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ABSTRACT

It is shown that in the domain of overlapping
resonances the Hauser-Feshbach formula can be derived in the
framework of the statistical theory of nuclear reactions even when
the energy dependence of the characteristic gquantities (e.g. level

density and widths) is not neglected.
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. Using a random-matrix modei for the coupling matrix elements connect-
ing the channels with the nuclear resonance levels, Agassi et al., /1/
have derived the Hauser-Feshbach formuia for the compound nucleus cross
section in the Timit of strongly overlapping resonances. The derivation
given in Ref. /1/ is based on a number of assumptions which limit the do-
main of validity of the derivation. Aﬁnng these, we mention an assump-
tion explicitly or implicitly made in many theories /2/: the neglect of
all terms involving derivatives of the characteristic parameters (Jevel
density, width) of the compound nucleus with respect to the excitation
energy.

It is the purpose of this paper to point out that the Hauser-Feshbach
formula can be derived, in the framework of the formalism of Ref. /1/,
without using the last-mentioned assumption. As a result, we find for
the compound-nucleus cross section pertaining to fixed angular momentum

and parity, an expression of the form

—= {1+ 8,00 ‘ ()

where S;; is the fluctuation part of the S matrix; a,b,... denote the
channels; a bar the energy (or ensemble) average; and where the transmis-

sion coeffi¢ients Ta are, in the absence of direct reactions (gab =0 for

a = b), given by
T.=1-105_12. (2)

Equations (1) and {2) can be extended to include direct reactions in
the usual way /t,2/. We note that the formal structure of (1), (2}, in-
cluding the value 2 for the elastic enbancement factor, is identical to
that obtained /1/ under the neglect of all energy dependences.. The dif-

ference arises from the explicit form of gaa’ and of Ta' This point is



irrelevant in practice since Ta is anyway commonly calculated from a phe-
nomenclogical optical model potential.* The main point of the present
paper is, therefore, the statement that in the framework of the statisti-
cal theory, the Hauser-Feshbach formula can be derived under weaker con-
ditions than have been used until now. Since this point is only of theo-
retical interest, we condense the proof as much as possible, using the
notation of Ref. /1/ and indicating which steps in the derivation of Ref.
- /1/ must be altered, as shown below.

The S matrix is related to the t matrix by
S=1-2it (3)

and t is given by
t= T voy(evn)S . S SR - {4)
5=0 :

The propagator b is defined as

.-
hu=(E—eu+;_—rU) (5)

with y the Tevel index, and the propagator & in channel space is given by
¢ = -1, rfke supbress here the real shift parameter A which is due to a
principal-value integra]. We do this fbr reasons of consistency: A non-

vanishing_a would imply that the energy dependence due to penetration

*We should remark, however, that this would be true in the absence of
preequilibrium or multistep compound contributions. The presence of
these processes would necessari?y‘}mpTy the presence of several trans-
mission coefficients, with only one of them being determined-from fhe
phenomenological optical model potential.’ See Ref. /3/ for a discussion

of this point.

factors of the coupling matrix elements Y; connecting level u and channal
¢ is not negligible. It would then be necessary te consider & (and, more
generally, &) as a function of bombarding energy, and to take into ac-

count also the derivatives of a which is not done here; hence & = 0.

The derivation of Ref. /1/ evaluates S:é}z to Towest order in (T/D)_1,

where T is the correlation length, D the average level spacing. [The
condition /D »> 1 is eguivalent to that of a large number of. open chan-
nels since ©/D-= (1/20)TrT /1/.] In terms of the contraction patterns
defined in Ref. /1/ this:means that only patterns with nonintersecting
contraction lines are taken into-account.‘ This restriction is not lifted
in the present context. A

In Ref. /1/, the average of t was found to be given by the expres-
sion . |

-

Toyby T (evby)d = g1 | (6)

SZU
Al the other possible ways of contracting pairs of v,s were omitted be-
cause such contractions would force two or more propagators bu to have
the same level index y. Changing'the sum over U into an integral gives a
pole of second or higher order. The contributions from such pole terms
vanish if the statistical resonance paramefers do not change with excita-
tion epergy. It is at this point that our present derivation differs
from that of éef. /1/ because we wish to include precisely such contribu-
tions. Without dropping terms containing (bu)n, r > %, but still allow-
ing only diagrams with nonintersecting contraction lines, we find for t

the integral equation

3
okl
—
rny
—

(7)



- The end factors éa defined in Ref. /t/ are given by
g = 182 | (8)
The modified channel propagator & is given by
e =cli« B2e) . (9)
The modified Tevel. propagator Bu is given by
b=b+ bYcE[chYS . (10)

To exhibit more clearly the differences between 5(1) of {6) and E(Z) of
{7}, we have worked out approximate expressions for both, following the

treatment given in Ref. /1/, and have found

iD (1)
AN ';_Tgxaxbcbbtl(: : (n

where x° = Ul ‘2 and v is the compound nucleus temperature thqt defines

the excitation energy dependence of D.

, &, €, b can

)

Equations (7)-(10) are formal in the sense that {(2
only be obtained after solving the integral equation (7}. The formal

structure suffices, however, to establish our claim. From (7) we see

2)

that t( is diagonal in the channel indices. Equations (8), (9) show

that the same holds true for &, &. Equation (10) shows that b is dia-

gonal in the level indices. Using the results {7) to (10), we can write

ﬁfl 2

ab in the following form (2 = b}:

(12)

“consists of three factors. Ome factor is e f

Equation (12) and the contraction rules for pairs of v,s show that S‘2 2

ab:
EI( ‘2, the second factor

is Ieb, IY [, and the third factor is the remainder on the right-hand

side of (12) which we note to be independent of the Tevel indices a,b.

This shows that ' ab|2 has the form X --Xb - Y, typical of the Hauser-
Feshbach formula. Using a symmetry argument; we can extend this state-
ment to the elastic. case,.finding for S:gfz an expressionwxa:-'xbr- Y .
{1 4+ 5ab)' Defining the. transmission coefficient;Ta,by:(Z);'wE=can-sh0w,
using the formulze given above, that T = 4xaiéé!2-and:that thecross
section takes the form {1). These statements imply a Formal verification
of unitarity to order D/T, with T = %% g TC. The factor Y has been worked

out and. is given by
= {1 [Cee )BTy = dxglazt?) + ax )3 IZJ}-1 (13)
T Ut Xpllg o Axglegi )+ Ax e, Coe :

From (2) for T and un1tar1ty, ['S !2 one is alsoc led 1:0-Ta =
ax, |& IE, and Y = (Z T ] -t thus doubte check1ng our results,

Although t(z) of (7} differs from t(1} of {6) by terms which reflect
the excitation energy dependence of at Teast one of the parameters of the
theory, namely the average level spacing D, the unitarity of the § matrix

has preserved the Hauser-Feshbach form of ISfE 2

The domain of validity
of the Hauser-Feshbach formula has thus been extended to include the Jess
restrictive case where the parameters of the theory are excitation-energy
dependent.

Furthermore, our results for 5(2) and correspondingly for the trans-
mission ceefficient, Ta’ supply possible ways of improving upon some of
the widely used approximations for calculating Ta’ e.g., the Hill-Wheeler
barrier penetration form of Ta for charged particle transmission. It

seems plausible to identify the origin E(i) of AWM (6) with the "black-

box" barrier penetration probability referred tc above and the correction



to 5(1), given approximately by the second term of (i1}, with scme "Fine
structure” of the black box, namely its temperature t. In particular,
recent work on heavy-ion fusion reactions /4/ has. concentrated on pre-
cisely the type of correction we refer to above. It is worthwhile men-
tioning, though, that the "statistical yrast 1ine” introduced in Ref. /4/
to discuss the heavy-ion fusion excitation function in the so-cailed en-
ergy region II is supposedly related to /D, whereas, according to our
(11), the correction we obtain seems to be associated with: the compound

nucleus temperature, t.
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