INSTITUTO DE FÍSICA

preprint

IFUSP/₽ 279 B.LF.-USP

IFUSP/P-279

STABILITY THEORY FOR SOLITARY-WAVE SOLUTIONS OF SCALAR FIELD EQUATIONS

by

Daniel B. Henry

Instituto de Matemática, Universidade de São Paulo, São Paulo, Brazil

J. Fernando Perez and Walter F. Wreszinski Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

JULY/1981

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA Caixa Postal - 20.516 Cidade Universitária São Paulo - BRASIL

Dalas a USP

STABILITY THEORY FOR SOLITARY-WAVE SOLUTIONS OF SCALAR FIELD EQUATIONS

Daniel B. Henry^(*)

Instituto de Matemática, Universidade de São Paulo, São Paulo, Brazil

J. Fermando Perez^(**) and Walter F. Wreszinski^(**)

Instituto de Física, Universidade de São Paulo. São Paulo, Brazil

ABSTRACT

We prove stability and instability theorems for solitary-wave solutions of classical scalar field equations.

(*) Partial financial support by FAPESP and FINEP.

(**) Partial financial support by CNPg.

0. INTRODUCTION

In this paper, we study the stability of special travelling-wave ("solitary-wave", [1]) solutions of classical scalar field equations of the form

 $\begin{array}{c} \Box \phi + U \bullet (\phi) &= 0 \\ \Box \phi + \partial \phi + \partial$

This problem has attracted much attention recently in the physics literature ([2]), in part because classical solutions may be recovered from suitable expectation values of quantum fields in ... the classical limit $(\boxed{3})$.

Apart from the main motivation, which is to provide a simple and clear mathematical theory of stability for classical field equations, there is also a three-fold physical motivation. Firstly, most of the discussion in the physics literature ([2]), which is heuristically correct, relies on the linear theory. It may be shown, however, using methods of the present paper, that the latter is not applicable, because the linearized operator (on the natural Hilbert space, after proper "subtraction" of the zero mode) is skew-adjoint, a reflection of the fact that the mechanism of stability in these theories is dispersive, not dissipative (see also the discussion in 6 for K-dV equation). Secondly, the existing rigorous nonlinear stability theories ([4], generalized and corrected in [5], and [6]) are in principle applicable only to a class of equations (such as the K-dV equation) which may be treated either by inverse scattering theory ([6]), or which posess more than one scalar conservation law ([4], [5]), and are, therefore, unsuitable to describe, for instance, the stability of "kinks" of the nonlinear Klein-Gordon equation ([2]). Thirdly, and perhaps most importantly, the heuristic discussion disregards the somewhat delicate technical problems posed by the zero-mode, which is

.2.

.3.

always present due to translation invariance ([2]): this is also the reason why stability of the solitary-waves is a <u>form-stability</u> ([4], [6]).

The plan of the paper is as follows. In section 1 we describe the relevant class of equations and solutions, state and prove our stability result (theorem 1), and in section 2 we prove a general instability result (theorem 2). In section 3 we provide a brief discussion of applications of theorems 1 and 2 and prove, in particular, instability of the solitary-waves in higher dimensions which have been constructed by Parenti et al. ([13]) and Strauss ([17]). The Derrick-Strauss theorem ([7],[8]) is thereby revisited.

1. <u>STABILITY</u> Let ϕ be a bounded static (time-independent) solution of (0-1), i.e., satisfying $\phi^{\mathbf{u}}(\mathbf{x}) = \mathbf{U}^{\mathbf{u}}(\phi(\mathbf{x}))$ $\mathbf{x} \in \mathbb{R}$ (1-1) We further assume $\phi^{\mathbf{v}}(\mathbf{x}) > 0$ $\bigvee \mathbf{x} \in \mathbb{R}$, $\phi^{\mathbf{v}}(\mathbf{x}) \xrightarrow{\mathbf{x} \to \pm \infty} 0$ (1-2) and that there exist constants $-\infty < \mathbf{a}_{-} < \mathbf{a}_{+} < \infty$ such that $\phi(\mathbf{x}) \xrightarrow{\mathbf{x} \to -\mathbf{a}_{-}}$ and $\phi(\mathbf{x}) \xrightarrow{\mathbf{x} \to +\infty} \mathbf{a}_{+}$ (1-3)

Since $U(\phi(x)) = \frac{1}{2} \phi'(x)^2 + \text{const.}$ it follows that $U(a_) = U(a_+)$.

.4.

We normalize the energy of the "vacua" $\phi(x) \equiv a_+$ and $\phi(x) \equiv a_$ to zero and assume

$$U(a_1) = U(a_1) = 0$$
 and $U(x) \ge 0$ $x \in \mathbb{K}$ (1-4)

We also assume that

$$E_{O} \equiv \int_{-\infty}^{\infty} (\frac{1}{2} \phi'^{2} + U(\phi)) < \infty \qquad (1-5)$$

This means that ϕ has finite energy relative to the vacua. This point and the restriction to one space dimension are related to the Derrick-Strauss theorem ([7],[8]), see the discussion in section 3. On U we further impose the following condition:

 $U''(a_{\pm}) > 0$ (1-6)

We note that by the first of (1-2) we are describing "lumps" ([2]). "Antilumps" $(\phi'(x) < 0 \quad x \in \mathbb{R})$ may be handled by reflection $x \neq -x$.

 $H^{1}_{\text{Loc}}(\mathbb{R}) \equiv \left\{ \psi: \mathbb{R} \to \mathbb{R} : \int_{\Omega} dx \left[\psi'(x)^{2} + \psi(x^{2}) \right] < \infty \quad \text{for every} \right\}$ bounded region $\Omega \in \mathbb{R} \right\}$

$$H^{1}(\mathbf{R}) \equiv \left\{ \psi: \mathbf{R} \rightarrow \mathbf{R}: \int_{-\infty} dx \left[\psi'(x)^{2} + \psi(x)^{2} \right] < \infty \right\}$$

Let

 $H^{1}_{loc}(\mathcal{R})$ is the natural space for solutions of (0-1) ([12]), and we shall therefore assume $\phi \in H^{1}_{loc}(\mathcal{R})$. Such a ϕ defines (under

.

the previous assumptions) a Hilbert sector in the language of ([12]), and it is natural to inquire upon stability within a sector, which means that "perturbed" solutions are required to satisfy $\begin{pmatrix} \psi & -\phi \\ \psi_t \end{pmatrix} \in H^*(\widehat{\mathbb{R}}) \oplus L_2(\widehat{\mathbb{R}})$. Due to translation invariance, the following is (for q>0) a natural distance function (see also [4]):

$$d_{q}(\psi)^{2} \equiv \min_{-\infty < c < \infty} \int_{-\infty}^{\infty} dx \left[(\psi'(x) - \phi'(x+c))^{2} + q(\psi(x) - \psi(x+c))^{2} \right]$$

We may now state our stability theorem:

<u>Theorem 1</u> There exist positive constants r, q and k such that if $u \in H^{1}_{loc}(\mathcal{R})$ satisfies

$$(u_x(.,t_o), u_t(.,t_o)) \in L_2(\mathcal{R}) \times L_2(\mathcal{R})$$

and is a solution of (0-1) satisfying

$$d_q(u(.,t_o)) < r$$

at some time t, having energy

$$E = \int_{-\infty}^{\infty} dx \left[\frac{1}{2} u_{t}^{2} + \frac{1}{2} u_{x}^{2} + U(u) \right] < E_{0} + k r^{2} ,$$

then the solution exists for all t and has

$$d_q(u(.,t)) \leq \sqrt{\frac{1}{k}(E-E_o)} < r$$

for all t.

The theorem is a consequence of the following

$$\int_{-\infty}^{\infty} d\mathbf{x} \left[\frac{1}{2} |\psi'(\mathbf{x})|^{2} + U(\psi(\mathbf{x})) \right] \ge E_{0} + k |d_{q}(\psi)|^{2}$$

<u>Proof</u> For clarity we divide the proof into a succession of steps:

1)
$$\phi'(\mathbf{x}) = 0 \left[e^{-\lambda_{\pm} |\mathbf{x}|} \right]$$
 as $\mathbf{x} \neq \pm \infty$, $\lambda_{\pm} = \sqrt{U''(\mathbf{a}_{\pm})} > 0$
since $(\phi, \phi') = (\mathbf{a}_{\pm}, 0)$ or $(\mathbf{a}_{\pm}, 0)$ are saddle points of the

equilibrium equation (1-1).

2) The potential energy $V(\Psi) = \int_{-\infty}^{\infty} dx (\frac{1}{2} \psi'^2 + U(\psi))$ has ϕ as a critical point:

$$(\nabla'(\phi),\Psi) = \int_{-\infty}^{\infty} d\mathbf{x} (\phi' \psi' + U'(\phi) \Psi) = 0 \text{ for all } \psi \in H^{1}(\mathcal{R})$$

and

$$(\psi, \nabla^{*}(\phi) \Psi) = \int_{-\infty}^{\infty} dx (\psi^{*2} + U^{*}(\phi) \psi^{2}) = \int_{-\infty}^{\infty} dx (\psi A_{\phi} \Psi)$$

where $A_{\phi} \equiv d^2/dx^2 + U^{"}(\phi(x))$ is a self-adjoint operator in $L_2(\hat{\mathbb{R}})$, bounded below, with essential spectrum $\sigma_e(A_{\phi}) = [b, \infty]$, $b = \min(U^{"}(a_{+}), U^{"}(a_{-})) > 0$ ([9], theorem 16, pg. 1448 and theorem 4, pg. 1438). In particular, $0 \notin \sigma_e(A_{\phi})$. If $\tau_c: \psi \rightarrow \psi(.+c)$ is the translation operator en $L_2(\hat{\mathbb{R}})$ then $\tau_c^{-1} A_{\tau_c \phi} \tau_c = A_{\phi}$, so $\sigma(A_{\tau_c \phi}) = \sigma(A_{\phi})$ for all c.

3) $\phi^{"} = U'(\phi)$ so $\phi^{"'} = U''(\phi)\phi'$, i.e. $A_{\dot{\phi}} \phi' = 0$. By hypothesis $E_{\alpha} < \infty$, hence $\phi' \in L_{\alpha}(\mathcal{R})$. Since $\phi' > 0$, 0 is the smallest eigenvalue of ${\rm A}_{\varphi}$ and it is simple, by standard methods.

.7.

4) Let $\beta > 0$ denote the first positive eigenvalue of A_{ϕ} , or b, whichever is smaller. Then, for $\psi \in H^{1}(\widehat{R})$, $\int_{-\infty}^{\infty} dx \ \psi \ \phi' = 0$ implies

$$(\psi, \nabla^{"}(\phi)\psi) = \int_{-\infty}^{\infty} dx (\psi'^{2} + \upsilon''(\phi) \psi^{2}) \geq \beta \int_{-\infty}^{\infty} dx \psi^{2}$$

The same estimate holds (with the same β) when $\ \varphi$ is replaced by $\ensuremath{\Phi(.+c)}$.

5) Suppose $q \ge U^{"}(\phi(x))$ for all x and $\int_{-\infty} dx \psi \phi'(q-U^{"}(\phi)) = 0;$

 $(\psi, \nabla^{\mathbf{u}}(\phi)\psi) \geq \frac{\beta}{(1+\kappa_q)^2} \int_{-\infty}^{\infty} dx \psi^2$

where

so

then

$$K_{\mathbf{q}} \equiv \frac{\left|\left|\phi^{\dagger}\right|\right|_{\mathbf{L}_{2}}\left|\left|\phi^{\dagger}\left(\mathbf{q}-\mathbf{U}^{\ast}\left(\phi\right)\right)\right|\right|_{\mathbf{L}_{2}}}{\int_{-\infty}^{\infty} d\mathbf{x} \ \phi^{\dagger}^{2}\left(\mathbf{q}-\mathbf{U}^{\ast}\left(\phi\right)\right)}$$

Fo see this, set $\psi = \alpha \ \phi^{\dagger} + \theta$, $\alpha = \text{constant}$, $\int_{-\infty}^{\infty} d\mathbf{x} \ \phi^{\dagger} \ \theta = 0$. Then
 $(\psi, \nabla^{\ast}(\phi)\psi) = (\theta, \nabla^{\ast}(\phi)\theta) \ge \beta \int_{-\infty}^{\infty} d\mathbf{x} \ \theta^{2}$
and
 $\theta = \alpha \int d\mathbf{x} \ \phi^{\dagger}^{2} (\mathbf{q}-\mathbf{U}^{\ast}(\phi)) + \int d\mathbf{x} \ \theta \ \phi^{\dagger} (\mathbf{q}-\mathbf{U}^{\ast}(\phi))$

$$|\psi||_{\mathbf{L}_{2}} \leq |\alpha| ||\phi'||_{\mathbf{L}_{2}} + ||\theta||_{\mathbf{L}_{2}} \leq (\kappa_{q} + 1) ||\theta||_{\mathbf{L}_{2}}$$

6)
$$q \int_{-\infty}^{\infty} dx (u(x) - \phi(x+c))^2 \rightarrow \infty$$
 as $c \rightarrow \pm \infty$, so there exists

c with
$$d_q(u)^2 = \int_{-\infty}^{\infty} dx \left[(u'(x) - \phi'(x+c))^2 + q(u(x) - \phi(x+c))^2 \right]$$
.

The minimum may be achieved at several values of c, but any one will serve, and we shall assume c=0 for simplicity. The derivative with respect to c must vanish at c=0 and

$$0 = \int_{-\infty}^{\infty} dx \left[(u' - \phi') \phi'' + q (u - \phi) \phi' \right] = \int_{-\infty}^{\infty} dx (u - \phi) \left[q \phi' - \phi'' \right] = \int_{-\infty}^{\infty} dx (u - \phi) \phi' (q - U''(\phi))$$

so with $\psi = u - \phi$ in step 5),

$$((u-\phi), \nabla^{n}(\phi)(u-\phi)) = (\psi, \nabla^{n}(\phi)\psi) \ge \frac{\beta}{(1+K_{q})^{2}} \int_{-\infty}^{\infty} dx \psi^{2}$$

The same estimate holds with ϕ replaced by any translate $\phi(.+c)$.

7) Let $\psi \in H^1(\mathcal{R})$. By an inequality of Sobolev type,

 $||\psi||_{L_{\infty}}^{2} \leq \frac{2}{\sqrt{q}} \int_{-\infty}^{\infty} dx (\psi'^{2} + q \psi^{2})$

Suppose ψ as in step 5. Choose $\varepsilon > 0$ so that $u^{"}(a+s) \ge u^{"}(a) - -\beta/2(1+K_q)^2$ for $a_{\leq a \leq a_{+}}$ and $-\varepsilon \leq s \leq \varepsilon$. If $\left(\int dx(\psi^{*2}+q\psi^2)\right)^{1/2} \leq \frac{\varepsilon q^{1/4}}{\sqrt{2}} \equiv r$, it follows that $||\psi||_{L_{\infty}} \leq \varepsilon$ and

$$\begin{array}{l} \nabla(\phi+\psi) - \nabla(\phi) &= \int_{-\infty}^{\infty} dx \left\{ \frac{1}{2} \psi'^{2} + U(\phi+\psi) - U(\phi) - U'(\phi)\psi \right\} \geq \\ \\ &\geq \int_{-\infty}^{\infty} dx \left\{ \frac{1}{2} \psi'^{2} + \frac{1}{2} \left[U''(\phi) - \frac{\beta}{2(1+K_{q})^{2}} \right] \psi^{2} \right\} \geq \\ \\ &\geq \frac{1}{2} \left[(\psi, \nabla''(\phi)\psi) - \frac{\beta}{2(1+K_{q})^{2}} \int_{-\infty}^{\infty} dx \psi^{2} \right] \geq \\ \\ &\geq \frac{\beta}{4(1+K_{q})^{2}} \int_{-\infty}^{\infty} dx \psi^{2} \quad . \end{array}$$

Also $U(\phi+\psi) - U(\phi) - U'(\phi)\psi \ge -\frac{1}{2}B_1\psi^2$

where

$$-B \approx \inf_{X} U^{n}(\phi(x))$$
$$B_{1} = B + \frac{\beta}{2(1+K_{q})^{2}}$$

So

$$V(\phi+\psi) - V(\phi) \ge \max \left\{ \frac{\beta}{4(1+K_q)^2} ||\psi||_{L_2}^2 ,$$

$$, \frac{1}{2} \left(\int_{-\infty}^{\infty} dx (\psi^{*2} + q \psi^2) - (B_1 + q) ||\psi||_{L_2}^2 \right) \right\} \ge$$

$$\ge \frac{\delta}{2} \int_{-\infty}^{\infty} dx (\psi^{*2} + q \psi^2) + \left\{ -\frac{1}{2} \delta (B_1 + q) + (1-\delta) - \frac{\beta}{4(1+K_q)^2} \right\} \int_{-\infty}^{\infty} dx \psi^2$$

for any $0 \leq \delta \leq 1$. Choose $~\delta~$ such as to make

$$\begin{aligned} -\frac{1}{2} \delta(B_{1}+q) + (1-\delta) \frac{\beta}{4(1+K_{q})^{2}} = 0 \\ \text{so as to get} \\ \nabla(\phi+\psi) - \nabla(\phi) \geq K \int_{-\infty}^{\infty} dx(\psi^{+2} + q \psi^{2}) \\ K &= \frac{\beta/4}{\beta + (1+K_{q})^{2} (B_{1}+q)} \\ \text{By (6), (7) and } \nabla(\phi(.+c) = \nabla(\phi) \text{ we obtain finally} \\ d_{q}(u) \leq r \implies \nabla(u) \geq \nabla(\phi) + K d_{q}(u)^{2} \\ \text{In particular, } E(u) \geq E_{0} + K d_{q}(u)^{2} \\ \text{at } t=0 \text{, and } u_{tt} - u_{xx} + U^{*}(u) = 0 \text{ for } t>0 \text{ (the equation is reversible, } t+-t \text{, so we need only consider } t>0). There exists a unique mild solution with $\{u_{x}(.,t), u_{t}(.,t)\} \in L_{2} \times L_{2} \\ \text{continuous in t and with constant energy E which exists on some maximal interval } 0 \leq t < t_{\infty} . \text{ If } t_{\infty} < +\infty , \{u_{x}(.,t), u_{t}(.,t)\} \} \\ \text{cannot converge in } L_{2} \times L_{2} \text{ as } t+t_{\infty} - \text{ so } ||U^{*}(u(.,t))||_{L_{2}} \\ \text{must be unbounded as } t+t_{\infty} . \text{ But on } 0 \leq t < t_{\infty} , \forall(\phi) + Kr^{2} > E \geq \\ \geq \forall(\phi) + K d(u)^{2} \text{ so } d(u(.,t)) < r . \text{ Thus for each t there is a } c = c(t) \text{ so that} \end{aligned}$$$

.10.

so

and the state of the

.11.

 $|\mathbf{U}^{*}(\mathbf{u}(\mathbf{x},t))| \leq |\mathbf{U}^{*}(\phi(\mathbf{x}+c))| + \text{const.}|\mathbf{u}(\mathbf{x},t) - \phi(\mathbf{x}+c)|$

for all x $\in I\!\!R$, so that $||U'(u(.,t))||_{L_2}$ is uniformly bounded as $t \to t_\infty$. Hence $t_\infty = +\infty$ and the solutions exists for all $t \ge 0$ - and similarly for all $t \le 0$.

<u>Remark</u> If the initial values have $\{u_{xx}(.,0), u_{xt}(.,0)\} \in L_2 \times L_2$ as well, then $t \rightarrow \{u_x(.,t), u_t(.,t)\} \in L_2 \times L_2$ is continuously differentiable for all t and we have a strict solution (see, for example, [10], Th. VIII, 3.2).

建氯化乙酸 化结核结构 网络新闻教堂 医小口性结核 化合物 化合物

그녀 제품 문 양성의 실패한 이 것이 가운 것

2. INSTABILITY

The following theorem is featured along the lines of reference [16].

<u>Theorem 2</u> (a) Let (X) be a Banach space, U C X an open set containing (0) suppose T:U+X has T(0)=0, and for some $p \ge 1$ and continuous linear L with spectral radius $(r(L) \ge 1)$.

 $||T(x) - L_{y}|| = 0(||x||^{p})$ as $x \to 0$.

Then 0 is unstable as a fixed point of T .

In fact, we may estimate the direction in which points move away from 0 under successive applications of T. Choose any positive integer m and any μ , 0 < μ < $1/\sqrt{2}$, and define the cone

$$\sum = \sum (m, \mu) = \{ \mathbf{v} \in \mathbf{X} : ||\mathbf{L}^{m} \mathbf{v}|| \leq \mu \mathbf{r}^{m} ||\mathbf{v}|| \}$$

where r = r(L). If $0 < q < \left(\frac{1}{\sqrt{2}} - \mu\right) / \left(\mu + r^{-m} \mid |L^m| \mid\right)$ there exists $a_{\alpha} > 0$ such that:

given any a in $0 \le a \le a_q$, arbitrarily small $\varepsilon_0 > 0$ and arbitratily large $N_0 > 0$, there exist $N \ge N_0$ and $x \in X$ such that $||x|| \le \varepsilon_0$, $||T^n(x)|| \le a$ for $0 \le n \le N$ and $dist(T^N(x), \Sigma) \ge qa$. In particular, $||T^N(x)|| \ge qa$.

<u>Remark</u> If Γ is a C^1 curve of fixed points of T with $0 \in \Gamma$, the tangent to Γ at 0 will be in $N(L-1) \in \Sigma(M, 1/2)$ (if $r^m \ge 2$). Choosing a small, so Γ is close to its tangent, we may conclude there exist arbitrarily small x such that, for some N, $||T^n(x)|| \le a$ when $0 \le n \le N$ but $dist(T^N(x), \Gamma = B_a) \ge \frac{1}{2}$ qa. (Here B_a is the ball of radius a about 0). Thus the points $\{T^n(x), n \ge 0\}$ not only move away from 0, but also away from Γ : the curve Γ is unstable.

<u>Proof</u> Since r = r(L) > 1, p > 1, we may choose n in $0 < n < r^{p} - r$, and then choose K so $||L^{n}|| \le K(r+n)^{n}$ for all $n \ge 0$. There exist $a_{0} > 0$ and b so $||x|| \le a_{0}$ implies $x \in U$ and $||T(x) - Lx|| \le b ||x||^{p}$. Given μ, m, q as above, choose $\delta > 0$ and $0 < a_{0} \le a_{0}$ so small that

$$\Delta \equiv \frac{bK}{r^{p} - r - \eta} a_{q}^{p-1} < 1 \quad \text{and} \quad$$

$$q \leq \frac{1-\Delta}{\sqrt{2}+\delta} \cdot C_{\delta} - \Delta \quad , \quad C_{\delta} = (1-3\delta - \mu(\sqrt{2}+\delta))/(\mu + r^{-M}||L^{M}||).$$

.12.

is in the boundary of the spectrum, it is an approximate eigenvalue and there exist $\zeta \in X + iX$ (the complexificantion of X) with $||\zeta|| \ge 1$ but $||L\zeta - \lambda\zeta||$ arbitrarily small. Choose $\zeta = \xi + in$ (ξ, η in X) so $||\xi|| = 1 \ge ||\eta||$ and for $0 \le n \le N + m$ $||Re(L^{n}\zeta - \lambda^{n}\zeta)|| = ||L^{n}\xi - r^{n}(\cos n\theta \xi - \sin n\theta \eta)|| \le \delta r^{n}$. Note $||L^{n}\xi|| \le (\sqrt{2} + \delta)r^{n}$ and $||L^{N+m}\xi|| \ge r^{N+m}(1-3\delta)$. We prove dist $(L^{N}\xi, \Sigma) \ge C_{\delta} r^{N}$, by contradiction. If $v \in \Sigma$ and $||L^{N}\xi - v|| < C_{\delta} r^{N}$ then $||v|| < (C_{\delta} + \sqrt{2} + \delta)r^{N}$ and $C_{\delta} r^{N} ||L^{m}|| > ||L^{m}|| ||L^{n}\xi - v|| \ge ||L^{N+m}\xi - L^{m}v|| > r^{N+m}(1-3\delta) - \mu r^{m+N}(C_{\delta} + \sqrt{2} + \delta) = C_{\delta} r^{N} ||L^{m}||$, a contradiction.

Now let $0 \le a \le a_q$, $R = (\sqrt{2} + \delta)/(1 - \Delta)$, and $\varepsilon = a/Rr^N$. Note $a \le a_o$ and $\varepsilon \le a_o/r^N \le \varepsilon_o$. Let $x_o = \varepsilon\xi$, $x_{n+1} = T(x_n)$ for $n \ge 0$; then

$$x_n = L^n x_0 + \sum_{k=0}^{n-1} L^{n-1-k} (T(x_k) - Lx_k)$$
.

Suppose $n \le N$ and $||x_k|| \le \epsilon Rr^k$ for $0 \le k \le n-1$; this is certainly true for n=1. It follows that

$$||\mathbf{X}_{n} - \mathbf{L}^{n} \mathbf{x}_{0}|| \leq \sum_{k=0}^{n-1} K(\mathbf{r}+\eta)^{n-1-k} \mathbf{b}(\varepsilon \mathbf{R}\mathbf{r}^{k})^{p} \leq \frac{\mathbf{b}K(\varepsilon \mathbf{R}\mathbf{r}^{n})^{p}}{\mathbf{r}^{p}-\mathbf{r}-\eta} \leq \Delta \varepsilon \mathbf{R}\mathbf{r}^{n}$$

so $||\mathbf{x}_{n}|| \leq (\sqrt{2} + \delta + \Delta R) \, \varepsilon r^{n} = \varepsilon \, R \, r^{n}$. By induction, $||\mathbf{x}_{n}|| \leq \varepsilon R \, r^{n} \leq a$ for all $n \leq N$, and $||\mathbf{x}_{N} - \mathbf{L}^{N} \, \mathbf{x}_{O}|| \leq \Delta \varepsilon R \, r^{N}$. Finally dist $(\mathbf{L}^{N} \, \mathbf{x}_{O}, \Sigma) = \varepsilon \, dist(\mathbf{L}^{N} \xi, \Sigma) \geq C_{\delta} \, \varepsilon \, r^{N}$, so dist $(\mathbf{x}_{N}, \Sigma) \geq (C_{\delta}/R - \Delta) \, \varepsilon R \, r^{N} \geq qa$.

3. APPLICATIONS

Solitary-wave solutions of (0-1) are of type

(3-1)

 $\Phi_{0}(\mathbf{x},t) \neq \Phi_{0}(\mathbf{x}-\mathbf{u}t)$

$$x \Rightarrow \xi = \frac{x - ut}{\sqrt{1 - u^2}}$$
 $t \Rightarrow \tau = \frac{t - ux}{\sqrt{1 - u^2}}$

(3-1) describes then (for |u| < c) static (i.e., τ -independent) solutions of (0-1). In one space-dimension, s=1, there are two types of nontrivial solutions of the form (3-1) (see fig. 2):

a) solutions joining two distinct absolute minima a_{-} and a_{+} of $U: \lim_{X \to -\infty} \phi(x) = a_{-} < a_{+} = \lim_{X \to +\infty} \phi(x)$, with $U(a_{-}) = U(a_{+})$; or solutions joining two distinct relative minima $b_{-} < b_{+}$, with $U(b_{-}) = U(b_{+})$;

b) solutions around a relative minimum α of U: $\lim_{x \to -\infty} \phi(x) =$ = $\alpha = \lim_{x \to -\infty} \phi(x)$.

In case a), theorem 1 applies directly yielding <u>form-stability</u> of the solitary-wave ([4],[6]).

The following condition follows from b):

c) sgn $\phi^+(x)$ is not constant in $x \in \mathbb{R}$.

[17]), we now state the appropriate analogous conditions for general s:

cl) $\lim_{|\mathbf{x}| \to \infty} \phi(\mathbf{x}) = \alpha$ and $\alpha_{\underline{1}} \equiv U^{"}(\alpha) > 0$ and $\Phi()$ is not constant;

c2) $\left[\phi(.) - \alpha\right]$ & L₂(\mathbb{R}^{5});

In theorem 2 $F_t(t \ge 0)$ is a (nonlinear) semigroup and T is F_t at any fixed t > 0. L = DF_t(0) = exp(tA) , where A is the linearized operator

$$\mathbf{A} \equiv \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{K} & \mathbf{0} \end{pmatrix}$$

on $\mathbf{H}_{\alpha_{1}}^{1}(\mathbf{R}^{s}) \oplus \mathbf{L}_{2}(\mathbf{R}^{s})$, where
$$\mathbf{H}_{\alpha_{1}}^{1}(\mathbf{R}^{s}) = \{\mathbf{u}: ||\mathbf{u}||_{\alpha_{1}}^{2} \equiv (-\Delta + \alpha_{1})^{1/2} \mathbf{u}, (-\Delta + \alpha_{1})^{1/2} \mathbf{u}\} < \infty \}$$

and

$$\zeta \equiv -\Delta + u^{n}(\phi)$$

We have

$$\mathbf{A} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ -\Delta + \alpha_{\mathbf{1}} & \mathbf{0} \end{pmatrix} + \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{U}^{\mathbf{n}}(\phi) - \alpha_{\mathbf{1}} & \mathbf{0} \end{pmatrix}$$

The first operator is skew adjoint on $D(-\Delta + \alpha_1) \oplus D(-\Delta + \alpha_1)^{1/2}$) ([15], Theorem 1, pg. 26). The multiplication operator $(U^{n}(\phi)-\alpha_1)$ is by c2) a relatively compact perturbation $(-\Delta + \alpha_1)$ on $L_2(\mathbb{R}^5)$, hence it is a compact operator on $H^{\bullet}_{\alpha_1}(\mathbb{R}^5)$, and $\begin{pmatrix} 0 & 0 \\ U^{n}(\phi)-\alpha_1 & 0 \end{pmatrix}$ is a compact operator on $\operatorname{H}^{1}_{\alpha_{1}}(\mathbb{R}^{S}) \oplus \operatorname{L}_{2}(\mathbb{R}^{S})$. Therefore $|\operatorname{Re} \sigma(\mathbb{A})| \leq \operatorname{constant}$, and $\operatorname{L} = \exp(\operatorname{t}\mathbb{A})$ exists as a semigroup of bounded linear operators. We have now

<u>Proof</u> It follows from cl) and c2) that $(U^{"}(\phi) - \alpha_{1})$ is a relatively compact perturbation of $(-\Delta + \alpha_{1})$, as remarked above. Hence $\sigma(K) \setminus [\alpha_{1}, \infty]$ consists of point eigenvalues of finite multiplicities which can accumulate at most at α_{1} . We have

$$K \partial_{x_{i}} \phi = 0$$
 $i = 1, \dots, s$

Hence (by (c3)) zero is a discrete eigenvalue, and the bottom of $\sigma(K)$ is an eigenvalue e_{0} . By ([12], theorems XIII-43 and XIII-45), K is ergodic and by ([12], theorem XIII-43) e_{0} is a <u>simple</u> eigenvalue and the corresponding eigenfunction $\psi \in D(K) = D(\Delta)$ is strictly positive. But by c) (for s=1) $\partial_{x} \phi \neq \lambda \Psi$. For s>1, $\partial_{x_{1}} \phi \neq \lambda \Psi$ for all i=1,...,s because Ψ is simple and $\partial_{x_{1}} \phi \neq \lambda \partial_{x_{1}} \phi$ for some $i \neq j$ (i.e., the zero eigenvalue is degenerate). To see this, suppose $\sum_{l=1}^{S} \lambda_{j} \partial_{x_{j}} \phi \equiv 0$ for some constant $\lambda \in \mathbb{R}^{c}$. This implies

$$\frac{d}{dt}\phi(x+\lambda t) = 0 , \qquad \phi(x) = \phi(x+\lambda t) \quad \text{for}$$

all x,t: if $\lambda \neq 0$, let $t \rightarrow \infty$ and conclude from cl) that $\phi(x) = \alpha$ for all x. Hence, in all cases, $e_0 < 0$. Let $\beta = -|e_0|$. The vector

 $\mathbf{v} = \begin{pmatrix} \psi \\ \sqrt{3} & \psi \end{pmatrix} \in \mathbf{L}_2(\mathbf{R}^s) \otimes \mathbf{L}_2(\mathbf{R}^s)$

.17.

is an eigenvector of A corresponding to eigenvalue $\sqrt{\beta} > 0$. But $\psi \in D(\Delta)$, hence $\psi \in H^{1}_{\alpha_{1}}(\mathbb{R}^{S})$ and $v \in H^{1}_{\alpha_{1}}(\mathbb{R}^{S}) \oplus L_{2}(\mathbb{R}^{S})$.

The above proposition proves instability for case b) (and s=1) under assumption (3). There are many examples in higher dimenions ([13], [17]). For an explicit example in dimension s=3, consider the following potential ([13]):

$$\mathbf{U}(\phi) = \begin{cases} g \left[(\phi - c)^3 - 3(\phi - c)^4 \right] & c \leq \phi \leq 1 + c \\ g (\phi - c)^4 & \text{for } \phi \leq c \\ f (\phi) & \text{for } \phi \geq 1 + c \end{cases}$$

where $f \in C^2$, smoothly matched at $\phi = 1+c$, with $|f^{"}(\phi)| \leq const.(1+\phi^2)$, g > 0 and c is a given constant. U $\in C^2$, and $\phi = c$ is a relative minimum. The function

 $\phi(\mathbf{r}) = \mathbf{c} + \left[\mathbf{1} + \left(\frac{\mathbf{r}}{\mathbf{a}}\right)^2\right]^{-1}$

with $a^2 = 2/3g$, is a radial solution of (0-1). It satisfies cl) and c2). Proposition 2, coupled with theorem 2, implies therefore that the above solution is unstable, as conjectured in [13]. Similarly, the (infinite series of) radial solitary-wave solutions of (0-1) constructed by Strauss in [17] are <u>unstable</u>, by the same reasoning.

The above results lead us to revisit the Derrick--Strauss theorem ([7],[8]). The latter states (in the form originally proposed in [7]) that solitary-wave solutions of scalar field theories do not exist for s > 1, provided they have finite energy relative to the absolute minimum (or minima) of U. However, solutions joining two relative minima of U (as b_ and b_ in fig. 1) are stable and define a Hilbert sector, although they have infinite energy relative to the absolute minima. Hence, the finite energy property does not seem to be relevant. If we accept this, there exist solutions around relative minima of U (as defined in b)) both for s=1 and s>1, as the previous examples show. The latter are, however, <u>unstable</u>. Stability seems therefore to be the main issue.

> a de la companya de la comp

the second second second

REFERENCES

- [1] P.D. Lax Comm. Pure Appl. Math. <u>21</u>, 467 (1968).
- [2] S. Coleman Lectures at the 1975 International School of Subnuclear Physics "Ettore Majorana" (Erice).
- [3] K. Hepp Comm. Math. Phys. <u>35</u>, 265 (1974).
- [4] T.B. Benjamin Proc. Roy. Soc. Lond. A328, 153 (1972).
- [5] J.L. Bona Proc. Roy. Soc. Lond. A344, 363 (1975).
- [6] G. Scharf and W.F. Wreszinski Ann. Phys. (N.Y.), to appear.
- [7] G. Derrick J. Math. Phys. <u>5</u>, 1252 (1964)
- [8] W. Strauss "Nonlinear Invariant Wave Equations", in "Invariant Wave Equations", ed. by G. Velo and A.S. Wightman, Springer Verlag, 1977.
- [9] N. Dunford and J. Schwartz Linear Operators, Vol. II, Interscience, 1963.
- [10] R.H. Martin Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, 1976.
- [11] M. Reed and B. Simon Methods of Modern Mathematical Physics, Vol. IV, Academic Press, 1978.
- [12] C. Parenti, F. Strocchi and G. Velo in "Invariant Wave Equations", ed. by G. Velo and A.S. Wightman, Springer Verlag, 1977, and Comm. Math. Phys. 53, 65 (1977).
- [13] C. Parenti, F. Strocchi, and G. Velo "Dynamical Charges and Symmetries in Non-linear Classical Field Theory", Bielefeld preprint.
- [14] P.R. Chernoff and J.E. Marsden Properties of Infinite Dimensional Hamiltonian Systems, Springer-Verlag, 1974.
- [15] J. Marsden and M. McCracken The Hopf Bifurcation and its Applications, Springer-Verlag, 1976.
- [16] Daniel B. Henry "Stability and Instability by the Linear Approximation" - Proc. of the 12th. Brazilian Analysis Seminar (Soc. Bras. de Matemática, Rio de Janeiro).
- [17] W.A. Strauss Comm. Math. Phys. <u>55</u>, 149 (1977).

.19.