o will just be numerical phases:

181
01’2 IVaC;61,@2> = e

2 |vacse, 8, > (18)
The operator gauge transformation (which involves in addition a
Klein-factor.being responsible for the change of statistics be-
tween the two irreducible Lorentz representations w] and wz)

has converted the original spinorial "quark" field into a bosonic
field. This mechanism is related to the subsequently discovered
"hosonization" of Mandeistam(71 ), a point which will be explai-
ned later on. Lowenstein and Swieca emphasized the fact that gau- -

ge invariant quantities e.g




e

y
P(x) exp ie JA“ 4t v (y) ‘ (19)

su1tab1y renorma]1zed, are the same quant1t1es in the Vr gauge

as in covar1ant gauges In the vro gauge there ex1sts no conserved

"aX1a1 current The gauge 1nvar1ant ax1a1 current sat1sf1e§ the'

two-dimensional anoma1y( 72) equat1on
ith j % = iV o=
| wi 3y €1yl auz (20a)
hy s = 82 o pwy (20b) -
] 47 v .

This is the manifestation of the Schwinger-Higgs mecha

nism i.e. a breakdown of the formal chiral U(1) invariance:

<$'w> =C coss , <$751p> =C.sing (21)

" and the codnversion of the photon into a Schwinger-Higgs plasmon.

The "vacuum angle" a=e];92 appearing in the vacuum expectation
values (21) of the gauge invariant composite operator superficially
causes a violation of CP invariance for 8#0. However by using chi-

rally rotated fields:
- 3 . 5
e 1YV 0y (22)

for the description of the model, one realizes that a physical CP
invariance continues to exist at least in the massless version (va

nishing Lagkangian quark masses) of QED, .
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I'f one would use another gauge different from the /=
‘gauge, there would be unphysical "ghost" states of zero mass and
with negative metric. These states formally support a non-gauge

invariant but conserved axial current, e.qg. in the Lorentz gauge:
R B L A (23)

However the "ghoststone" states(73 ) which this cur -
rent generates if applied to the vacuum,are void of any physical
meaning. |

A good physical way to understand the basic ditferen-
ce between the Nambu-Goldstone and the Schwinger-Higgs chiral
1ink is to think of two ferromagnets, onewith a local interactioﬁ
and the other with an interaction of such a long range that mean
field theory becomes exact(70 ). A particular vacuum can be labeled
by the direction ot symmetry breaking. In the local case it is well
knowh that by switching on a magnetic field in a finite reg{on in
a direction different from the vacuum direction one will turn the
vacuum direction inside this region; the energy of the partially
'changéd vacuum is only different from zero around the poundary of
that region. For lecng range interaction the energy increases with
a larger power of the volum This difference in the energy balance
s reéponsibTe for the fact that a short range ferromagnetic res -
pnﬁds to an external agent by an alignment whereas the long range
ferromagnetic is inert to such agents. Ihis picture was known to
Swieca for a long time:; he pointed out to me the relevance of
Haag's wor'k(70 ) Later Kogut and Susskind(74 ) introduced the very
appropriate nomenclature of Yacuum seizing" for the chiral proper-

ties of a Schwinger-Higgs vacuum.




-~ 44 -

In order to obtain a better understanding of those
dynamical featUkes which are not an artifact of the soluble mass-
less QEDo = Swieca began to familiarize himself around 1977 with
the euclidean functional techniques since they constitute the
only known systematic way to relate Lagrangian with correlaction
function. By that time it was already understood that QCD has a

O angle which enters through topological properties of the euclidean

. functional integral.

Here the basic observation was that there exists

~an ambiguity in the quantization of classical Lagrangians by

Feymann-Wiener path integra]s. For example in QCD the pseudo-sca-
lar density FF has a representation {(we use the SU(N) matrix for-
malism)

FF:= tr fuv FHY= 3, I+ (24)

_ 1 KA u_ VXA : 2 :
ruvﬁ'ZEUVzAF s 17= 2tre @waﬁ”k+§-&vﬁxaﬁ

Hence, this density, added to the cla ssical Lagrangian

L= L, + oFF | | (25)

B cl

~will not change the classical Euler-Lagrange equation although it

may lead to 8 - dependent correlationfunction via euclidean

functional integrals if configuration with g =il—z uf‘FF # 0
67

“turn out to be relevant. In that case one would like to interprete

~the contribution of one "winding number" g

| [F‘Au,[q  Jrat (26)



as a tunelling amplitude between two vacua

ifq

< ntin “n'-n=q © (27)

The 8 vacuum is then defined as

8> = g |n>ei8n (28)

which leads to an interpretation of the functional integral as

<@' ]8> =5(pn"'-0) J[dAu] e-JLedkx

Historically the & vacuum structure of nonabelian gauge theories
was first exposéd in the temporal gauge where there exists enough
gauge freeaom-to interprete the A]J 's with a fixed winding num-
‘ber q (instantons) as interpolating configuration between topolo-
gically 1ne§uiva]en£ classical n-vacua. These arguments do not
ho]d.in'other gauges (viz. the Coulomb gauge with strong boundary
condition ) and in theories without gauge fields i.e. the two
dimensional noniinear 0(3) Sigma model.

Generalizing from the quantization ambiguity of

(75)
a quantum mechanical particle on a circle 3Swieca and Rothe found

an intrinsic way of introducing ¢ vacua(76L

In Quantum Mechanics with a simply connected con-
figuration space, the validity of J. von Neumann's uniqueness
theorem assures that thére is no quantization ambiguity. If one

were to change the standard representation by writing:




p, = =1 g~ + A.(q) (30)
i qu i
w1th Bj AT —Bi Aj = 0

then the dauge transformation & in Ai = ai¢ ieads preci$e1y

to the unitary equivalence with the standard realization. In a
multiple connectéd space the formal application of such a trans-
formation leads to a multiple-valued wave function.

b —> ' (q) = e L)y (q) (31)

This happens for example for a particle on a circle where A= O/2m

8

leads to ¢{q) = R

In passing we mention that by slightly generalizing the formula

{30)s in order to include “"nontrivial bundles” with transition

functions.one demonstrate that the most general canonical system

on non-simply connected spaces is equivalent to this "gauge"

form.

In QFT this construction has an anatogue. An

important class of guantization ambiguities is obtained via the

~existence of a topological density. In its most general form @

topological density gq(x) is a (pseudo) scalar composite field
whose integral on euclidean space does not change ypder an infi-
nitesimal variation in the manifold of field configurations. A
mathematically more convénient definition is the language of
differential (d+1) form ( d+1 dimension of space-time).

There are many physically relevant topological den-
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sities, in addition to the density (24) appearing as the axial

anomaly of a Dirac equation there are the Pontragin, Euler and
| (77)
Hirzebruch censities of euclidean General Re1ati%ig and
- 7

the topological densities of the various Sigma-models

Let [¢ (x) 1} be the physical configuration space at

“ohe time e.g. in gauge theories the class of all gauge field con-

figuratibn_which tre equivalent under (nonsingular) gauge trans-

formationsnat one time. Then an "angular variable" may be defined

via:

Canne Y
=i
Pt

q lol = 2n dx Q(x) = (32)

i
o

e —

. where the integration is carried out along a path connecting the

two field configuration with the time variable parametrizing the

path. This variable doés not depend on the details of the path:

under a infinitesimal variation it doés not change. For path which
can be continously transformed into each other , g has the same

value. In particular for a closed path (assuming fé11—offproper—

~ties at spatial infinity) which is transversed in a finite time, the

integral is a multiple of 2 (Q has been appropriately normalized)
The case of an infinite time interval will be considered as a limi
ting case. Without such boundary condition one may ehcounter si-
tuations in which g/2n has a fractional yuantization®.

In analogy with the quantum mechanical cases one

finds the quantization ambiquity:



w(X) = o A 0 s4qle] - (33)

resulting from a Lagrangian

[[¢’$J=L0\} $] v o2 o] (34)

with the corresponding action:

&

S = Sq + 8 de Q(x) (35)

There is a certain similarity with the gquantum
mechanical Aharonov-Bohm effect; there the & has the interpreta-
tion of a magnetic flux, here the 06 measures a "magnetic hyper-
flux™ through a (topological) hole in configuration space.

Note that q [¢] debends on certain topological
aspects of the history of the path, not just on ¢'(§).

It is convenient to usé a parametrization of configuration space

‘say T > A  whose different gq - values can be associated

with different values of the A - field configurations. This
process of "unwinding" the configuration space will then permit
an interpretation of non-trivial topological path configurations
- {(semiclassical instantons) as links between inequivalent classi-
cal A - vacua.

This picture, which is usually enforced by imposing

a temporal gauge condition, will then energy in a completely in-
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trinsic, gauge dnvariant fashion. An illustration of this was given . by
H. Rotﬁe-and Swieca for the standard formulation of the 0(3) Sigma model (76).

‘From this interpretation of 8 as a quantization ambiguity it
should be expected that 6 has quite différent renormalization properties
than ordinary Lagrangian parameters i.e. couwling constants. We will return
to this point.

The problem of integer versus fractional winding numbers s
dynamical. For pure nonabelian gauwje configurations without the presence
of matters Marino and Swieca gaw convincing argumenté<7gé1beit not a
proof, that the spectrun o fwinding nunbers alTowed by the finiteness of the
action is integer. With matter i.e. for the induced action.their argunents
break down, and, as we will see later on,. one encounters examples of non-in
teger winding numbers.

It is quite instructiwe to understand QEDZ. and its generaliza-
tions within the euclidean functional integration. We have set up the ne-

cessary formalism already at the beginning of this section; the only missing

piece in the induced action is the topological contribution:

e F- 2

H Jl €U\) v dx
This time, of course, we will not throw away the zero mode contribution in
the determinant and in the Green Functions. The induced action has now the

form ( for a quantity carrying a well defined chirality ):

S. Al =5, +m? {A 2 4+ zero mode contr.
ind - U AR (36)
+ 182 [ e r (x y )
Iy [Tpv Ty ind Y7172
where Fli ' is the contribution of the external field dependence of the
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zero modes and the modified Green's functions. This formula hesults from

a straightforward applications of the Grassmann femmion integration rules
by incorporating the effect of zero modes which brings about a derivation
from the Mathews-Salam -fomula (11). A close exmnination(aozwhich Cowill
not be carried out here , rewals that the zero mode contriﬁution in.r ind
~and of the determinant compensate each other, thus leaving a Gaussian inte
gration over Ah - which, for the gauge invariﬁnt quantities, gives pre-
cisely fhe same result as the "reduced vacum fomalism" of Lowenstein and

Swieca, e.qg.

P(x) B(x).... > = <BJTX) (x).... o o (37)

This model therefore Shows a Higgs-Schwinger mechanism of chiral symmetry
 breaking: the photon acquires amass, as observed by Schwinger, and the vacuum
expectation values of chiral symmetry carrying operators as (21), are
different from zero as a resujt of the Atiyah-Singer-'t Hooft ' zero modes.
‘However the model is too unrealistic .in order to shine any 1light on the real
“.chira] U(1) problem" as encounteredin QCD. A two-dimensional model, which
in certain aspects is somewhat close to QCD (asymptotic freedom mass-transmu-
.tation, nontrivial topological gauge classes) has been proposed and studied
by K. Rothe and'Swieca(]?%ts Lagrangian is obtained by combining that of the

Gross-Neveu 4 - fermion coupling with QED.

L= -

) —

N O - [ .5 va
P Tiar Sy 4 8 (@02 + @ wJ
(38)
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- The fermions are taken to helong to the fundamental U(N} represen-

tation and the factors 1 . 1~ have been introduced for Tater conveni-
e T N D _

ence.In contrast to QCD4_the model is not SU(N) .chira?1y invariant but only

exhibits U(1) chiral 'sMnmetry. In fact the only 4 - fEHnion interaction in

d=2 which is SU(N)-chirally invariant is the Thirring interaction which, un-

~fortunately does not lead to a mass transmutation.

A careful investigation of the pure Gross-Neveu model carried out
by Koberle, Kurak and Swieca has shown (81%
1.} The Gross-Neveu fields split into a noninteracting "infraparticle” factor
carrying the U{1) x U{1) charge and a massiwe SU(N) field @ with exotic

statistics:

0

e (x) = exp i —Eo(v%o(x) + l dE*30g ) @f
i

=

(39a)
— . _ N WV
by o= T St ¢
Y B — i i Z
mpf"=\/-li /MY, T.\/ = 7 App D[st} Px) + | 200 D(XDE)]
2% P 2 4y J
1 1-D 1 Y 1.D
-E 11() A YUIP = T QU\)B (I) (39b)
m
)
L~ = diagonal X - matrices
. (82)
2.) The y . - field interpolates a known factorizing S-matrix. The resulting
f

unusual particle statistics (which may be rewritten in terms  of ordinary
statistics) is helpful in order to understand the bound-state structure: the
antiparticle is a bound state of N-1 particles thus examplifying the SU(N)
(instead of U(N)) invariance.

| The spontaneous mass generation in the Gross-Neveu model is, as

expected ,accompanied by the appearance of zero mass excitations. This is remi-
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niscent of the Nambu -Go]dstone methanism But as we have seenh in our gene-
ral d1scuss1on of sect1on I, it does not lead to a spontaneous symmetry

breaking Zero mode exc1tat1ons 1n two d1mens1ons only ar1se from exponen-

- tials of zero mass f1e1ds and these 1nfrapart1c1e factors, far from destroy1ng

the U(l) X U(]) 1nvar1ance actua11y carry the correspond1ng se]ect1on ru]es'
What happens now if the A gets coup1ed to the U(1) part of
the model? The "bosonization" 1brmu1a (39) suggests that the Laarangian has the

form:

L=1Lyqy * Lsuw (40)
1, ie
= LF + =~ B3 4% 4 +—= A 1)
LU(U g W 2 b VAR (41a)
_Je 8 F

L ) B iDa ¢1D g’ { Jcos V2 Z A ¢- 2
L = — ¢ e [ C ] ff )

i i 2
+ I[ sin v2m A"gf ¢ D ] }
-f i
D
As expected, the Higgs-Schwinger mechanism leadsto a plasmon and
the chirality will be broken. Consider as an example the one-point function of

the chiral : operator:

,....
i
a0t
=
-
™

. .
3 (42)



carries fractional winding number
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The - functioral representation, after integration over the ¢-field yields:

<ol1, (x)]e> = <I¢(X9>G‘N‘ -J[dAﬁ]_e‘S‘“-Hd. o (43)
Sind = l-[F 2427 + Ip2 TA 2q2; T & [D(x-z)e‘ F o (z)d*z
4 )W 2 ¥ /N WYY
(44)

+i-2 . [dzz e oF
ar VN uHY

The functional 1ntegra1 for the 15t Gross-Neveu factor involves nonpolynomial
; , .

interaction terms in ¢ D ; they can be expanded in w%— . For our pur-
pose we only consider the 2"d U{1) factor. The "saturating” field configura

tion in terms of which the remainning integration can be explicity performed

A{%%]u1212wJﬁ 3

; % 5, (D(z) - A{z,e?/m)) (45)

U
N

(46}

Vo= Foow

e
i N je”" B

= [—

Using the well-known relation between the chirality transfer of operators

(in our case ‘I+ } and the winding nunber v :

AQ5 = 2uN

we see that this fractional winding number is in perfect agreement with
AQg =+2 of the operators (42).
This result was obtained from "bosonization" whose deeper rela-

tion to the order - disorder concepts of statistical mechanics will be explai-
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ned later on. o _

(83) to understand this fractional winding with the

Our attempt
use of the Dirac equation via tﬁé Atiyah - Singer - 't Hooft mechanism has
fai]ed. In that formalism the lowest non-vanishing composite expectation
value is the flavor - determinant:

— ] :
ST v o &

- thus indicating chirral breaking . This approach based on the compactification
RC = RE . although not illegitimate, yields vacuum expectation values of

I.'s which violate the cluster properties. The expectation values in  the

irreducible © - representation can then be determined using the operator
formalism of Lowenstein-Swieca.

As a consequence of our failure to understand fractional winding
nunbers as the result of the Atiyah-Singer-'t Hooft mechanism on some Riemann
surface as a covering space for (non canonical) fermions£8$é became convinced
that "bosonization" is essential for fractional winding.

There is another interesting message in (43): the _%T' expansion
is only reasonable in those pieces of the correlation function which do not
carry topo1qu e.g. oreobtainsa misleading picture if one decomposes the
second factor in (43) as a -%~ series expansion.

Now I would Tike to comment on the U{1) problem in QCDp. Although
in principle the Goldstone mechanism for the chiral  U(1) part fails as a
result of the axial anomaly and hence there exists no reason to expect(84)a
ninth Nambu - Goldstone boson (say in caseo’f SU(3)]c }, it is another matter
to really pinpoint the detailed dynamical mechanism yielding a "n - pTasmon“(85)

As the previous model the plasmon cannot be understood without the rather

subtle infrared properties one expects in QCD4 the dynamics,leading to a2
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massive T to be inexorably linked with the Nambu - Goldstone infrared dynamics
yielding massless chiral mesons. The importance of “bosonization" in the model
case together with the observation that "bosonization".is part of a more funda-
mental order - disorder duality scheme notrishes the hope that a dual variable
formalism incorporating spinor fields 1in addition to gauge fields should be
the necessary ingredients for a QCD4 Higgs ~ Schwinger mechanism including
honvanishing expectation values of ¢  and Vovg ¥ . Since we have
nothing concrete to offer, on this point we content ourselves with some consis

(85) which, as the reader will realize,

tency considerations a la Crewther
deviate in content somewhat from those of Crewther.

The standard direction of SU(N) chiral symmetry breaking
is:

+ _ ~ -18/N
< L.i bpi”g = Ce 6ij (49)

Consider first the v  dependence. The more general statement referring to
the addition of an arbitrary SU(N) x SU(N} breaking direction in the
Lagrangian, with a coupling constant that goes to zero.,would yield an arbitra-

ry SU(N) matrix V instead of 3 » which by going into an adjusted

1J
SU(N) x SU(N) frame , can always be chosen as (49). The direction in
U(1) x U(1) however cannot be adjusted by an external agent it is rigid i.e.
the 8 vacuum is " seized ", The dependence of (49) on © 1is the same as
in the corresponding Rothe - Swieca model for the same reasons namely  the
validity of equ. (47). However in contrast to that model in which the
fractional winding led to the enhanced 0 - period 2 wN, the effectived -

period in QCDg suffers a reduction as a result of the chiral Z,, factor in

the Nambu-Goldstone SU(N) chiral invariance:
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in QCD, @ .©/N is counted mod _2% o | | (50)

Now imagine that a Lagrangian quark mass term is added whose phy-
sical origin lies outside QCD. Because of the "vacuum seizure' such.an out-
side term does not influence the U(1) chiral direction of the transmutated
-QCD mass. In other words, the re]ative angle between the external mass
direction and the transmutated direction becomes a physically relevant quan-
tity. Thus in a model in which all quarks have a Lagrangian mass the situa-
“tion is very di fferent from the massless case. It is impossible to find a
chirally rotated interpolating field in terms of which the expectation value
takes the standard form with & = 0 . This raises the spectre of strong
CP violations for Lagrangian mass operators which are "out of tune" with
the chiral direction of the transmutated masses in the seized vacuum. At
this point we should not forget the special nature of the ©- parameter as a
quantization ambiguity which Jed us to suspect that the renormalization as-
pects are di fferent from those of ordinary Lagrangian parameters. Swieca
- pointed out to me the relevance of the work of Shifman, Vainshtein and
. Zakharov in this context. These authors showed (86)
a) The renormalized value of 9 can always be adjusted to zero by choosing
Pauli-Villars quark regulators whose mass - direction in chiral space is
suitably adjusted.

b) With the help of a real (non-ghost) quark of a very large mass which is
the only quark coupled to an Higgs "Axion",one can achiew 8 = 0 at the expen-
se of arbitrary small physical effects in the observable energy region.

On seweral occasion Andre discussed with me Witten's
ideas on the UY(1) problem in the _%_ expansion. At that time we thought

that such an approach could lead to a solution if
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a) Only the non-topological part of the functional integraTs is expanded in
1
N

b) The bound state picture can be understood in the m%m systematics.

The second problem is perhaps the most difficult one.  Even in
~simple models, in which the —%u- systematics is well understood in terms of

N

finite number of Feynman diagrams (e.g. the CP" Sigma model) it is not quite

known , what threshold property in lowest nontrivial order of _%_, should be
taken as an indication for the emergence of a bound state (87)
Leaving the U(1) problem aside, I now would Tike to comment on

(12) In order to have a clear

model studies of Screening versus Con finement
cut distinction on the lewel of physical states, we take the following defini-
tion of con finement. Consider a Lagrangian gauge theory with a "gauwged" quark
“spinor field v which has in addition a SU(_N)F flawur index in the fundamen
tal representation.

Def . Quarks are confined if the physical state - space does not contain

states in the fundamental SU(N)F representation.
The Salam -Weinberg model does not confine in the sense of this definition.

In that model the gauge color 1is called the "physical flavour",and therefore

the added flavor index is a mathematical flavor index. Clearly the interpola-

ting field:

(& = mathematical flawur)generates a physical state céffyingrfUndanental mathe
matical flawur. Such a model we call "Screened".

According to Wilson (88) » on important ingredient for the above
mechanism of physical confinement is the so called static quark confinement.
In a pure gawje theory without matter one studies the expectation value of the

path ordered Toop operator:
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< Pe J = te o

If one chooses a rectangular loop of height T  with T+« and width
L , the V(L) defined by the right hand side can be shown to have the interpre
tation of an interaction energy between two external qq sources in the dis-

tance L. The desirad "static confinement" behavior is for L » =
V(L) = aL + O(L) , a = string tension # 0 (53)

Recent studies in nonabelian lattice gauge theories including nu-
merical Monte Carlo calculations have led physicists to believe that the string
_ tehéion is non vanishing in the total range of the lattice coupling constant.(Bg)
An analytic proof has as up to now not been given, althouh recent works of

(90) and Mack (91)

- 't. Hooft leave the impression, that one has come very
close to a proof of (53).

Investigations of the physical confinement problem in the presence
of matter are much more di fficult; in particular the effective potential becomes
a less useful theoretical concept since V(L), as a result of ga fluctuations,
always flattens out asymptotically. With the exception of a four - dimensional(gz)
Z(2) 1atticé gauge model, the only models in which the physical confinement
- problem has been understood reasonably well are two-dimensional continuous
gauge theories (12) . It has been often stated, that the confinement in two-
-dimensional gauwe models 1is anh automatic conseqguence of the increasing Coulomb
potential. This is certainly true for the static quark confinement . In the QFT
including spinor - quarks, only the color - charge neutrality is automatic in
two dimensions. The investigations of "Screening versus Confinement" are

subtle. They have been carried out within the Tast years notably by Swieca.
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. I will explain some of the resu1ts in QED2 model with
SU(N).f1avouks. .Thé on1y gauge 1nvariant ﬁo1ynomia1s in are generated

by "meson" fié]ds.
v - (54}

Hence, according to the standard confinement picture, we expect
only "mesons” in the ttivia1 and thé adjoint SU(N) representations_

With zero Lagrangian quark mass one can easily exhibit gauge
invariant operafors which carry the fundamental representation. For their
construction one uses bosonization which, as we will show later on, is a
special case of the order - disorder duality. These operators are certainly
not polynomial in the origina1 w's Applied to the vacuum they create
"infraparftide” states transforming according to the fundamental representa-
tion of’SU(Ni. With a finite Lagrangian quark mass the situation changes
drastically: theése states carry an infinite energy and are confined. In fact
for the © - vacuum with 8=0 one can show that there are only states which

transform as _S(N) tensors. Choosing a CP invariant vacumm with 8 = T

Z N

one can construct gauge invariant operators which carry the fundamental re-

presentation. These operators are not local, they rather have commutation

relations similar to the dual algebra. This has the effect, that the usual

-~ argumients leading to two-particle scattering stafes transfonning as

SU(N) x SU(N) fail.  They rather transform as SU(N) x SU(N) or SU(N) x SU(N)

according to whether the first particle moves slower or faster than the second

one. These particle states are the quantun field theoretical version of

Coleman's quasiclassical "half - asymptotic states"(94)
We certainly do hot want to insinuate that these "exotic" properties

have a counter part in actual QCDg. We do however expect that the QChg

with matter fields Tead to a rich and subtle phase structure.
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There is one more_jnteresting.observation concerning the natyre
of quark operators in the confihinQ masgive QCD2 model. The quérkqprqpaga—
tor is a relativistic gauge e.g. the Schwinger gauge is an extreme]y..i11
defined object which increases exponentially in x-space. For euclidean

distances we have (95)

W ()uly)> - AexpBMCeZen Mg

where M is the quark mass. This disastrous infrared-behaviour prevents
the use of momentum space and dispersion theory for quark propagator and
more generally non-gauge-invariant correlation functions of quark fields..
The infrared behaviour of the gluon propagator on the other hand is much
more descend, it just contains a zero mass pole which is not related to
any physical particle and which therefore has been called the "secret long
~ range force". The exponential increasing quark propagator is related

- to the secret long range form behaviour via the Schwinger Dyson integral -
equations. In QCD4 one would expect an exponential behaviour to be related
to a zero mass double pole —~%—?- in the gluon propagator. Swieca’s
;pinion about these observatggng was that although physically non-existing
| fields as isolated confining quark fields would be expected to have very

i11 defined mathematical broperties, one should avoid to base a confinement

philosophy on unphysical quantities.
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" The remaining topic to be discussed-is the functional integral
approach to continuous order - disorder fields and kink operators. The
reTevance of this duality structure for a classification of the different

(]6), in their study .

phases had been first recognhized by Kadanoff and Ceva
of tEe two-dimensional Ising model. These authors demonstrated that the

thermodynamic duality of the Ising model observed decades ago by Kramers and
Wannier (96) had a microscopic basis which manifests itself through the exis

97)

tence of a local disorder - variable. Later Mande1stam( and in a more

(91)

explicit fashion 't Hooft(go) and Mack ‘exhibited dual variables in

lattice gauge theory and, on a completely formal level,also in the continuous

(98)

gauge theories . As we will see, the mathematical aspects, in particular
the renormalization properties of disorder - variables are very subtle in the
continuous QFT.

A comparatively simple illustration of the continuum order -
disorder duality is the functional approach to the Mandelstam bosonization in

the form discussed by Marino and Swieca(gg)

. For simplicity we start with a
massless free fieldg and define formally the two component exponential

operators

00

1 {])
Ty = - w 55
o(x) = exp-1ay5¢(X)I1}s u{x) = exp 1b%{J§ 3, ¢dzul] (55)

Assuming for the moment the path independence of p and choosing
the path C parallel to the spatial axis,we may compute the equal time dual

algebra between o and u from the canonical commutation relations:

W) o(xyt) = ox0y) w0t 2RI (56)

with S = —2“1}'
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If - u would bea scalar field -under Lettansformations (this
will be shown later on), this dual algebra has to be valid for space-- Tike
distances as well.. Formally, the transformation ofo by u produces a trans

lation to the right of xT:‘

Cfees g

b > .

This is the "half-space" version of the global symmetry: ¢-+¢+b

In addition to © and ¥ , we define conjugates:

- atr? +tr 0+
.Uzo,trY:OUx 0=y trY=11tr

. o 01
with ¥ = 60)

The euclidean correlation functions of o , e.g.

1

<o, (x)o,(y)> = %j{ﬁ¢] exp - E-J(%u¢)2+ ia [%511¢(X) +v5--¢(y)] (59)

have an obvious electrostatic interpretation:

The saturating euclideanconfiguration ﬁC]

-0t Sl(z) = aytyy 8(zx) + Ay’ 6(zy) (60)
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inserted into the induced action yields the electrostatic energy of the two
(imaginaky) charges. The gquadratic fluctuations which are independent of x
and y as well as the electrostatic selfenergies can be absorbed into the

wave function renormalization factor. The result has the form

<o{xjo(y)>= exp. - E it (X5¥) (61)
where:
aZ 2
Egrar(Xs¥) = = 22— YEvS Inlx-yl-5- TR |14y 57| (62)

is the electrostatic interaction energy. The last term in Estat. originates
from the Dirichlet boundary condition ¢ {R)y = O . This term yields in
the Timit R-o T  the well known chiral selection rule of the Thirring model

+ s .
o P, » in Minkowski space:

For the correlation functions of u , e.qg.

— - Y
wgE)> = [Tedlexp - - [, 90507 € 2002, (63)

ch

we have to observe that the euclidean formalism gives b without an i-factor.

The saturating configuration:

3 8(z=n)dn (64)

PO S
3% (z) = b J £ vy

XsC
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describes electrical dipoles on a string C. The field Tine picture is the.
same as that of the magnetic field generated by two currénts flowing perpen
dicular to the z - plane and penetrating this plane at x and y. For this
reason we will call the right hand side of (64) a magnetic monopoie configu
ration with a string C. Again renormalization is performed in the language
~of (magneto) statistics: the monopole self-energies as well as a string
self-energy contribution will be absorbed into N. A simple calculation re-
veals the validity of the following statement.

Statement: the renormalized u ;corre1ation functions are independent of C.

The proof is based on the observation that a closed contoure T :
by by
( Euvav¢ = j Euv8v¢ + b feuvav¢ (65}

~ does not contribute to the path integral, because it can be functionally

shifted away:

b > ¢ + bes(x) (66)

Ss(x) = characteristic functijon of region enclosed by

A more careful examination of boundary contribution shows that
this shift Teaves no residual terms only after the string self energy factors
have been absorbed into N. The situation is reminiscen to gauge invariance
which also only is valid for the renormalized correlation functions. Note
that the independence of u correlation on the path's is a quantum phenomenon,
it happens only in functional integrals and not in the correponding classi-
cal quantities. |

The really interesting objects in this model are the mixed corre-

Tation functions e.qg.
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A, . (67)

In addition to thé_qharge - charge and monopole - monopole interactions there
will be now a charge - monopole interaction in the exponent of the correla-
tion functiecn.

As a consequence of this additional contribution, the mixed
euclidean corre1ation functions will be multiple valued. The manifold on
which.they live is-not simply euclidedn space but rather a ramified covering
with the positions of ¢ being the ramification points. The number of sheets

ab

depends on s = 5 if this number is rational there will be a finite

number of sheets. Everytime the positions of the ¢'s cross the cuts € and

return to their original values we reach another sheet of the function, i.e.,

_the situation is similar to the one in analytic function theory where classes

of topologically inequivaient path's give rise to the constructionof Riemann
surfaces. The independence of the correlation functions on path's within one
equivalence cliass leads to the scalar transformation property of u

The multi-sheeted structure of the euclidean domain is a manifes
tation of duality. Locality, as it is well known, leads to univalent function,
in the analyticity domain of general QFT(ZQ); this domain includes the eucli-
dean points. Hence the dual structure transcends the Wigthman - Osterwalder-

Schrader (100)

framework. Of course this lack of univaluedness does not
lead to ambiguities in the definition of physical operators.
An interesting feature appears if we were to introduce Tocal

"dyon" operators:

wTaz(x) = 0152(x) u(x) (68)

1:5-1 ,2()() 6],2(X) 1-}()()
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Each time a charge crosses a string before the equal point 1jmit
is taken, we obtain a discontinuity of the form eiab . In other words there
is a phase ambiguity in the definition of euclidean dyon correlation functions
The phyéﬁtaf bouhdary'vaiues of these correlation functions are precisely

those of the massless Thifring—K1aibér mode] with:(101)

s #?%% = (Lorentz) spin | (69§)
2 2
dim ¢y = 2+ D (69b)

Gy

Only in the case of ordinary spin s = _%, one can relate thé
+ sign ambiguity withﬁgider of euclidean operators inside correlation func-
tions. For s # %%— the phase ambiguity cannot be dependent into a Tinear ope
rator arrangement. One could think of inventing a “crazy" algebra. For exam-

~ ple in case of s = %& one may place the and on the edges of an N poly-

gon, e.g.

(AU’) . <A1_b.> etc..

1

This would go against the good custom of writing from left to
right (or the other way around). Collecting the main result we may say that

the products of two-dimensional order and disorder operators lead to spinors
(101)(15) _ _
with exotic statistics which has its origin in the topolegically inequi

valent path classes appearing in euclidean functional integra]s.(]oz)
In the case of a Sine - Gordon Lagrangian instead of (58) the b
weight in the definition of |, must be related to the ¢ in

L = (9 ¢)° + K cos o ' (70)
¥ B _

!
2
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by: b= =g | | .. : (71)

| | . On]y w1th (j]) one obta1rsthe path 1ndependence of u . It is
1nterest1ng that the f1n1te energy requ1rement for the M1nkowsk1.— space s0-
liton states 1is equivalent to the path independence (or the covariant trans-
formation property) of the euclidean formu1atton. | |

o A répid glance at QED; reveals that the case of this dyon forma
Tism yields the corrélation functions in the unitary /T ' gauge in a natu-
ral way:

—ia
<y(x)} exp 1€ J AYdz (72)

XsC

u l“y)>Schwinr_:jer

| ] o
R f(dﬂsu[(dy] & expi [ b (x)+15oy)-1 J pdyiz,] (73)

.._ 2 _T 2, |1 2 ie U, « 6 Hv
S = de X, L= TT'(BU¢) - F +-}%; £ av¢ A™+ie 57— ¢ auAv

2n

Performing first the Au integration we obtain a mass term for the
¢ as a result of the coupling with ﬁlj; lJsing the language which is dual to
the previous terminology, i.e., calling ¢ a monopole potential and Fyp a
magnetic field, the Au integration produces a magnetic plasma. As a result
the chiral selection rule (monopole - charge selection rule) is Tost and the

vacuum can beregarded as a chiral condensate. The C - integral now repre

sents a tube of electric flux and different path’s C are now no longer equi-
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valent. This picture is very similar to Mandelstam's scenario of 4-dimensio
nal confinement.
The euclidean functional representation of dual variables not re-
1ated to exponent1a1s of a massless neutral field or a Sine - Gordon field is

mUCh more subt]e Cons:der as an examp]e a8 comp1ex mass1ve free f1e1d (103)

@-m?) ¢(x) =0
A_dua1 U(1} variable is a local scalar field obeying the duality relation:

b (%) 6(y) = o(yuglx) 2SIy 73)

e-Zwise(yl—xl)

~i.e. W induces a "half-space” U{1) - rotation centered at x. The global
invariance of the theory is U(1). The formal application of the canonical for
malism suggests:

o0

_ . - 0y 1
us(x) = exp i2ms L{Ju(x)e dz (74)

but this is not the correct renormalized expression since (74) terms out to

be path - dependent. The correct answer is more appealing than (74): ‘

-l (A )d*x
a ()t (y) > = % J[d¢1 o] e J H
where L(Au) = ﬁ;$bu¢ -m? %o (76)

D =3 =-1iA : (77)

dxv(s)
A (z) = 27s NN T ds §(z-x(s)) (78)
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" i.e. a scalar charged particle in an external string gauge field.

The calculation of the determinant requires regularizations, the

use of the Pauli-Villars regularization will again lead to a ¢ function

‘formula of the type (5) ., where wis a Pauli-Villass mass. Hence there exists

a multiplicative renormalization. An explicit calculation can be performed
for the T-point function ofu . It is convenient to use the gauge invariance

in order to go from the string gauge to the radially symmetric "vortex"

- gauge

A =5 ¢ 3¢ . v £¢ =polar angle (79)

A relevant quantity whose computation is reasonably simple is the euclidean

3-point fuhction

<0 T(0n(0)o (¥)>= Cv6 (x.y 5 A)) (80)

Up to a normalization constant this is just the euclidean Green function in

the string gauge. Again one does the calculation in the simple vortex gauge.

There the effect of A just amounts to a quasi-periodic boundary condition

in the ¢ angle:

o({r,p) = g2mis & (r.o+2m) (81)

The euclidean Green function, which has a representation in terms of Bessel-
-functions, has to be gauge transformed back to the string gauge. From the
resulting euclidean 3-point function one then obtains via analytic continua-

tion and Fourier-transformation the momentum space kerfels:

<plufe) |p'> » <pp' |u (0)]o >
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Since the disorder operator in a foem field theory can be written in the form:

U= exp. bilinear (&): o (83)

where the double dots indicate the Wick-ordering, the kernels (82) completely
determine the bilinear expression in the exponent i.e. the operator . The
_problem of calculating correlation functions can then be in principle done
wfth the help of Wick-contractions. The dual algebra (73) is equivalent to
‘multivaluedness of the mixed euclidean correlation functions which can be trg
ced back to the guasi-periodic property of the basic Green function(80).

Naively one would expect the model to exhibit a periodicity in S,
ais is however not the case. The higher s - values lead to Green functions
which contain as a basic element the reduced functions for $ mod 1, but there
is no strict periodicity in s.

An interesting functional integral representation of a nontrivial
7o gauge-bundle situation emerges if one consider the construction of the
disorder variable u of a real field ¢ . In that case one has no chance to use
vector-potentials. Rather one has to phrase the gauge aspect in the form of
a "flat" but "nontrivial" 22 bundle. In other words the covariant derivative

(77} nowagrees with the usual one:

and the nontrivial aspect is contained in nontrivial transition function e.g.
for (80): ~o

TR
The imprint of this nontrivial gauge situation on the eigenstates of the
euclidean eigenvalue equation for the matter field is an zntiperiodic boundary
condition. By "doubTling" the ¢ field, which is equivalent to the use of a
complex field, one achieves a "trivialization" i.e. one is able to use the’
previous A1 formalism. It turns out that the vacuum expectative values for

u of the doubled model are precisely the squares of those for a real field:



_'7’]-.

_ 2
<1’z(x] ... 'u(x;l)>cdﬁ1p1éx = <U(X1 Yoo .u(x2)> reaT (84)

In the zero mass limit, all the correlation functions can be cal--
culated explicitely and they provide a new class of two-dimensional conformally
invariant models different from the massiess Thirring model.

Again, as in the previous "bosonization" model, the product of
order and disorder yiélds noncanonical "exotic" spinor fields.

A particularly useful order-disorder algebra results if one starts

from a massive free Magjorana spinor y The corresponding flat but nontrivial Zp

'gauge—bund1e Teads to a scalar operator M with the corresponding square re-

lationship (84) to the trivialized complex bundles construction. This

terms out to be the disorder variable of the two-dimensional Ising model (for

T TC+ £} in thé scaling limit. The corresponding scalar order variable

may be either constructed by a short-distance expansion of ¢ andyu , or direc
tly in terms of a suitable euclidean functional integral.

Again one observes a square re]ationship with the o-expectation va
lues of the doubled (complex spinor) model. Naturally in the doubled mixed
correlation functions of 1 and o one looses the sigh in the duality relation.

These doubled fields are simply the local fields

=
1]

1cos VT & (85)

:sin Vird:

Q
1§

where ® is the Sine Gordon potential for B = V41  which is bilihear in
fermion -creation and-annihitation operators. Thus the euclidean approach
unravels  the rdle of doubling and demystifies the way in which Truong and
I(]04) obtained the correlation functions of the Ising model which up to now

always appeared to me somewhat artificial as compared with the more logical
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(109

construction of Sato et al. In'fact_t&aeuc1idean approach leads to a
novel method to derive other results of SMJ as for example the field theore
tic solution of the Riemann-Hilbert problem. Using formula for the nonabe-
'1ian-fermion:déterminantaos)'one cah carry'out those calculations explicitly

The euclidean functional approach to the order-disorder duality"
is not limited to disorder operatorsin f0rm‘ FTe]d theories. For interacting
models e.g. the ®* coupling, it works the same way{

In case the interaction terms are not superrenormalizable one may
however encounter additional renormalization problems.

Encouraged by these results éwieca and collaborators took a
_renewed interest in the Zn generalization of fhe Ising model. An S—matrix(]DZ)
candidate for a suitably defined Zn mode] in the scaling limit had been known
for some time. The charaterizing property of a Zn field theory is the Zn

selection rule (in the Tc+s phase):

r |
<o (x])....o(x )> = |0 if n # D mod N

#0 otherwise

.and similarly for the uin the T.-e phase. Closely related are the Zn operator
relations:

0+ ON-’-I ) u+ ~ UN-l } ' : (87) )

In a free field theory i.e. with Gaussian functional integrals one
cannot fulfill these relations, they wiT] be inconsistent with the cluster
properties. For this reason the candfdates for correlation functions {in the
massless Timit) proposed by Fradkin and Kadanoff do not constitute a solution

of the .Zn prob1em(]oa. One rather expects a new class of conformal invariant
correlation function different from exponentials of free fields. The Zn inva-
riance ih the gauge-theory terminology of functional integrals corresponds to
strings which are periodic in S. For example for'Z3 the situations .
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o —
>
<
Lo =
1
w Mo
>
'
o —

shou]d‘be equivalent, This can be formally achieved by
_ N +N
Ling =8 + ¢

The path independence with such an interaction enforces the quan
tization %— of the Au strength. We have not insofar been able to find
a Lagrangian which yieids the known in S-matrix.

There is one observation which may be interestihg if one compares
the Tattice approach with the continuous euclidean functional integrals. A
Zn lattice field has no formal continuous counter-part; it is not possible
to rewrite the functional sums simply into a functional integral for the
corresponding continuous theory because there are no Zn valued fields in a
continuous theory. Generalizing from the experience with the Ising model
one may expect the existence of other dynamical variables which allow for a
formal transition to functional integrals. These variéb]es would be the

109) lattice fermions. Without those

analog a of the Lieb-Mattis Schultz (
~variables a continuous functional integral for the scaling Timit of the Ising
model could not have been written. Part of the problem in the scaling limit
construction of Zn models and lattice gauge theories may be in the construc-

tion of the "right" dynamical variables.
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