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ABSTRACT

Dispersion relations and sum rules are deriwved
for the complex rotatory power of aﬁ arbitrary linear (nonmagnetic)
isotropic medjium showing natural opﬁical activity. Both previocusly
known dispersion relations and sum gules as well as new ones are
obtained. It is shown that the Rbse%feld—Condon dispersion formu-
la is inconsistent with the expected?asymptotic behavior at high
frequencies. A new dispersion formuaa based on quantum electro-
aynamics removes this incqnsistency;éhowever, it still requires

modification in the low-fregquency limit.

I - “INTRODUCTTON

'R systematic procedureé for the derivation ‘of ‘sum
rules for the optical constants of Hatérial wedia has ‘beern récently
formulated ané:appliéd to the dieledtrid ‘terider and refractive
index of various types of media [1,2]. ‘The ‘basic ingredients aré
causality, expressed through dispersion relations, and the requi-
rement that, at sufficiently high frequencies, the niedium must
respond like a free-électron plasma. Previously known results,
such as the f-sum rules, together with a variety of new.ones,-
follow from these conditions.

This procedure has also been applied “to-obtain sum
rules for the optical constants associated with natural ahd*magneto
-optical activity [3]. For natural optical activity;“however} se—
veral aspects in the dérivation of both dispérsion relations ‘and
sum rules heed additional congideratiocn.

Natural ‘optical activity is the simplest manifestation
of spatial dispersion, requifing one to ‘o beyond the electric -
dipole approximation in treating the interaction of Light' with
matter. The need to' take into  acéount retardation over molecular
dimensions requires & careful discussicn of the highifrequéncy
behavior of the optical comstants, taking into account’ tha'dslicate
interplay between midfoééopiéfahd maAcrascopic descriptions. -

' ‘Heére we adopt the macroscoplic, phenomenclogical views-
point, based on constitutive relatiohs. ~As Kas béen émphasized
by Condon [4], thésé relations are the touchstdné 6f a 'successful -
theory of optleal sctivity. We deal with an arbitrary linear
(nonmagnetic) isotropic mediim.
In Sect. II, we derive ‘dispersion relations for ‘the-

complex rotatory power from ‘the ‘constitutive rélations ‘and ‘Primitive



causality, together with bounds on,the_high—freéuency behavior.

Tt is also shown that the average dielectric tensor and the average

complex refractive index:verify the_ggmeidispergion relations that
hold, for an. optlcally 1nact1ve medlum

-In Sect i1z, sum rules 1nvolv1ng the complex rotatory
power  are derived by applying superconverygence technlques [1]. We
recover prev1ously known sum rules [3} and obtaln some new ones.'
The sum._ rules concern the averages of optical constants over the_
whole frequency spectrum, takqn wrtb_various_welghr functions.
Both for the rotatory power and for the:elliptiéity (which is a
measure of the circular dichroism}, these_averaggs are zeroj the_
latter rule. expresses the equgliry:of_thglayerage net transition
rates.ﬁor_oppqsitéﬂcircular:pplgrizations. Similar results are
found for the product of the two optlcal constants, and their
mean”squaregfturn out to be equgl.f The sum rules may be useful
to check the consistency of exper}mgptal_data, and -also as cons-
traints on'thepries.pf natural optical activity. They also enable
us to interrxelate various forms gf dispers;on relatipnslby_“uq—
doing subtractions”. - . 4 :

CAll thg_&ispersiqn:re;atigns_apd sum rules obtained
are_cqi;ec;gqﬁtggetheriinhsegt;_IY,_ We §ls9 examine thgiéompa—L
tibility.between.quantum_drspgrsiop ﬁqrmulas fér'the coﬁplex__.
rotatory powgr;and the,éum rulés,” For:£h§ widely emgioyed
Rosenfeld—Condon .dispersion formula [4},”the_wgllfknqwn.Kuhn suﬁ
rule holds. However, we find_that this_diséers;pn fqrmula, where
the effects of damping were not derived, but merely included by
analogy with the Kramers—Heisenberg formula, is_inconsistent'with
the regquirement of free-electron respoqse_gt_high_frequencies. A
modified dispersion formula based on recent quantum-electrodynamic

treatments . is obtained. .This formula differs very little from the

Rosenfeld-Condon one within each optically active absorption band,
but it is consistent with the expected high-fregquency behavior. :
on the other hand, it still appears to require modification in' the
low-£frequency limit.

The relationships between the present treatment and.

previous ones are discussed at the end of Sect. IV.

II - DISPERSION' RELATIONS

We consider only linear honmagnetic isotropic media
that show natural optical activity. We assume to begin with that
the medium is an insulator. The effect of conductivity is discussed

in Sect. IIE,

A - Constitutive Relations

As shown by Condon [4], thé constitutive © relations for

a medium with the above properties take the _forml

o
i

€E -~ g ?E/at', (1)

B = H+ g 35/t ' (2)
where, on account of ‘dispersion, it is understood, as usual, that
the relations are strictly applicable only to monochromatic fields.
Thus, if w denotes the c¢circular frequency, €= £(w) is the complex
dielectric constant. .The_presence of optiecal activity is charac-
terized by the material constant g(w), which is a pseudoscdlar, S0
that a medium with inversion symmetry cannot have g#0. .

For a monochromatic plane wave travelling in the



medium, we have, taking theé z axis along the direction of propaga-— 6 () [ () (]2 .
w) = wlk {w) - ¢ {w C. (8}
+ -
tion,

We can combine (7) and (8) by defining the complex rotatory power
E = Re {E exp[i(Nk z-ut)])} (3)
~ ~ o of the medium,

and a similar expression for H where k =w/c is the vacuum ve )
~’ ; b 8lw) = ¢lw) + 18(w) = wlN, (0 - N_(w)]/2c. (9)

number and N{w) iz the complex refractive index. Substituting these
expressions in Maxwell's eguations, we find that the normal modes R

According to (5),
of propagation in a medium characterized by {1) and (2) are cir-

cularly polarized waves

1 g
wglw) = S{N, () - N_(w)], (10)
E* = E* (% & iy) 4
~ [ z (4) ’ so that
associated with left and right circula larization ectively.
gl ro r polariza ; respectively #lw) = wig(w)/c. . o _ G D)

The corresponding complex refractive indices are

On the other hand, the ‘average complex refractive ‘indéx 6f the
N, = /& % wg . (5)

E medium is given by

Setting 1 ) . o . AT
N, (w) = §£N+(m) +N_(w)] = veleres we oo e SN ¥

Ni(w) £ ni(m) + iKi(w) ’ {6}

B - Crossing Relations

h s1x R R . s 1 N, s .
we see that the medium exhibits circular birefringence: it rotates A general wave train propadating’ in the Z direction

th 1 lari R . {zed 1j o .
e plane of polarization of linearly polarize ight he angle can be represented as a superposition of normal modes:

of rotation per unit propagation length defines the rotatory power
o3

E(z,t) = {w {E:(m)(§r+ %i)exp[imN+{m)z/c]
$(w)= w[n, (&)-n_(w)]/2¢ . {(7)
¥ B (0) (2 - 1y) exp[Lud_(w) 2/c] Jexp(~1vt) du - . (13)
The medium also shows circular dichroism, converting linearly
polarized light into elliptically polarized light. The ellipticity Since E must bé'reéi, we find the drdééiﬂg relaticns
~

Per unit length is given by2



g

{for real w)
E:'(—m) = [Ewl*, : _ (14)
N o) = [N_]t . as
+ -

It follows from (10} - (12) and (15) that
el-u) = e*{a), ' (16)
g{~w) = g*{w), . (17
o {~w) = ¢*{w). (18)

According to {14), we always need both terms in {(13)
in order to represent a real field. Thus, the complex refractive-
index associated with, e.g., left circular polarization is N, {w) -
for w>»0 and ¥ -(w) for..w<0-{cf.{15)): this is connected with  the
fact that the sense of rotation changes with the sign.of w. &s a
consequence of this, the dispersion relations derived below involve
a mixture of the two helicities; one.cannot_derive a dispersion

relation for a single helicity - e.g., for left-handed light [5,6].

C - High-Frequency Behavior
The constitutive_}elations.(l) and (2) lead to the
following form for the frequency-and wave-vector-dependent dielec-

tric tensor:
e 5wk = fetw = wig®(wl]s; 4 + ieg{w) €pike - : (19}

where Ei is the Levi-Civita pseudotensor. Here, w andjh'may be

£3
regarded as independent variables for problems involving external
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sources; however, for wave propagation in the absence of external
sources in the medium, spatial dispersion is reduced to frequency

dispersion [7] through the relation
k = {w/c)N §, (20}
i~ ~

where s is a unit vector in the direction of propagation. Since N
~
is double~valued, the same holds for Eij, so that we have different

dielectric tensors for the two different normal modes, respectively

+

£ _ co= 0 : 21
€34 eij(m,z ps Ni(M)i)' (21}
where N, (w) is given by (5).

At sufficiently high frequencies, we expect the medium

to behave as if all its electrons were free. Thus, asymptotically,

- - w2/t . w ' 22
Eij {1 mp/w )Gij' w - ’ _ (22)
where

m:pi = 4,“ Ne?./m (23) .

is the square of the plasma fre§uency, N being the number of elec—

trons per unit volume.

Indeed, according to linear response thecory, we have

(e]
— - 2 2 - ] 2 4
Eij(w.}g) = {1 = wy,"/w )6ij 4am{e® M }Xij’ (24)

where
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(

X, . (w,k) =% |:( ki'on JkJ no _ 1% on(Jkl)nO]
ij ~
n

w = w +i0 + ]
no w mno+10

(25)

is the transverse current-current response tensor. In this ex-
pression, wno are the unperturbed transition frequencies from the

ground state to the various excited states n, and

= 1 . s
"‘:'I'-],E = 5 § [B:l gxp{ 1’15.‘_:53.) + expl( 1’15.53.)2:].] (26)
is the current operator. In (26), the sum extends over all

particles and p is the momentum operator.

~r

From (24) and (25}, we are led to (22): alsc, we
see that "at sufficiently high frequencies" corresponds to m>wuno

for all n. According to {19), (21) and (22} we must have3

ef{w) - 1 = _mPZ/mZ + diw-?y, wSsw (27)

wglw) = célw)/u = o™ "), wn (28)

where we have also employed (l1l}. Finally, combining (5), (27)

and (28), we get

- = g 2 z -2 > 2
N, () 1 g /20 + oo ), w>e o, (29)
D - Causality and Digpersion Relations

We assume that wg(w) is a square integrable function,

i.e.,

fm w® |glw)|?d w ¢ o (30)
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where g(w) is defined by (17} For u < 0. ' This assumption is
consistent with (28); in addition, it excludes nonlntegrable 51ngu-
larities of the integrand at finite frequenc1es, e g., at @ = 0{

As has already been emphasized, the constitutive
relaﬁion (2) applies only to monochromatic components, so that it
should be written in the form
o TRy T Ay = ciegl@B., TS ¢ £ D
where-fhe index w denctes a Fourier component -of. circular frequency
w and E is the magnetization. BAll vectors are taken at a given
point r in the medium (the dependence on r is omitted) .

~

We define
g = = f." og{s) -exp(~iwt)dw , - . .. (32
T -—CO

which is real, by {17). Assuming, as usual, that,g(t) is sguare

integrable, (31) is egquivalent to

4uM(t) = J g(t—t')E_(t')dt'. R P T . {33). -
o~ -0 ~ . co

Thus, g;(t) is a local response function; -connecting a“time-varying

electric field with the magnetization that it induces in an opti—

cally active medium. The primitive causality condition [9]

implies

9(1) =0, T <0, (34)

It follows from (30}, (32) and: (34),-by Titchmarsh's

theorem [9},-that Re{wy) and Im{wg) -satisfy dispersion-relations.
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In view_of_(?)_gnd_(l@l,=the3e relations may be written as

plw) _ P o _0fw'y aw', . . .. L . (35)

W T gt ()
9 ( P o gw T .
) _ LB 0lel) gy, | 36

{6 —w)

where P denotes the Cauchy principal value. Taking into account

the crossing relatiom (18), these results become

1
dlw) = 2 w2 pp2 0l g R _ . Cam
T - mntw.z-mz)
G(m) = - g.. “’PIBI ¢(m ) - d{n' . {38)
™ Tt . ol
Similarly, from the constitutive relation (1), we
obtain
-.D..m —E = 4-113& = £€ {w) - ll‘g."m + img(m)Em , . (39)

whete,g is the polarization. By analogy with (33), we get

4mB(t) = ffmﬁ((t—t')g_(t')dt' -'[‘fwg(t-t')}i(t')dt", - (40}
where
Aty = %T— 2 [EHw)~1] exp(-iot)do £41)

and we have made use of (32) and (34). BAs stated at the beginning
of Sect,II, we are still  assuming the medium to be an-insulator,

so that ¢(9) - 1 is bounded and may be taken as square integrable

14
{cf. (27)). Primitive causality new implieé‘
Ky =0, <o, (42).
and it follows that g{w)-l satisfies the usual Kramers—Kronig
relations, which are therefore not affected by the presence of

optical activity.

We also learn from Titchmarsh's theorem that s{w)-1

and wg{w), besides being regular in the upper half of the w plane,

are also square integrablé along any parallel to the real axis in
this half-plane.

It does not necessarily follow from the regularity
of ¢ and wg in Imw> ¢ that the same is true for-N,{w), because
(5) would allow the existence of branch points at zeros of s{w).
However, the regularity of W, (@} in the uppef half-plane follows
from the relativistic version of causality applied to the propa-
gation of a wave train thrbugh a thin slab [9, iU] of thickness ¢.
By (13), this leads to the regularity of the functions
exp[i(mé/c)N+(m)]iexp[i(wS/c)N_(m)], which can only be true for
all (sufficiently small) Sr.if N+(w) and N_.{w) have the same

property. ©On the other hand, the square integrability of e-1 and

- wg along any parallel to the real axis in Imw>0 entails the same

property for W, (@)-1 (cf.(5)).
The conditions of Titchmarsh's theorem are therefore

verified by the function (see {(12})
. .1 _ ’
Nyl = 1= 2w+ w]-1, (43)

so that this quantity fulfils the usual Kramers-Kronig relations

{note that Nav(—m)=NaV(w)*_by (15)) . Finally, as a consequence of
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the above results, together with (19) and (21},_the average die—
lectric tensor
P + -

—-%— (Ei-j + ..} {44)

€, .
ij],av ij

also verifies the usual dispersion relations.

Thus, besides deriving the dispersion relations (37)
and (38) for the complex rotatory power, we have shown that e(w),
Nav{m) and Sij,av(m)' which reduce to the ordinary material cons-
tants when natural optical activity is absent, satisfy the usual

dispersion relations for these constants.

E - Effect of DC Conductivity
So far we have assumed that the medium is an insu-
lator. The presence of a dc conductivity v(0)#0 can be taken into

account by the well-known replacement
e{w) » el{w) + 47i0(0)/w , (45)

which introduces a pole at w=0, This ﬁole leads to an w 172
singularity at the origin in the refractive index, but it does not
affect [1,9] the causality arguments, which refer to the guantities
{w/c)N, (w). Since the complex rotatory power (9) depends only on
the difference N, - N_, it follows from (45) and {5) that ¢(w) is
unaffected by the presence of a do conductivity. In particular,
the dispersion relations (37) and (38) remain unchanged. As dis-
cussed above, the effect on the average optical constants is the

same as for optically inactive media [l].
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III - SUM RULES

Sum rules for optical constants may be derived (2]
from "superconvergence", i.e.; from the knowlé&dge - that such a -
constant has a faster fall-off at high frequencies than warranted -
just by square integrability. We now apply this technique to the

complex rotatory power,

A - Sum Rules For ¢
According to {28), the function wg falls off faster
than @™ as w+ . DPhysically, this is related [1;2] with ‘the shorti

time behavior of the response function (32}, corresponding to the

conditions (¢, (55) below) :

g = 9(0) =0, (46)

irplying that the overall dielectric response function is dominated,

at short times, by the -free-electron ‘inertial behavier (cf.(22)):
In order to apply the superconvergence theorém4,

we make a minimal assumption, consistent with {28), that allows us

to sharpen the estimates of asymptdtic'fall—off;“ﬁameiys,'
wReg(w) = cdtw) /o = F(w 2en %), asl, wee . S

We stress that this is the only assumption that will be made abéut
the high-Ffrequency behavior of material constants in optical
activity; all other asymptotic estimates will be derived from it.
From (19}, (24) and (25), we actually expect a stronger bound than
(47) to hold (cf. Sect., IV), namely, that mReg(w)=0(m’3) as wie,

From (11), (47) and the superconvergence theorem5
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applied to (38), we find
9{w) = 2~ plw')de’ + @fmflznl_aw). W+ . . {48)
T jo

In order for this.to. be consistent.with (28}, ¢(w) nmust cbey the

sum. rule. .

/7 etwaw =0, e (49)

and this also enables us to conclude from (48) that .

co(w /o = wimglw) = 8w 20 %), o walowse . (50)

The weaker estimate (which follows a fortiori from

(28})
-2
Blw) /o = Blu ), wre,

together with (37} and the superconvergence theorem,. suffices to

imply
adg). =-.£3jzﬂﬁildwt+dm'%,-. R (51)
w T w'

and therefore, by (28),

~ 0 {w) dw = 0
w

) AR S : (52)
0

This result.. enables one to. rewrite the dispersion :

relation (37) in a different. form,:by. applying the technique known
in dispersion theory as. "undoing subtractions". .We employ the

identity

18
2 ) . .
1 1 w?! .
S T L — ) {53)
w22 w2 wz(mfz—mz) e
to rewrite (37} as
’ o 1 o gt v
pla) =~ 2T B g0y 2 pm 0B 0) g,
T w! o W' —-w

where the integrals are separately convergent on account of (50).

In view of (52), we get

(W) =‘% P Elgiﬂél dw' . (54)
0 m[ _w .

Taking into account (18), we see that (38) and (54)

form a pair of dispersion relations connecting ¢ and 6, rather  than

$/w and 6/w, as was the case for (33) and (36). Since %(w) is
square integrable according to (47) and (50), we conclude that it
is a causal transform.[Q], even though it has no immediate interpre-
tation as a linear respcnse function.

By combining (11}, (17) and (32) , we find the

following expression for thé response function g(t):
(n/c) g(t) = 57 cos (pt)lg(p)/y duw - f: sin{wt) ¢(w) /o dw . (55)
aQ

When differentiation under. the integral sign:is allowed, we see
immediately from (55) that the sum rules {52) and (49) are respec-

tively equivalent to the two conditions in (46} .

B - Sum Rules For @2
Let us now assume, besides 130}, that wzgz is also

square integrable, which is again consistent with (28),_ It then
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follows from (32) and from the convolution theorem that —m2g2 is

the Fourier transform of the function

34

t
- ] {56
H(E) J‘c g(t r)gmch )

Fie)

where x denotes the convolution product, H(t) is the Heaviside step
function, and we have employed (34). fTherefore, by Titchmarsh's
theorem, Re(ngzl and Im(wzgz) are connected by dispersion relations.

Taking into account (11) and (18), these relations take the form

2 2 24 02 Lo gle')ele') '
P () =8%(w) =~ w Pfo gﬁ#—dw B {(57)

w w' (v —u”)
olwolw) o _w? = [0%200"-02w"] 4. (58)
w m o) 2, 42_ 2
w' (w w”)
From (47) and (50), we have
sl ety = G %m By,  p=2q-1>1, (59)
62 (W -02(w) =W 2m V), y=2(a-1)50. (60)

Therefore, we can employ (53) to rewrite (57) and (58) as

02 () =02(w) = - 2 /7 g(ute(w) Sl
kg o] ml
4 e pleelw') ..
+ -'I'FPIO —‘;ﬁ“‘"u\ dw', (61)
il V)

$iw) B lw) _ % f: [¢2 (w')—ez(w')] dul

w
C1pe T8t -eften] oo (62)
0 u).2_m2

Rl
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The ‘estimates (59) and (60) allow us to apply  the
superconvergence -theorem .to the last integrals appearing in (61)
and (62), leading .to -

® p{w" )8y .,
Pfol*zmdm

- == iif:'dy('ui')ﬂ(m'):uj"dm'
w w

+ Glu2pn 8y, B>1, wes, (63)

: 20 1 _p2 0y
p ;o [2e)=6%w] o,
o w'2 2

= - 47 B -0funlaw + O63),
- @ w ’

e, (64)

Inserting these estimates in (61) and (62) and com-

paring the results with (59) and (60); we obtain the sum rﬁles

f: ¢{ o) 8l %‘—" = f‘; Pl Blwludw = 0, {65)
e () o 6% {w o
fw = dw= [ dw , {66}
0 2 o 2
w w
2 fwae =172 Flaaw. o B (7

By the same token, (61) and (62) become

Flo-ee =2p 0 tledotl by (68
w - w :
o Blw)  _ _1go [62on-02(0] .,
5 T TR ey v, (69)
i

which are eguivalent to dispersion relations cOnneCtinj"Re(éz)-and -
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Im(s?) .

As we have seen, both 9(w) and ¢(w)/w are causal
transforms, so¢ that their real and imaginary parts are connected
by Hilbert transform [9] relations. The sum rules (66) and (67)
also follow from the norm-preserving character of the Hilbert

transform [11].

C - Other Sum Rules
We obtain additional sum rules by considering the
behavior of wg({w} as w+l. For an insulating medium,; we have (cf.

(8}}

n(0),

]
]

n+(0) n_{0)

(]

k,(0) = k_(0) = 0 (4nsulator), _ (70)

so that (cf.(10))

lim fug()] =32 lin [N _(w)-N_(w)] = 0. (71)
w0 2 440

We expect this result still to remain true for an isotropic

1/2

conductor, in-spite of the w singularity in N+(m) as w0
(Sect.‘IIE). Indeed, such a medium, in the static limit, cannot
distinguish between right and left circular polarization, so that
the difference between the associated complex refractive indices

should wvanish.

Substituting (71) in (38), we obtain the sum rule

o 8y =0 S (72)
w

similarly, substituting it in (57}, we get .

22

= ¢ (w)§(w)

fo 3
w

dw = 0 ., (73)

Substitution in other dispersion relations leads to already derived

s5um rules.

Under the above conditions, we can rewrite (38) as

__2 o glw'ls w2 3 o ¢p{w") .
9{w) = - o U IO __Tﬁ_dm P w PIO —3 73 dw
w w' (e )
and {72) implies
aw) = - 2 3 pie ——E—Ei%il—f— awe . (74)
T W' w )

Togéther with (37), this forms a pair of dispersion relations can-
necting the real and imaginary parts of ¢(m)/w2 or, equivalently,
of g(w}.

Sum rules for higher powers of ¢ can be derived
by iterating the procédure of Sect. IIIB, and a variety of other
types of sum rules can aiso be considered [2,123.

Finally, as was shown in Sect. IID, the average

optical constants such as N and g,
av

. rif i i
ij,av ve y the same dispersion

relations that hold in the absence of optical activity - and their
asymptotic high-frequency behavior obeys the same bounds. Thus,
one can immediately write down sum rules for these guantities as
direct extensions of those derived {1,2} _for opﬁically inactive.

media. Examples of such sum rules are

” [0, - 1] aw = o, (75)

0

- el |
w Kav(w) dw = ﬂmp/d, : - {76}
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: : . . 2 _ 82 =4 .2 ¢{uw')elu")
which may be regarded as extensions of the "inertial" sum rule and % (w) 0% (w) T @ PIO '(m'2 mz} dw', (81)
. [61] =
of the f-sum rule, respectively, to media with natural optical
activity. stwet _ v’ e Dlwn-efwn] o, SR
= = o BJ dw'. (82)
w B <} te a2 2
w' (0w - o)
IV - DISCUSSION {(v) Dispersion relations for ¢ (o) =
_ 2 _a2 _ 4 o olw')o{w) 1 a0
A - Summary of Dispersion Relations and Sum Rules o ()-8 w) = 3 RSy w2 - 2 o dm.f o e _;(83)
For convenience, we collect here all the dispersion ] _ ) . G
relations and sum rules for natural optical activity derived in ${w) 8{w) - __;_me‘[¢2{m')—62(mﬁ)3 Aig® (84)
— 78, 5 3 I
@ w® .

Sects. I1I and ITXI, They apply to linear nonmagnetic isotropic

media, including conductors.

(i} Dispersion relations for ¢(w)/w: (vi} Sum rules for ¢(w):

o o= 2% p Blal o g, {77 Jo ¢{wde = o, : (85)
v ° 't {w" ) :
- 2 @ glw") , T A0 T N R T YN (86)
By = e, o {78) ° 2 . S e o e

(ii) Dispersion relations for ¢(w): {vii) Sum fules for 8(w):

o w' '8 (w")

2
= = v -]
$lw) p PIO m*z ; wz dw', (79) g ém) dw = 0. (87)

the companion relation being equivalent to (78}. (viii) Sum rules for ¢(w)&(w):

(iii) Dispersion relations for @(w)/wzz

s, wéle) 8(wdw = 0, (88)
_ 2 3 oo ${w') . :
Blw) ==~ w S W dw if @(LIJ)/UJ -0 r (80)
L 0wt “-p®) w 0
” 919%9191 dw =0, : (89}

which is the same as condition (71). The companion relation is

. _ P A CIA:AC5) R Y if 6w} ur 0 . {90)
equivalent to (77). o m3 w0

{iv) Dispersion relations for @2(w)/w2:
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(ix) Horm Sum'rﬁlééﬁ.f
o 2 _ pma 2 )
foo 9% widw = ST8 % wYaw, D (91)
2 a2,
@ 9 (w) _ = 8% (w). _
fo =2 Gu =/ —5— du. _ (92)

B - The Rosenfeld-Condon Dispersion Formula

In the microscopicitheory of optical activity, the
basic constitutive relation (2)'fqllbws from ‘the expression for
the induced magnetic moment ! assoclated with each individual

molecule [4],

B = (8/c) E"/8t, {93)

2= - ot .

where E' is the effective local field acting on the molecule.

For dense media, it is usually assumed that E' differs from E by
: -~

the Lorentz correction

E' = E + (4%/3) P, (84)
~ ~ ~ X

This leads to the feollowing expression [4] for the material cons-

tant g:

glw) = 41 yfelw) + 2] B(w)/3c

#

aw (w2 () + 2]3(&:.)/30, _ (95)

where N is the number of molecules per unit volume and Nav is

given by {12).
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To obtain a dispersion formula for o(w), it
suffices therefore to derive such a formula for the molecular
parameter B(w}. TIn the quantum theory, this was first done by
Rosenfeld [13], who found the expression

R
2c¢ no
Blw) = == L —_———
3 n w%c - w2 ! (96)

assuming that the molecules are initially in the ground state,

from which they make transitions to the excited states n, with

- transition energy ﬁmno = En—Eo. The associated rotational

strength Rno is giwven by

RnO = Im(<OLgln> .<n|2j0>) ='4Ron, , {97}
where E’andiﬂvare respectively Fhe electric dipdle and magnetic
dipole mement operators.,

The Rosenfeld dispersion formnla ({96) is at best
an approximation‘valid in regions of transparency, since it gives
no circular dic_hroism6 and it7qannot be employed when W At
the. timeé Condon wrote his ré&iew article [4], a generalization
to include circular dichroism had not been worked out. Condon

found it "probable", by analogy with the Kramers-Heisenberg dis-

persion formula, that (96) weould have to be feplaced by

2 R

Blwy == =2 , (98)

Eﬁ n 2

where Tpo 18 the linewidth associated with the n-»0 transition.
Substituting (98) in (95%) and (11}, one gbtains the Rosenfeld-
Condon dispersion formula, which we write down, for simplicity,

without the local f£iéld correction (%4) (note that this does.not
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affect the highéfrequency behavior, because Ihiv(m)+2]/3+1 as woe) ;

2
. 8wN “"Rng
elw) = Ko g 3 3 . (99}
W = w7 =1iwy
no no

Separating real and imaginary parts, we find

2 2
{w w“)R.
$(w) = %%g' w? T mo 1o , (100}
Do? 32, 2.2 .
no no
_ 8N 3 YnoRno
8{w) = e U g >3 . (101)

2 2.2
(wno W) T Tno
The expression (99) is regular for Imw>0; it has
les i - o = i .
poles in the lower half-plane clase to Yog iyno/z, since v <<w

Furthermore, ®(uw)/w=0lw} as w0, so thaf (71} 1s satisfied. On

the other hand, (100) vields

olw) _ _ BN 4 R +6(m—3), w>>Max uw_ _,
w 3fice n " no no

which is consistent with (28) if

I g =9, {102)
n no

This is the Kuhn sum rule [4], which is indeed verified by (97):

IR = Im(<0|d.m|G>) = 0.
n no Ladiatl

On the other hand, accerding to (101),

1 -4
m o ;—2- ﬁ Tho Rno + o 1, w>>Max Woo (103)

28

In general, it is to be expected that
Iy _R_#0, _ (104)

so that (103) is not consistent with (28).

We conclude that the Rosenfeld-Condon dispersion

formula wviclates the expected free-electron behavior at high fre-

guencies,

C - Dispersion Formulas Based on Quantum Electrcgynamics

Recent theories of optical activity are based on the
application of quantum eléctrodynamics to evaluate the polarization
of photons scattered by molecules. A calculation by Stephen [14],
neglecting damping, yields for the rotation of the plane of pola—

rization [15]

-ipnz/c iwz/c
o (6} = - zﬂ”ez m 3 (py e )on{pxe )no
33 m2ficw n ’ wno + w
, —iwz/c. )
(e ele/C) (p. e iwz ) :
+ X on 'y no , {105)
w - W
no
where ¢33 is the rotation per unit length for light incident

along the 2z direction on a system of N molecules per unit volume
{local field corrections are neglected), 2z is an intramolecular
coordinate and’g' is the momentum operator. This exXpression
should be compared with (24)-(26), taking (19) into account.

At optical frequencies, oné has |wz/c|<<1 in the

matrix elements of (105), so that one can apply the multipole

éxpansion, stopping at the magnetic dipole term:



29

expi{tiwvz/c) Z 1 * iwz/c. . ' . . .(106)

For freely rotating molecules, the rotation averaged over all

orientations becomes

1
$lw) = Slhyy + bpp Fdggde o (107}

and one finds [15] that (105) yields, in this approximation, the
Rosenfeld dispersion formula.

The effect of including damping has been discussed
by Hameka fls] within .the framework of Heitler's theory of damping

fl?], which represents an improved verslon of the Weisskopf-Wigner

approximation, . The result, when v-is close to a resonance frequency

Bor is that the corresponding term in (105) should be medified as

follows:

B é-iwz/c)

imz/c)
cn v ) no

(pxe

b
Yno

iwz/c -imz/c -
B on 2y 'no (108)
W= w- iyno/z :

where vy, 1is the associated linewidth.
A corresponding modification must be made in the

antiresonant terms, namely,

-iwz/c iwz/c,
(pve ) (pxe Jno

on
o

Wno

— (109)

30

Wwhile antiresonant damping is negljigible in the optical range, it
has to be included for consistency with several reguirements [18,
19], such ag crossing symmetry and analyticity. Indeed, it is
readily verified that the joint substitutions (108)  and (109} in
(105) are consistent with the symmetry relation (18); physically,
the antiresonant terms arise from the "crossed diagfams“-in which
the time ordering between emission of the final photon and absorp-—
tion of the initial one is inﬁerchanged [20]. Analytically, (109)
has a pole at m=—wno-iync/2, syﬁmetrical to  the resonance pele in
(108) with respect to the imaginary axis, in agreement with the
physical interpretation [9] of such symmetrical poles in terms of
time reversal and the conseéuénf iﬁterchange of emission and absorp-
tion.

. It .might be thought, at first, that the violation
of asymptotic free-electron behavior found in Sect. IVB for the
Rosenfeld-Conden forrmla would be removed by the effects of retar-
dation with the molecule, expressed by the exponential factors
exp{tiwz/c) in the matrix elements of (108) and (109). By the
Riemann-Lebesgue theoprem, these matrix elements tend to zZero as
w+=, and thisg introduces a rapidly decreasing converéence factor
[21] that would indeed remove the discrepancy. HBowever, this
cannot be the'éorrect'explanation, because the effect is felt
only at wévelengths muqh shorter than an atomic transition radius
[21} of the'order'df the Bohr radius, and the entire macroscopic
theory becomes meaningless at such high frequencies [22]. The much

weaker condition w>>mno should suffice for free-electron behavior

of the corresponding resonance term.

Therefore, we may still employ the expansion {106} .
Substituting (108) and (109%9) in (105) and’(107), we then find the

following expression.for the complex rotatory power:
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mz R
bw) = 3TN I -y B2 . (110)
3% i 2
c nowoo - (w+1Yno/2)

Taking into account the Kuhn sum rule (102), this is equivalent

to
- (wt iy /2)2R .
Bw) = N g ne_ (111)
e n m'2 - m2 - ilwy
no no
where
2 2 2
Yoo T Wpe * Yno/4. . (112)
Note that, for Yno = 0, this result reduces to the Rosenfeld

dispersion formula.

Separating real and imaginary parts, we find

2, 2 2 .2 2 2
. w (W, —0%=y" /2y-u'? vZ /4lr
dlw) = %iﬁ T [ ho ~_ 'no nz 2no J no (113)
c n v2 2.2
(mno 0T 4o Yno
¥ w2 R
ofw) = 8W , I 7o _Ro no . (114)
n 2 _ 2.2 2.2
Ihc (mpo wY* + w Yro
For w>>Max w__, {(113) yields, taking into account (102),
ne
gfo) . _8W L.y 2 p L @wWY, (115)
w Bﬁc T n no no
the same behavior predicted by the Rosenfeld formula, whereas
(114} yields
Ola) , 81N L 2y R+ 0Gw, (116)

h i “no no no
w e w n
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which differs from (103) by a factor fwno/m)z for each rescnance

term. This factor {(cf. (114) and {101)), while making very little

difference within the resonance region where 8{w) is appreciable,

removes the inconsistency with freefglectron_asympto%iq behavior |
found for the Rosenféld—Condon formula. ‘

On- the other hand, if we accept the vqlidity of
(111) also at the low—frgquepcy_end of_theugpegt:um,we see that
(114) yields 6{n) = J(w) as w+0, whereas (113) leads to
Comi 3 YeoReo

T2
no

$ (0} (117)

3he n w

which, though small, is generally ncnvanishing, contrary. to .our
expectation. - This would intreduce . a first-order pole at the
origin in %(uw)/w, which would have to be subtracted out in order
to derive dispersion relations for this guantity {similar to

the dec comductivity for e(w)), and (71).would also be.violated.

There are.several.reasonsf=however,_for-doubting
the validity of (11l1) as w+0. Already.in the scattering-by a
single molecule, the Weisskopf-Wigner approximation,-even in the -
improved version [17] employed in (108), .is not expected to
remain valid in the infrared limit [21].

Furthermore, at.long wavelengths, screening and
multiple scattering effects neglected -in (111) -have to be consi-
dered.

We conclude that a-quantum dispersion:formula for
the complex rotatory power_that conforms to expectations at both
ends of the spectrum is not yet available. While {111}, in con-
trast with the Rosenfeld-Condon formula, is consistent with the
expected high-frequency beéhavior, it probably requires -modification

at low frequencies.



D - Rélation to¢ Prior Work and Conclusion

The idea of deriving dispersion relations for natu-
ral optical acﬁivity f'rbm'primitivé causality applied to the

constitutive relations (1) and (2) goes back to Moscowitz [23],

that time. 'The "cause" was choseén proporticnal to 9E/3t, leading
to the disperéién'relaﬁions.(77)'énd (80) for ¢(m)/m2. Here we
have chosen E(t) itself, which must be sguare integrable on phy=-
sical grounds; this also has the advantage that assumption (71) °
is not regquired. The same comments apply to a simllar discussion
by Healy-[24]:

A different -approach begins with -the derivation
of dispersion:relations for N (w) -and ¥ {(w) separately, leading
to (77) and: (78) -through-{10):-'and - (11):..'. Emeis et al ~[25] simply
assumed the validity of ‘dispersionrelations for N, and N_. Smith
@] proposed ‘derivingthese relations-from-those:for the dielectric
tensor, rinvoking :thermodynamicarquments to-eliminate the possi-
bility of branch points:in Imw>0, as is usually:done in the
Russian literature [22]. However, this procedure cannot be
applied here, because the frequency-dependent’'dielectric tensor
itself ‘depends on Ni(w}'(cf;(ZI)); Bealy’ [10] ‘applied relativistic
causality to derive the analyticity of N_(u} in Imw >0, This is
not sufficient for proving dispersion relations; however, as we
have shown in Sect. IID, the proof c¢an be completed, so that the
real and imaginary parts of-N;(m)—l verify-dispersion relaticns
gimilar to (35} and (36). In view of the cressing relation (15),
each of these relations involves boéth helicitieés, so that it is
better to express them in teffis of the'physical quantities (10):

and (12). Smith [3,@ also wrote down dispersion relations for
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m[N+(m)—l], corresponding to (79).
Finally, still another approach to the. derivation
of dispersion relations was taken by Healy and Power [SJL who

employed the formula
No(0) - 1= 2m c’f, {0) /v, (118)

where fi(w) are forward scattering amplitudes from a single molecule,
together with dispersion relations for such amplitudes. However,
{118} is only an approximate result for a dilute medium, and the
real part of this relationship is expected to break down at low
frequencies [9], so that it cannot provide a suitable basis for
deriving dispersion relations for optical constants.

The sum rule (87} was obtained by Emeis et al [25]
from the assumption that the high-frequency behavior of ¢(w)
justifies the wvalidity of both.(77) and (72), by subtracting one
of these relations from the other one.

211 other sum rules (85) to (92) were given by
Smith [3], except for (88) and {91). These two sum rules, as well
as the digpersion relations (83) and (84) for ﬁz, do not seem to
have been previously reporited. ‘

The sum rules {vi)}) and (vii) express the vanishing
of thé average over the whole frequency spectrum both of the
rétatory power and of the ellipticity, weighted with wvarious
powers of the frequency. These are examples of "inertial sum
rules"” [1,2] stating that, on the average over the whole spectrum,
material media behave like the vacuum with respect to some optical
properties [ZQ]. MNote that the ellipticity is a measure of circular
dichroism, i.e., ultimately, of the differvence between net
transition rates for right and left circularly polarized light [3].

The sum rules (viii) imply the existence of corre-
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lations between the signs of ¢ and. 8, such that tﬁeir.prodﬁct,~».=
weightéd with various powers of the frequency, has zero average over
the whole,spgctrum,l Accord;ng to.Natansonfs rule [27], $/8 changes
sign as each optically active_absorptipn band is crossed. L

Pinally, the sum rﬁles (ix) relate the magnitudes of §
andVB, showinq that they have_the same "norm", with or without
the weight function m-z.

These sum rules should provide useful consistency checks
both for experimental data and for theories of natural optical
activity. On the experimental side, it is useful to have sum rules
with various weighting factors corresponding to positive and
negative powers of the frequency, in order to emphasize or deen_l—
phasize low or high frequency contributions. The corresponding
relationships for the _ref_ractive index. and the dielectric constant
have been experimentally verified for a variety of substances over
a broad frequency range [2,23f29].

On the theoretical side, the sum rules express rela-
tively 5tr6ng constraints both on low and on high frequency beha-
vior. Thé RFosenfeld —Condon dispersion formula does not satisfy
these cbnstraints at high frequencies, The dispersion formula (111},
based on quantﬁm electrodynamics, does not suffer from this defect,
but it seems to require modification at low frequencies. The
derivation of a satisfactory dispersion formula for the complex
rotatory power over the whole spectrum remains an open problem.

We thank the Brazilian National Research Council for
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FOOTNOTES

! The quantum theory of dispersion actually leads to

additional terms of the forms ﬁE'and ﬁErnn the right-hand sides of
(1) and (2}, respectively. However, as shown by Condon ([4], foot-

note 24), these extra terms do not contribute to optiéal activity.

2 The result {(8) is valid for a sufficiently small

length of the medium; in practice, one usually'has 84 <<1.

3 The notation ¢ = of(¥)} as x>= means that ¢/b+ 0

as X+

4 see reference 1, Appendix. In order to apply the

theorem to a dispersion integral such as (38), it suffices to make

the change of variable w'2=x

5 The notation $=0(y} as x+= means that |¢/y| remains

bounded as x+%.
6 One can define an assoclated ellipticity given by

a series of delta functions at the resonance frequencies L [3} or,

equivalently, consider this as limiting case wﬁen the absérption

lines become infinitely narrow. Either description, however,

corresponds to an unphysical model.





