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STABILITY THEORY FOR SOLITARY-WAVE SOLUTIONS 0. - INTRODUCTION

OF SCALAR FIELD EQUATTONS

In this paper, we study the stability of special
Daniel B. Henry(*) travelling-wave ("solitary-wave", [i}) solutions of classical

Instituto de Matemidtica, Universidade de Si3o Paulo, scalar field equations of the form

Sao Paulo, Brazil ] Lo
. ¢ + U{d) = 0 . _ L - {0-1)
(**) s (F) e o Sy :
J. Fernando Perez and Walter F. Wreszinski

T itute d P . , - - . . : :
nstituto de Flsica, Universidade de Sao Paulo, This problem has attracted much attention recently in.the physics

Sac Paulo, Brazil : T i R ’ :
literature ([2]), in part because classical sclutions may be
recovered from suitable expectation values of quantum fields in
the classical limit (Bﬂ).

Apart from the main motivation, which is to provide
a simple and clear mathematical theory of stability for classical
field equations, there is also a three-fold physical motivation.
ABSTRACT R
Firstly, most of the discussion in the physics literature {[2]},
which is heuristically correct, relies on the linear theory. It

We prove stability and instability theorems for may be shown, however, using methods of the present paper, that

solitary-wave solutions of classical scalar field equations. the latter is not applicable, because the linearized operator {on
the natural Hilbert space, after proper "subtraction" .of the zero
mode) is skew-adjoint, a reflection of the fact that the mechaniem
of stability in these theories is dispersive, not dissipative (see
also the discussion in [6] for ¥-dv eguation). Secondly, the
existing rigorous nonlinear stability theories ([4], generalized
and corrected in [B], and [6]) are in principle applicable only to
a clasé of equations {(such as the K-dv gqqatign) which may be
treated either by inverse'séatteriﬁg £heory“(t§j}, ér.ﬁﬁich.ﬁosess
nore than one scalar conservation law (Dﬂ,[ﬁ]), and are, therefore,
unisuitable to déscribe,.for instaﬂcé, the stability of "kinks" of
{*)  Partial financial support by FAPESP and FINEP. the nonlinear Klein-Gordon equation {([2]). Thirdly, and perhaps

| . most importantly, the heuristic discussion disregards the some-—

(**) partial financial support by CNPg.

what delicate technical problems posed by the zero-mode, which is




always present due to translation invariance ([2]): this is also

the reason why stability of the solitary-waves is a form—stability

(4. 6.
: The plén' of the paper is as follows. In section 1
we describe the yelevant class of ééuétioﬁs and solutibns, state
‘and prove éur stability result (theorem 1), and in section 2 we
proire a general instability result (theorem 2). In section 3 we
provide a brief discussion of applications of theorems 1 aqd 2 and
prove, in pa‘rticuiar,' instability ‘of the.'s'o}_itarf—waves in Higher
dimensions which have been constructed by Parenti et al. ( s
and strauss ([17]). The Derrick-Strauss theorem ([7],[8]) is

thereby revisited.

1. STABILITY

Let ¢ be a bounded s:'tati'c {timé~independent)

solution of (0-1), i.e., satisfying

$"(x) = U (§(x)) - U xe®o ©{1-1)
We furthér assume-

e >0 0 ¥xeR B -2

and that there exist constants -»<a_<a_ <« such that

§{x} —ra_ © and ¢ (x) ———=ra (1-3}
X +—% - o . . ] . X +4®
. 1, 2 .
Since  U{p(x)) = 3 $'(x)” +const. it follows - that Ula_) = Uta+)

We normalize the energy of the "vacua" ¢(x) = a, and ¢(x} = a_
to zero and assume

U(a)) =U(a) =0 and T >0 x 8 R (1-4)
We also assume that

EO = [“’(% q>'2 + O{¢)) < = (1=5)

-0

This means that ¢ has finite energy relative to the vacua. This
point and the restriction to one space dimension are related to
the Derrick-Strauss theorem ([7],[8]), see the discussion in sec-

tion 3. On U we further impose the following condition:
U e c? in a neighbourhoced of ta__,a__] and

Ua,) > 0 ' (1-6)

We note that by the first of (1-2) we are describing "lumps"
{[Z]). "antilumps" (¢'(x) <0 x € ) may be handled by
reflection =x + =x .

Let

al (RY = {!P: R+ : de [w'(x)z + w(xz}] < for every

Loc

bounded region & C ‘R}

Bl (R) = {w:R+1R: dex |:‘P'(x)2 + zp(x)z:| < m}

-—0

Htoc(R) is the natural space for solutions of (0-1) ([12]), and

we shall therefore assume ¢ € H‘}_O"(R) . Such a ¢ defines {(under



5.
the previous assumptidné) a Hilbert sector in the language of
([12]1, and it is natural to inquire upon stability within a
sector, which means that "perturbed” solutions are required to
satisfy [¢¢“¢1 B H'(R) @ Lz(ﬁi) . Dbue to translation invariance,
: t

’

the following is (for g>0) a natural distance function (see also
EXRE

dq(w)z = min J dx [(w'(x) - ¢'(X+C))2+q(¢(X)-lb(X+C))2]

—Ca <l L0

We may now state our stability theorem:

Theorem 1 There exist positive constants r , g and k such

1

that if u € Hﬂ (F)  satisfies
oc " .

(g (art) »ou ot )) € Ly (R) x b, (R)
and is a solution of (0~1) satisfying
dq(u(-;to)) <r

at some time tO » having energy

L

2

1 2
ot U(u)] <E +kr ,

_ 1 .2
E—de [‘i"ut+-2-u

then the solution exists for all & and has

a (al. ) < JIE-E) < x

for all t .

The theorem is a conseguence of the following

Proposition 1 There exist positive constants g and k such

1 -

that any solution ¢ € Hzoc(%u) of {(0=-1) with dq(¢(.,to)) < r.

satisfies

o

I ax [% o' 02 s vwin ):| > E +k dq(w)_z__

-

Proof For clarity we divide the proof into a succession of
steps:

S 1+[xl PR . . o . . Lo .

1) ' (%} =0 [e - ] as x + 3= , A = /T {a,) >0

since (¢,¢") (a+,0) or (a_,0) are saddle points of the

equilibrium eguation (1-1}.

w

2) The potential energy V(¥) = l dx(% ¢'2

+ U(y)} has ¢

—00

as a critical point:

-]

(V' {d},¥) = I dx(¢"* + U*{$)¥) = 0 for ﬁll P e Hl(ﬁE)

-

and
n _ 2 : 2
v @n = [ axw? s uov? = J dx(y &, W)
where A, = dz/dx2-+ U"{¢{x)) is a self-adjoint operator in

¢
LZ(Ez} , bounded below, with essential spectrum ce(A¢} = [@,uﬂ .

b = min(U"(a )} ,U"(a_}) >0 (93, theorem 16, pg. 1448 and thegrem

4, pg. 1438). 1In particular, 0 § de(A¢) . If Tc:w-+¢(.+c} is
. -1 _
the translation operator en Lz(ﬂi) then Te Atc¢ Te A¢ ;s SO

)y = 0(A¢) for all ¢ .

3) 6" = U (¢) so " = U(Hle* , i.e. B, ¢ =0 .
By hypothesis E_ < ® , hence ¢' € Lz(ﬁz) . Since ¢' > 0 ,




0 is the smallest eigenvalue of A and it is simple, by standard

¢
methods.

4) Let B >0 denote the first positive eigenvalue of A
<]

) $ '
or b , whichever is smaller. Then, for oy & Hl(fR) , ‘dx pe' =0
implies -

vt = [ axw? v o vh s | axy?

The same estimate holds (with the same 8). when ¢ is replaced by

{.+c) .

]

5) Suppose g > U"(¢(x)} for all x and J dx ¢ ¢ {g-U" p))= 0;

-0

then

w

wovm@rn > —Em [ ax ¢?
] {1 +Kq).

where

¢! ¢ (g -u"($)) ||
H E!Lzl! L,

9 .W 2 -
J ax ¢'2(q - u"(6))

-0

To see:this, set.. ¢ = a-_c{;'-;l‘e s & =constant J dx ¢' 8= 0 . Then
W @9 = (8, v (9)0) 28 | ax s

-0

2

0=a I ax ¢'% (q-u(e)) + J dx 8 ¢' (g -U"(¢))

50

ol = sl Hor = 1eil, < kg + 1) [l

)

6) g de (u(x) - ¢(x+c))2 +® a8 ¢ =+ tw , s0 there exists -

2 2
¢ with dq{u}2 = I dsx [(u‘(x) = ¢' (x+c)) " + glu(x) — ¢ (x+c)) :1
—cg
The minimum may be achieved at several values of ¢ , but any one
will serve, and we shall assume c¢=0 for simplicity. The deriva-
tive with respect to ¢ must vanish at c=0 and

o -3

0 = J dx |:(u'-¢') o+ q (u¢.¢)¢I] = J dx (u_¢) q¢l _¢||Z|=

.Y ==

o

= J ax (u-¢} ' (q~U"(4))

e

so with ¢ = u-¢ in step 5},

?‘J"”

—o

B
( 1+Kq)

2

(-9} V" () (P} = (&, V" (P)Y) >

The same estimate holds with ¢ replaced by any translate ¢{.+c).
7) Let V¥ € nt (fR) . By an inequality of Sobolev type,
2
el <

Suppose ¥ as in step 5. Choose e >0 so that u"(a+s} > u"{(a) -

- 53/2(1+Kq)2 for a_c<acZ<a and -£ <s5 <g . If_(}’dx(lp'2+q wz))l/zi

+
e 1/4
<« &89 =y, it follows that ||¢]| < g and
) Lo ~



9. : 0.

0

: . L B
VIe+¥) - V(3) = jdx {—;- 0% Ul - U - U'(¢)'JJ}‘ > -3 S(Bpta)l + (1-9) ek 12 0
i . - . <
> de {%‘- vp'z +~;'- [U'"(¢) - #2] ¢,2} N 50 as to get
L 2(1+K ) -
q L=
1 ] = ' V() - V() 2 K J ax(y'? + qu?)
>z [(w,v"wm - dx ¢] . L
2 2(1+Kq)E lm -
o . 8/4
p) . 2 i
> 3 . de 4 . B + (1+Kq)_ (B1+q.). .
4(1+Kq) L

By (6), (7) and V{${.+c) = V() we obtain .finally
Also  U{d+y)

' -1
UGH) - U DY 2 - 5B ¥

4w cxr = Vv >V +K dq(u)2

where
In particular, E{u) > E + K d (u)'2 .
-B = i§f U (d(x)) - © q
L)
Bl = B + ___L_z Proof of theorem 1 Suppose dfu{.,0}) <r , E= de[-:!'z- uﬂw(u) <V(q';)+K1':2
2(1+Kq) =
at t=0 , and w,, -u  +U'(u =0 for:t>0 (the equation.is -
o reversible, t +~t , so we need only consider ' -t >0).. There exists:
a unique mild solution with . {ux.(.,t) ,.ut.(.,t)} € L2 X L2 .
V{¢+9}) -~ V() > max {-—ﬁ—-—--z- g 1% ' continuous in t and with constant energy E which exists on
4(1+K ) 2
q

some maximal interval 0 <t<t. . If t <+, {o (.,8),u (.,6)}

o

f
3 xa?eadd - e e lwliiz]} >

oo

cannot converge in L2 xL2

must be unbounded as t-rtm . But.on O<t<t_., V{§) +Kr

as t+t_, - so HU'(u(-rt))HLz
2>Ei

> Vi$) + K d(u):2 so- df{uf{.,t)) <r.. Thus for each & there is

> % J cilx(v\b'2 + qwz) + {- 32'- S(Bl+q) + a ¢ =c¢(t) so that
2(1+K )2 e
q -—00
s0

for any 9 <8 <1 . Choecse § such as to make
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[U* (uix,£)) | < |U* (¢({x+c)) | +const. |ulx,t) - ¢{x+c) |

for all x € R , so that ||U’(u(.,t))] lL is uniformly bounded
2
as t~t . Hence £t =+ and the solutions exists for all

t >0 - and gimilarly for all € <0.

Remark If the initial values have {uxx(.,O),uxt(.,O)} € L, xL,

as well, then & -+ {ux(.,t),ut(.,t)} E.Lz.kL2 is continuously
differentiable for all t and we have a strict solution (see, for

example, [10}, Th. VIII, 3.2).

2. INSTABILITY

The following theorem is featured aleong the lines

of reference {16].

Theorem: 2 ! - Let - X ' be a Banach space,- U C X an open set con-
taining -0 ;- -suppose T:U+X: has- T(0)=0., and for some p>1 and

continuous linear L - with spectral radius - r(L) >1,
{ir{x): - Lxs[ =o(||x||®y as x-+0 .

Then . .0 ‘is unstable as a fixed point of T .

In fact, we hay-estimate the direction in which
points move away from 0 under successive applications of T .
Choose any positive integer m and any p , 0 < u < 1/¥Y2 , and

define the cone

I=1mw = tvex: {L"vi| < ul|v|[}

W12,

where r=x(L) . If 0 < g < [—L - u}/[u + ™ |ILm11} there
V2

exists aq >0 such that:

given any a in 0 <a iaq , arbitrarily
small £ >0 and arbitratily large

No >0 , there exist N > NO and x € X
such that ||x|] < £ v [ || < a

for 0 <n <N and dist(TN(x),Z) > ga.

In particular, ||TV(x)|] > ga .

Remark If T is a Cl curve of fixed peints of T with O0E€Tr ,
the tangent to I' at ¢ will be in N(L-1) C E(M,1/2) (if anZ).
Choosing a small, so ' is close to its tangent, we may conclude
there exist arbitrarily small x such that, for some N ,

{[T™x) || <a when 0 <n <N but dist(T (x),T B,) 3%qa .
(Here B_ is the ball of radius a about 0). Thus the points
{Tn(x),n_zﬂ} not only move away from 0 , but also away from I':

the curve T is unstable.

Proof Since r=r(L) »1 , p>1 , we may choose n in 0<n <rp—r,

and then choose K so ||L°|| < K(r+m}" for all n > 0 . There
exist a,>0 and b so |[x|| < a  implies xEU and
[T(=x) - mx{} < b||x||P . Given u,m,q as above, choose § >0

and 0 <aq_5a0 so small that

A = bK -t NP and
Por-n 9
1-A M) M
92 —— .Cs-8 , Cs= (1-3-u(V2+8)) /(u+r T|[E7|D) .
V2 +8
Choose X €o(L}) with |[A| =r , say A =ret® , and
choose N > N s0 o> a /e, and [ei (N+m) § -1] <8 . Since A

Q — 0
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is in the boundary of the spectrum, it is an approximate eigenvalue
and there exist ¢ 68X +iX (the complexificantion of X) with

Mzl > 1 but | Lt -Ag|} arbitrarily small. Choose ¢ =£ +in

(E,n in X} so [[E[}=1>]]n|| and for 0 ¢n < N+m
HRe @z ~ 2"y || = ||2"E - ®(cosno & -sinno )| < 6™ . wNote
Hrte] < (¥Z +8}r"  and ||LN+m£|| > Y (1-38) . We prove

dist(LNE,E) > Cy ol . by contradiction, If v €I and |1LNs-v|| <Cg &

then [|v|| < (€5 + /2 + &)x" ana cg A || > LM {1 - vl 2
2 e -] > S 30 - w™ e+ 2y = o N IKY] L e
contradiction.

Now let 0-<aiaq , R = (YZ+8)/(1 -8} , and

_ N N -
€ = a/Rr” . Note aza, and ¢=<a/r. < e, - Let x =e& ,
¥ ., =T(x) for n3>0; then
i n-1
. _ ¢h n-1-k -
X, =L" x, + z L (P(x ) = Ly ) .
k=0
Suppose n <N and ka}{ < e rRX for 0 <k <n-1 ; this is
certainly true for n=L . It follows that
n nl n-1-k k,P n P
X, - x |} < | Kiren) b{eRr")" < bR{eRr) .l
n o — 5 - < AceR
Porn
Il n x N Il
50 ||xn|| < {(¥YZ+§ +AR)exr = £ Rr . By induction, ||xn1| <eRr < a
for all n <N, and ||xg-L"x || <aerr™. Finally

aist (LY xo,Z) =g dist(LNF,,z) > Cy er™ r SO

dist(x,,I) > (Cg/R-8) eRx" > ga .

3. APPLICATIONS

Solitary-wave solutions of {0-1) are of type

fbo(x.t) = @o(zc*ut) (3-1)

.14,

for suitable u . In order to apply theorems 1 and 2 to the
stability of (3-1), we first transform to a fixed-point problem:

by a Lorentz-transformation (which leaves (0-1) invariant})

X-ut _ k- ux

{3-1) describes then (for |[u| <c ) static {(i‘e., T-independent)
solutions of (0-1). In one space-dimension, s=1 , there are two

types of nontrivial solutions of the form (3~1) (see fig. 2):

a) solutions joining two distinct absolute minima a_ and

a of U: Zim  ¢(x) =a_<a, = f£im ¢(x) , with U(a ) =U(a,);s
X @ - Tt X

or solutions joining two distinct relative minima 'b_. <b+ , with
U{b_} = U(b+) H
b} solutions around a relative minimum o .of U: .ﬁj.m ¢(x) =
. X 3 =0

=q = fim $(x) .
X 4w

£U

FIG. 2

In case a), theorem 1 applies directly yielding form-stability of
the solitary-wave ([4],[6]).

The following condition follows from b):
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e} 'sgn ¢ (%)’ is ‘not constant in x &R .
~‘In view of the'wedalth of solutions for s >1 ([13],
[17]) , We now state ‘the appropriate analogous conditions for
general s :

cl) Lim ¢x} =a and ey = U"(a) >0 and ¢() is not constant;
lxl—)—m -

c2) [p(.) =.a] -€ I.z(__ﬁ)- ;

'In theorem 2 F (£>0) is a (nonlinear) semigroup

and T is F_ at any fixed £3>0. L =DF _(0) ‘= exp(td) , where

t
A is the linearized operator
0 1
A =
-K 0
. 1 g < .
on B (R)oer (R , where
oy 2
al (R-s) = {u:}|u] I2 = (=& +u1)l/2 u, -A+o /2 u) < «}
D'.l G-'l 1
and
K= =&+ u"(¢)
We have
: 0 11 0 0
A = +
-A-i-al 0} u" (o) et 4]

1/2

The first operateor is skew adjoint on Di-A +al)) ® D{-A +c11) )

([15], Théorem 1, pg. 26). The multiplication operator " (4)-a,)
© .

is by ©2}) a relatively compact perturbation (~A +c.l) on Lz(& b,
0 D]
l

ek (¢')-o.l . 0

hence it is a compact operator on Hc:t (RS y  and
1

.16,

is a compact operator on H; ('Rs.) @ L2( Rs) . Therefore
1
|Re o(A)| < constant , and L =exp(th) exists as a semigroup of

bounded linear operators. We have now

Proposition 2 Under assunption (¢} (for s=1) or cl) and c2} (for
s>1) , K has an eigenvalue e, <0 and A has an eigenvalue

‘/|eo| >0, s0 r(L) >1.

Proof It follows from cl) and c2} that (U"(¢) -al) is a
relatively compact perturbation of (A +ocl) , as remarked above.
Hence o (KI'\ [otl,ﬂ consists of point eigenvalues of finite

multiplicities which can accumulate at most at. o We have

1"
K 3 ¢ = 0 i=l,...,s

Hence (by (c3)) zero is a discrete elgenvalue, and the bottom of
¢(K) is an eigenvalue e_ . By ([12], theorems XIII-43 and
XIII-45}), K is ergodic and by ([1Z], theorem XITI-43) e, is
a siﬁgle eigenvalue and the corresponding eigenfunction ¥ & D(K)=
= D(A) is strictly positive. But by ¢} (for s=1) -Bx ¢ FAY.,
For s>l , Bx. ¢ #AY¥ for all i=1,...,5 because ¥ is
simple and ax:.L b # A Qx_ ¢ for some i #3j (i..e., the zero eigen-
value is degenérate:) . To see this, suppose ? Aj Bx‘ ¢ =0 for
some constant A € IE‘ . This implies )

adz 6 (x4rt) = 0 , $(X) = §(x+At) for

all =x,t: if A #0 , let t-+= and conclude from cl) that
$(x) =a for all x. Hen'ce, in all cases, e0<0 . Let B=-—|eol.

The vector

._i ¥ 's\ . s
v---!,g vl € DR e x, (R



L17.

is an eigenvector of A corresponding to eigenvalue B > 0 .

But % € D(A) , hence ¥ & Hi (R*) and v & Hi (%) o LZ(EQ‘S)
1

1
The above proposition proveé instability for case

b) (and s=1) under assumption {3). There are many examples in
higher dimenions {Eli],[lf]). For an explicit example in dimension

s=3 , consider the following potential ([13]):

g [(¢-c)3—3(¢-—c)4:| c ¢ < l+c
) = {g (6 -a* for ¢ <c
£ (9) for ¢ > l4c

where f & C° , smoothly matched at ¢ =1l+c , with [FW¢)§§uxEt.Uﬁ¢%,
.g>0 and ¢ 1is a given constant. u EC2 , and ¢ =c 1is a

relative minimum. The function

251
p(r} = ¢ + [1 + [5] ]
a

with a2 = 2/3g , is a radial solution of (0-1). It satisfies
cl) and c2). Proposition 2, coupled with theorem 2, implies
therefore that the above solution is unstable, as conjectured in
[li]. Similarly, the {(infinite series of) radial solitary-wave
solutions of (O—i} constructed by Strauss in [17] are unstable, by
the same reasoning.

The above results lead us to revisit the Derrick-
-Strauss theorem ([7],[8]). The latter states (in the form
originally proposed in [7]} that solitary-wave solutions of scalar
field theories deo not exist for s >1 , provided they have finite
energy relative to the absolute minimum (or minima) of U .
However, solutions joining two relative minima of U (as b_ and

b, in fig. 1) are stable and define a Hilbert sector, although

18,

they have infinite energy relative to the absolute minima. Hence,
the finite energy property dbes not seem to be relevant. If we
accept this, there exist solutions around relative minima of U
{as defined in b)) both for s=1 and s>l , as the previous
examples show. The latter are, however, unstable. Stability

seems therefore to be the main issue.
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