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ABSTRACT

The use of off-shell form factors in caleulating
the proton-neutron mass difference is advocated. These form

factors appear in a Cottingham rotated Born-like expression for

the mass difference and could lead to a good value for A= Mp— Mn

I. INTRODUCTION

Fortunaﬁely, the proton is lighter than the neutren.
Unfortunately however, nobody was able (as yet) to show why. So,
after a lot of work doqe during quite a lcnd time, the proton-
-neuvtron mass difference A = Mp -Mn remains an unsoivgd problem.

It is natural to think that A  has a purely
electromagnetic origin and Feynman and Speisman“(FS); were. the
first to show that even the nggativg_sigﬁ could be égcognted for
in that context if the magnetic part of the self energy were larger
than the coulomb part.

'That was beforeithe'nuqleon_form factors were
experimentally measured, and it might behinteresting:to mention
that in order to cut off an otherwise divergent integral FS. ...
introduced {what amounts to) the_following form faqtq;s
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For X = Mp and A = 4MP- , FS obtained the experimental
A =-1.29 MeV,
Once the form factors were experimentally known,

Cini, Ferrari and Gatto2 showed that, unfortunately, theé decrease

with momentum was too fast (faster than FS ansatz)_to allow the

magnetic energy to overtake its coulomb counterpart;

Since then a concensus started growing as to the
impossibility of explaining A~ as a low energy effect. Thus,
cottingham‘s3 work relating A to the éléctqu nucleon écaéférihg
amplitudes was much welcomed since it made possible, in priciple,
to take into consideration the highenerqy region. ‘However,
Cottingham's programme could not be implemented in practice since

nobody knows how to estimate the necessary substraction terms in
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the dispersion relations that enter into the computation of A4.

That impasse prompted us to seek a different way of
incorporating {at least part of} the influgnce of the high energy
region into the calculation of A . Our proposal is to calculate
A in a Born approximation but using form factors with one of the
nucleon legs.off its mass shell. These form factors, hopefully,
contain information on what goes on in the high energy region. The
form factors employed:are of the Sachs type and fit very naturally
in a decomposition of the nucleon current which is discussed in
section II. The use of that current parametrization give rise to
the mass shift formulae of section III.

With the mass shifts in terms of on-shell form
factors A turns out to have the wrong sign. 8o, section IV is
devoted to a discussion of the vertex function when. one of the
nucleons is off-mass-shell, This wertex function leads to mass
shift formulae with off-mass-shell form factors which are given
in section V.

Section VI éontains the results for the proton-

-—neutron mass difference and section VII some final remarks.

IX. NUCLEON CURRENT

The nucleon current is usually parametrized in
terms of F¥; and F, , the Dirac and Pauli form factors. This
parametrization, which can be found in almost any book that has

anything to do with nucleons, is
Timt I-l-l = nint 2y, H iG’u\) f
u(p’) Thup) = uip") |Fi G Y4B~ (pl-p ) jup) (2.1)

where M is the nucleon mass and ku =p -p' ., Metric and
. P

A

notation is as in Bjorken and Drell book5.

As it is well known, cross section formulae are much
simpler written in terms of the so called Sachs form factors GE
and GM , as in terms of the F's . Besides, for reasons that are
not completely clear at present, the Sachs form factors also have a
simpler functional form as compared to the F's ; and they seem to
obey a scaling law. For these reasons it is convenient to use the

G's instead of the F's . This can be easily accomplished

replacing in Eq. {2.1), the F's by the G's with the use of

G {k?) - (ki/4M2) G, (k?) G (k%) -G_(k?)
F,(k?) = & M , Fp(k?) =-M B (59
1 - {k?/4M%) 1 - (& /4M%)

Instead, one c¢an start from the beggining with a
nucleon current parametrization which is specially suited for the

G form factors, namely

/bPe/ME <p',s' 3V (0) [p,s> =

_ - u
= p',s”) hulp,s) = (1 -x2/4M%)T(p' . s") (G (k2)E- -
G, (k*)
- A (MR -k lulp,s) (2.3)
am?
1

where PY = 3 (p”+p'u)

The parametrization (2.3) is hard to find in text-
books6 and is rarely used in practical applications. For k?
time-like one has to either be carefull to cancel the pole at
k? = 4M®* , or argue ones way around it. In this paper that problem

will not arise since all the calculations will be done for k?

space-like after rotating a la Cottingham the mass shift aqnesshx57,
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IIT. NUCLECON ELECTROMAGNETIC SELF MASS

The nucleon electrcomagnetic self mass can be written

as

_e? d'k  _uv
M = =5 J—(—z—ﬂ)—; D (k)Tuv{P'k) P (3.1)

where D'W(k) is the photon propagator and

TR Y

k = L3 -ikx "
T“v(p, } i fd X e <p|T{Ju(x),Jv(O)}|p>av. + % o -k

] , (3.2)

is the forward Compton amplitude for an off shell photon averaged
over nucleon spins.
With the photon propagator in the Landau gauge, the

Born approximatioﬁ for Eg. (3.1) reads

a'k -i(g"Y -kMeY/k?) o MK 4m
4 2 . Uf{‘.‘k}kl .
(2m k% + it T -K=2pk + iE

M = e? { r,(pik), (3.3)

where Fu is the nucleon electromagnetic vertex function. The

parametrization (2.3) for this vertex functions leads to

&M

_ ise? I @'k 2WP/R* R e’) +6) (k)] [Pk~ (pk) T (2M° - pk)
M

(am?® (k? +1€) (k2 — 2pk +1€) (k? -4M2)°?
(3.4)

In the time-like region, the inegrand in Eqg. (3.4)
has the nasty looking double pole at k? = 4M? . The factors
M*k* -~ (pk)?] amd (2M* - pk) wvanish at the pair production
threshold and thus cancel the pole at that point.- Besides, for

k? =4M? one should take into account intermediate states with one

.6,

nucleon plus one pair whoée contribution might cancel any unwanted
kinematical pole from the single pucleon-intermediate state.

In the following, a Cottingham rotation will be
performed on Eq. (3.4} and all computations will be done for “k?
spacelike. 1In this way we will not have to worry about the pole
discussed above. In relation to the poles in the time-like region
we have only to assume they carry an appropriate i€ so that all
gingularities in .the'- 'ko ‘complex :Plane are properly located to
comply with the causality principle. This, together with the
convergence of thérintegral; are-sufficient conditions to allow for

a Cottingham rotation which turns Egqg. (3.4} into

w M s/2
lﬁaZMZ ; do? £2MZGE(QZ) -QZGDZG(QZ)] [ 9] duw®? - (wi/M?)]
T

&M =

> Q'! _(Q2'+_4.M2)2 o (Qq + 4(1)2).

(3.5)

whete 0% =-k? and ® =-iv with v =-pk . Eq. (3.5) holds when
the form factors depend only on k?® . A more general expression
valid when there is also a v dependence, will be derived in
section V.

With Eg. (3.5) we can now calculate the mass shifts
for the proton and neutron in term; of the form factors'-'GE and
GM which can be taken to be of the standard dipole type

P .2 n. 2

G (%) G, (Q°} z -2

L - M = 6 (0%) = {Q + 1] .
%-lp '|-|n- pmM2 .

ah(@)

(3.6)

|
[=]
-

2
GE(Q }

where up and u, are the proton and neutron magnetic moments,

and p = 0.81°
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It turns out that -Eq. (3.3} with the on-shell form
factors (3.6) gives.the w;ong,sign for.the mass difference
A =5MP_—6M£_. In. the following we will. try to.remedy this situation
in the simplest possible way: we will allow the form. factors to go

off-mass-shell.

IV.  OFF-SHELL VERTEX FUNCTION AND FORM' FACTORS - =~

As it was said before, .we intend to. calculate the
proten and neutron mass shifts in a Born like approximation as in
Eg. (3.4) or Eqg. (3.5} but replacing the usual a's by off-mass-
-shell form factors since the nuclecn in the intermediate state is
actually off its mass shell. mTﬁﬁS.we:neednto know the nucleon
electromagnetic vertex when one of the nucleon legs is off-mass-
-shell. The positive energy projeqtion af that vertex is given

by? .

'+ W + W .
3—‘-——2‘?—- T, (p:p') ulp) = #zw {Gs(k2,W) ku +

1 (e, x2,w S0 (v, P¥ - ¥y )]}
+ ———— WP - —————— (v - ¥ u(p} , 141
M1 -k2/4M2). ‘e u M u ¢

with wW? = p*? |
In Eq. (4.1) we see the appearance of the new form
factor G;{k?,W) which, however, is not independent. The vertex

function has to satisfy a Ward identify which leads to

(W* -M%) G (k* W)

+ Galk®Z,W) = (W-M) g . (4.2)
2M(1 k2 /4M%) o

where g is the charge of the particle in units of the proton charxge. .

.8,

This Ward identity can be easily derived by contracting with kM

9

the off-mass-shell vertex both in the form (4.1) as well as

B+ W "o s V2 g4y
T ru (p,p'} 1(p0/M) >0

Jd"x eI g ) 0| [y, 0,3, 0] lps> (4.3)

where Jyv is the source of the nucleon with momentum p' .
We see from Egs. {4.1) and {4.2) that when one of

the nucleons is cff-mass-shell the vertex function is given by

E‘—““..... T (p'p') u(p) = E.'_z.%_w {M ku +
Uk

2w u
Hu

1
M(1-k?/4M%)

+

G, (k2 ,W)
2 _Pk _ M
[og 6%/ (o, ~BF k) - e

- . (4.4
Cy 7K lﬂi‘vu)j} (4.4)
Our proposal is to calculate the mass shifts of the nucleons with
this vertex inserted in the equation for the Born approximation
(3.3). ¥PFor that we will need explicit expressions for the off-
~mass—shell form factors. Here we propose the simple ansatz

-2

Gylk?, 1) = (e2/gMt -T2 — ¢ (k%W = (K2/8W% -1) . (4.5)

That is, except for the neutron electric form factor which is

assumed to be zero, all the others are proportional to

L2
Gy (K2, W) = [ k - 1:} ) (4.6)
8(M*> + k? - 2pk)

Notice that in the Bjorken limit {~k?) + ® , {-pk) = v + = , with

x = (k%/2pk} , G, -scales as




9.

6y —g— (L=x7/[1+x(7" ~11] L 4.7y

]

In the rest frame of the nucleon whose mass shift
we are trying to calculate, after a Cottingham rotation (ko + ik}

the square of the dipole form factor (4.6} turns into

-y

2 rma - g2
GD(Q 1ky) = ' (4.8)
8(M* - 0F - 2iMk, )}

which can also be written as

2 2 Bh 33 Qz
GD(Q ko)l =1 + % . (4.9)
38*  Bllo® +&(M* —QF - 2iMk,}]

V. MASS SHIFT WITH OFF-SHELL FORM FACTOR

In section ITI we have obtained mass shift formulae
valid in the Born approximation in terms of the on-shell electro-
magnetic vertices {2.3). The off-shell vertices (4.4} contain
extra terms proportional ku . However, these extra terms will
immediately drop cut from the mass shift given by Eg. (3.3) when
contracted with the photon propagator in the Landau gauge. So,
we are lead again to Eg. (3.4), with the only charge G2 (k%) = G2 (k2,W).

Thus, the mass shift of a nucleon with charge g
and magnetic moment u , after a Cottingham rotation and with form
factors that depend both on ©0? and k, (in the rest frame), is

given by

A0,

S

dgm? : o2 dk (Oz-sz/Z(QMu'k 2,2

M = -—..-H_.__J 5 18 y i k_)GD(Q_,kR_)
2 S
i

z 2 242
o QT +aMP}T 1 (Q +2iMk,)

- (5.1}

Since the integral is real analytic we can élso write

2 {2M°g 2 _ 32 : .
P rdQ [““—“Qz “:I JQdk,.(QZ_-—k_z) _ _(_2M~ik,.)<;]§(gz,k,,)-
[=]

&M = > - (5.2}
u o Q% + amh® [ (0" +2iMk,)

For form factors that depend only on 0? [as in Eg. (3.6)] we

recover Eq. (3.5). Using instead the dipole form factor of Eq.

(4.2), the mass shift can be split in two parts according to

M = 5Mc + SMV ., o . (:5..3)

where GMC is the mass shift we would have if Gs were constant
(the one in the right hand side of Eg. (4.2)), while the variation
of the form factoer gives rise to 6Mv . With k, =20 and from

Egs, (5.2), {(5.3) and {(4.9) we have

3 «© 1 3 s/2 2.2 2.2
om = LeoM® J do? I dz (1-2%) ~ (2M°q® -u*g?) (5.4)
L (0% +4M%) % (Q? +4M?Z?)
c o
and
sm = SaMIR* 38 = f” deq(zquz _ uzgz) ,
v LS T A B(Q? +4M?)°
1 3 /2
x J dz(l -z%) (2M - 17Q) . (5.5)

(¢ +2iMZ) [0? +B(M® ~Q? - 2iMZQ)]
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With the change of variable Q2 =dM?t the last equation can also

be written

x

BaMg* 3% 1 Jf“’ dt_t(g® - 2ut)
B4 (c+ 1)

. 2
. Jl dZ(l-Z_z)a/ (a1 -z)facr-g) + @] + 48221 -t} } (5.6)
4 (t+z2){16t2(1 -8)7 + 8t[B(1.-B) + 28227 + g%} '

VI. PROTON-NEUTRON MASS.DIFFERENCE__:__

With the equation written down in the last section
for the mass shifts we can calculate now the proton-neutron mass

difference. This mass difference can be separated in two parts

A = A +4 ' ' (6.1)

c v

with

A = {(éM ) - (&M ) ) (6.2)
< ¢ proton . € neutron ' : :

and

A = (8M) - ) : . (6.3)
v V' proton V neutron .

Ac is easy to obtain and a calculation of the

integrals in Egq. (5.4) gives

M =i;!1:- [a®(2&n2 + 1/4) - u?(7/4 - In2)] e P " (6.4)

From this and Eg. (6.2) we get Ac =~2.99 Mev .
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We were unable to integrate Eq. (5.6} analytically
in order to obtain Av . So, after taking the derivatives in
relation to B , the double integral was done numerically in a
computer. For certain values of B (close to the experimental
~0.81) a good result for A can be obtained; for instance: for
B =0.818 » Av =1.66 MeV » A& == L.33 MeV. Unfortunately, Eq. (5.6)
(and A through it} depends quite sensitively on B. Even so, we
take it as a good sign that in the scheme proposed in the present
work, one can obtain a good result for A corresponding to a B

close to the experimental wvalue,

VII. CONCLUDING REMARKS

The.fact that the Sachs form factors are the ones
that seem to satisfy simple relations was taken as a clue teiling
us that for the nucleon current, a parametrization should be used
that singles out, from the beginning, that type of form factors
(as in the vertex function of Eq. (2.3))., That parametrization
was then used in a Born approximation for the proton-neutron mass
difference.

Since the intermediate nucleon is off-mass-shell,
it was proposed to replace the on-shell form factors for off-mass-
~shell ones, With a simple ansatz as to the possible fuﬁctional
dependence of these form féctors on the intermediate nucleon
invariant mass, we were able to calculate A.

Even when A turned out to depend in a sensitive
way on the mass appearing in the form factors (i.e., on B), it
is encouraging that the correct wvalue for A correspond to é B

of about the number given by experimental fits,
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The idea is that the restriction to the Born terms, FOOTNOTES AND REFERENCES
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