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ABSTRACT
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Collision terms$ are non-unitary corredtions usually
added to mean field descriptions in order to describe dissipative
effects. Derivations of collision terms usually include assunptions
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. which lack an explicit connection with a fully quantum dynamical
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C.P. 20516, 01000 $3c Paulo, SP, Brasil description. We examine the quantum dynamical foundations of
collision terms: they are shown to reflect the dynamics of guantum
correlations. A careful study of the non-unitary aspects of the
evolution of guantum correlations leads naturally to an wmarbiguous
definition of a collision term. This collision term is shown to
obey a non-linear pre-master eguaticn, whose derivation is -fully
quantumrmechanical. Moreover, we show that quantum correlations
also yield a unitary correction to the mean field description,
which could be absorbed in a suitable redefinition of the mean
field. Formal expressions for these corrections are derived and
their connection with memory effects exhibited explicitely. The
typical time of evolution of quantum correlations allows for an
analytical expression for the "lifetime of mean field descriptions'.

Finally, a guantum mechanical point of view for "irreversibility"

in deep inelastic is discussed.
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0. INTRODUCTION
femicirinlsidentnhe bl

Besides being usefﬁl in many other areas of Physics,
mean field theories are expected to provide good approximations to
many important aspects of nuclear dynamics. However, the descripticn
of heavy ion collisions in terms of such theories is not enti;ely
satisfactory: the measured dispersion of observables like the final
mass and energy distributions cannot be correctly reproduced. In
this contect, an important program consists in obtalnlng correctlons
to the mean field dynamics,

The basic structure of a mean field theory typically
involves s working decomposition of the physical system under.
consideration (e.g. many body nuclear system) in a number of sub;
systems described in terms of independént {commuting) dynamical
variables. Decompositions freguently used, and of recognized
utility, include the distinction between "collective" and “intrinsic"
degrees of freedom (a decomposition involving two subsystems} and
the consideration of the constituent nucleons themselves as sub-
'systems. The main point is then to repiace the actual interaction
between subsystems by a suitably defined aﬁerage interacticn in:
order to avoid their hopeless'éntanglemeﬁt through the warks of the
camplete dynamical law. Ien~ion interactions given in terms of-
just a few_colleetive variables'ahd-ﬁartree Fock fields are well
known examples of such replacement interactions.

ThlS 51mpllflcatlon, however, can only be made at:
the cost of rencuncing the suff1c1ently accurate descrlptlon of
all but a restrlcted set of dynamlcal variables associeted with the
adopted subsystems (e.g. one body operaters in TDHF) . Moreover,
the truncated part of the 1nteract10n between subsystems may
lead to serious. inaccuracies even for predlctlons concerning the
dynamical variables of this restricted set. A possible way to

avoid this last difficulty is to devise corrections to the mean
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field dynamics in order to incorporate to it at least part of the
effects that would be due to the entanglement of the subsystems
without having to deal explicitely with it. These are the corrections
usually known as "collision terms". Several approaches to the
collision corrections to TDHF exist now in the literature”"2'3'4'5),
and a number of treatments of the effects of the coupling of the
scattering degrees of freedom to the "intrinsic" dynamics of heavy
ions can also be considered from this point of wview.

Derivations of collision terms usually include
assumptions which lack an explicit connection te a fully gquantum
dynamical description of the process under consideration. In
particular, dessipative effects are introduced by these collisicn
terms which, in principle, would seem allien to quantum mechanlcs,

a time reversal invariant theory(s).

It is the aim of this paper
to examine the quantum dynamical foundations of the collision
terms: they will be shown to reflect the dynamics of quantum
correlations. In fact, collision corrections can be regarded as a
redressing, at the level of particular sdhsystems, of guantum
correlation effects washed out by the averaging process inherent
toe the mean field approximation. On quite general grounds, we
show that these effects are of two different types: a) intersystem
correlations will affect the nature of the generator of unitary
time translations of the subsystems and b) fhe development in
time of the correlations which will give non-unitary correctioﬂs
to the time deveiopment of the state of the subsystems. To the
extent that a unitary evolution of the subsystems under consideration -
is taken to characterize ﬁhe mean field time development, it
follows that the corrections of type b} constitute the "irreducible
collision effects". The formal identification of these effects
with the dynamics of quantum correlations leads to an unambiguous

definition of collision terms as corrections to mean field theories.
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On the other hand, correcfioné of type a) even though also origi-
nating from quantum correlations, can be incorporated in a suitable
redefinition of the mean fields themselves. In particular, these
effects will not change the quantum coherence properties of the
subsystems, unlike the corrections of type b).

Moreover, a formal identification of the "irreducible
collisions effects" will allow us to define the "lifetime of a mean
field description" as keing the characteristic time of evelution of
gquantum correlations, and to give a quantitative measure for it.

In secticn I, we present the formalism we use to
study quantum correlations and applf it to derive mean field
approximations. The Hartree-Fock hamiltonian is obtained as an
example and the evolution of quantum correlations for short times
(anéd minimally correlated initial states} is chown to be charac-
terized by a non unitary bistochastic matrix. The characteristic
time of this evolution is taken as the "lifetime of the mean field
description”. In section II we show that the dynamics of quantum
correlations have two distinct effects on the mean field description,
These effects are discussed and formal expressions for them are
derived. In particular, the non unitary aspects of the evolution
of quantum correlations is shown to be associated with the
Yirreducible collision effects" and to obey a pre-master equation,
whose derivation is exact and fully quantum dynamical. A quantﬁm
mechanical point of view for the "irreversible" aspects in Deep
Inelastic Collisions is then discussed and in section ITI we use
it to analyse the dissipative aspects of two different theoretical
appproaches to Deep Inelastic, namely, the statistical theory of
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Agassi et al. and the Coherent Surface Model of Broglia etal.m).

We close with a brief discussion.

.5,

T. A FORMALISM TO STUDY QUANTUM CORRELATIONS

A natural framework to study the dynamics of quarrzm
correlations is a decomposition of guantum states used by Schrodinger
in 1935(9) to analyse the interrelations of interacting guantum
subsystems. It allows in particular for a.clear distinction
between effects a} and b) above. The detailed properties of the
various ingredients appeafing as a result of the decomposition
hinge crucially on the choice of subsystems. Thus the detailed
behavior of all correlation effects and of "irreducible collision
effects" in particular appear as subsystem specific. They reflect
no more than the consequences of the unitary evolution of the full
system for the effective evolution of a restricted set of selected
observables.

We shall pfesent nere the Schrgd;nger decomposition
and analyse iEs properties for pure states. The egtension for
mixtures involves a straightforward reformulation in Liouville

space and is given in Appendix A.

I-A. THE FORMALISM (KINEMATICS)

Any vector |y> contained in the tensor product of
two Hilbert spaces ﬁ = ﬁc,@ﬁl' can be expanded in the

Schmidt canonical form(lo)

(> = Ei;mélc;lc> 2e1)

where { 1c:2 &’ and {IIE >_{" are certain orthonormal systems
in.HQc and 3#I  respectively. These systems may always be
completed to form basis systems. The basis systems are uniquely
defined by the state |¢> except for degeneracy of the’ coefficients

L This includes in particular the degeneracy of all basis states



used to conplete the basis;'i.é}, those affected with a vanishing
coefficient ui' in (I-1}. From this expansion one readily obtains

the density matrices of the two_subsystems in diagonal form as
p= tn.I ¥>< ¢} = 2— legyar <C21 (I-2)
L e TR . Sl ’ B .

RJ;&J*}’}(M . %.ll}ﬂ"f <..I€l. (1-3)

' The information about subsystem c(I} is containea
in p(R}). The density matrices § and’ R are generally wvon = -
Neuman mixtures, which are seen to be thus cbnveniently represented
in terms of their orthonormal "natural states" §‘1C5)-} and

{t I, )} respectively. These are always discrete sets for states
[¥> of finite norm (this is a consequence.of Hilbert-Schmidt

(11)

theorem , noting that R and p are trace class_hermitian

operators in E;ér and in :F&”'

< respecﬁively).

The following properties of this decompoéition

should be emphasized:
a) the spectra of R and p. are the same.
b} From the normalization condition of the state e,

<p[y> = 1", it follows that .

z? o(f = f

¢) The decomposition is unique for a given choice of subsystems,
{i.e., for a given factorization of the Hilbert space .as \;( = 3(,_@?5_[) ¥

except for the usual ambiguities relative to eigenvalue degeneracy.

d) From (I-2).and (I-3} an entropy can be defined for the

subsystems as

S .-t QQM() :.SI:-'}(B.IRQ“R z - Z.o(}ﬂhd,z'E
c~ (ol { *

= -2 f;p’“f’i Cpe= 4;1) (I-4)

e) The coefficients ui(pi) describe correlations between-
the two subsystems. It éan ke seen from (I-1}) that the number of -
coefficients oy which are different from zerc gives the minimum
number of terms of a decomposition of [¢Y> in terms of factorized

basis states.

I-B. THE DYNAMICS

The Schradinger representation (YX-1) defines also a
(1
decomposition of the quantum dynamics of the composite system} )
First, due to the orthonormality at all times of the states je; >
and f];}> ; their time evolution can be written as

le,w>. b le) 1O (I-5)

.
19

4
At

_ B
Ly = & ® L o2 (1-6)

id |
4t
where he and hI are hermitean, in general time dependent time-
-dioplacement generators.
The time dependent amplitudes Mé(f) can be taken
to be real with no loss of generality and from
-LHt _
)y e o> = 2 e 0TS gy
+

one gets the following equations which sufficiently determine hc

and hy and give the time evolution of the amplitudes . (&)
1

.
|
|
|
L
.
|
.
|
|
:
i
|
;
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{special situations.in'case of degeneracy still allow a sufficient

determination of these quantities -see Appendix B}

SEEN (CATREN FRNTATRYE

= KO AHIYY £ <EHIT gy ({+k) .9

o (I DI TD) = Re <Gl HI YD (1-9)

akh « Tme <o Tl ¢ (I-10)

The last equation implies probability conservation

:tl—ﬁ % p. =0 (I-11)

bue to the fact that this basis is time and initial
state dependent it is hard to work with. However, it is ideal to
study the dynamics of guantum correlations because of two important

properties:

a) it displays the minimal form of correlation between sub-
systems (decomposition into minimum number of product states) and
maximal coherence of each subsystem cénsidered separately C ce>
and II})) and their associated guantum fluctuations, together

with respective statistical weight Pi .

b} It separates clearly time disPlacement generators associated
to each subsystem from the time evolution of correlations. Note
that, from eq. (I-10), it is easy to check that the time evolution
of correlations implies non unitary time evolution of the reduced
density matrices R and. o . It is therefore the best

candidate to be associated with collision terms.

I.C. MEAN FIELD APPROXIMATIONS

In this framework, mean field theories are obtained
from the unitary time development of natural states with fixed (by

constraint) occupation. Formally they can be derived if we

eliminaté, by constraint,: the-time dependerice of the coefficients
a; +» L.e., let . .

«

o =0

-%

instead of eg. (I~10). This, together with eé; (I—Sf'and (I-é]
can be used to obtain sufficient information about the hermitian
generators. If there are no correlations in the ‘initial state,
the usual mean field theories appear. In general, initial state
correlations can be'includéd=andi"QEneraiized’méan field approxi-
mation" obtained which include corrections due to the assumed
initial corrxelation.

These =~ statements are best illustrated by means

Oof two examples.

Let us first take the case with no initial

correlations, i.e.,
(Yeoy> = 1> 1> (1-12)

This implies o, =4, 9(“__0= ©  and those values

will be held fixed for all times. The resulting time development

of the state ‘C}} is given by

--

L

¥
PO AINATRES .
LT O

where the necessary matrix elements of hc can be obtained from

{I-8) and (I-9).
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Colbele> = e, T lHle, T, > = <'Cai<H>IiC-;> ' (1-14)
hence
(1.15)

tlc, Z tegp<e, 1<H> 1o

Analogously

4

%o
AL (I,>- Z {I;><I£‘<H)°II0> (I.16)
A& T S ]

Note an ambiguity in the separate determination of

<c.,i€‘l_c,, > and ( I_g 1‘a;_|_In> . . This reflects an irrelevant

phase gmbigu;ty-of the . factor states in the p;qduct ICDI;‘>.

Obviously, the mean field.approximation obtained in
thié way (i.e., by imposing the condition o.(h 0} will be sus-
tainable as a good approximation as long as the correlation effects
would not be important anywéy.‘ Characteristic time associated with
the evolution of the Mhﬁf) will thus determine the "lifetime of
the mean field description". This time can be estimated in the
following way: for short times after t=0 ,

ol R SLC(D)i:

<

wt oy 4 ter | (1-17)

Lz « 2 -1
where C = (Zt: ol ¢ (0)) from the conservation of probability.

Thus, the change of the correlations for short time intervals will

be characterized by the characteristic time Tt given by

?': [Z (Corng(ctrh><ckrki Hi C',_.Ia 7]_

1-18
k¥o . _)
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Note that, from (I-9), <Ck1k| HiCG Lo > is pure
imaginary for k#0 . Furthermore, according to (I-8), unoccupied

states are to be chosen such that
e LiinleI, > =0 | ¥, igko (1-19)

The time 1t can then be evaluated as

-1
[ce. T, (1= i6><c)(1- 15,5 HIC T,y | 20

This of course just means that the transitions from
G Ia > -which change correlations are those that feed the

dooxrway 1D},
ID> =N (1 =176 YULVINCTI) Hie, T, > (1-21)

thus  TZ: VG L HID>|

In eq. (1421) N is a normalization factor. The
form of iI)) contains a restriction on all transitions changing
the initial state consisting in the exclusion of those which deo
not change its factorized form (1-123.

This shows moreover that, for short times, the
evolution of the occupation probabilities Pﬁt): 451{} can
be written as

p. W - ZM ({)P}-(o)

(1-22)

with 3 po)y=$4,00 .. & and
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Lot 2l minie s [°
: k 5
Myt - ko v

. z (I-23)
G TH g Ly ity

Thus, for small but finite ¢t , ij Ft) is a non
unitary bistochastic matrix. Conseguently the mixing character of
the probability distribution % f;tt)} increases, a characteristic
feature of many irreversible proeessesl3. In particular, this

implies that

SLew] 5 s Lpen]

(x-24)

As a second example, we consider a Slater determinant

as the initial state, i.e.,

I '
‘q’(D) = — D'Et ["u‘(l")].,__ -
> W ] <9 _J) ’A (I-25)
and write the decomposition which singles out the coordinate Fi:
A kel A
{%o) = 2, —,E:%_“&) .(:.'D_ Dei\:“;(?}-)] = Z. “h_leT;,_> (1-26)
=t VA ; (A._l)! 3':21“.’A fe=d
ik
Here we have “h: —I- ' k=1,...'A, which describes

the Pauli correlations®, For a general hamiltonian containing one

and two body terms

{*) This degeneracy, however, is not to be handled with the technique
given in Appendix B. This is due to the fact that the Fermi
statistics restricts the state of the system to lie in the
antisymmetric sector of the space generated hle;I;>,gj5;A .
In the present case this is a one-dimensional subspace” (i.e.,
it reduces to {(4(o}> ). MNote that the decomposition (I-26)
does not auvtomatically preserve antisymmetry (i.e., for
general coefficients ol }

13,

He- 2t o L 2, v

N =

- (I=27)
_ the generator hc is given by
. " L erCTle, G- Gy
(ij'ac,lch.> = <C3‘£‘q¢> + %k e l RoeT Tk (1-28)

KA

which is just the Hartree-Fock hamiltonian. As done in the pmwimﬁ
example, one can also evaluate the lifetime of this mean field

description as

{I-29}

e
i | CHo) | HIDDI

where now the doorway (D> is given as

10> = NAL-RIG-R ] ko> (1-30)

£

A

with Fk = ;il‘ci><CC| ' T o(1-31)
A X :

and PI _ IL:5<Tc ! (1-32)

It can be verified that (D contains two particle

two-hole excitation of [(4(p)) and that this result is the same

found by Griffin''*) from a aifferent analysis.
Explicitely
_ 2
e, (26)?) 2 leglvie e - |
A élagA .
k25 A

e
If we now study the short-time evolution of the
probability distribution associated with the correlations displayed

in eq. {I-26), we find that again it can be cast in the form of a
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bistochastic matrix which is non-unitary for t#0 .

Finally a general comment on the implicat;ons of
the value of the characteristic time T 1is in order. As it is
clear from the discussion, this time is associated with the time
rate of change of the correlations as a result of the full quantum
mechanical time evolution of the system, for a given prepared.

state. This state is thereby assumed to correspond to a full

description of the 5ystem at t—O To the extent that the Iesuucted

set of observables that one conSLders may be 1nsensit1ve to the

correlations generated by the full dynamical law (such a restnntum

being in a way implied by the adopted factorization of the phase
space in the first place, e.g. one body operators in the Hartree
Fack example), the limitatien indicated by a given value of =t may
be even grossly overpessimistic. In other words, wnile correlatiqn
corrections to the mean field evo;ution of a prepared state will
evolve in a time of order T, the quantitative predictions of the
mean field theory for the appropriate observables may be reliable
for longer times. A time limit to the reliability of rean field
predicticons would be set rather by the time it takes for.the
collision effects to change-appreeiablf'the state of the subsystem
ﬁith respect to the pure mean field prediction ;.This depends on
the relatlve quantltatxve lmportance of non unltary versus unltary

1ngred1ents of the time evolutlon of the subsystem.

II. THE TWO DISTINCT CORRELATION CORRECTIONS TQ THE MEAN FIELD
' DESCRIPTION’

The dynamics of quantnm cerrelations'will introduce

:_two different types of correctlons to the mean fleld approx1matlon,-

as dlscussed in the lntroductlon The flrst one w1ll be a modi-

f;cetlon of the mean fleld.hamls-pnlan,:and wlll-not change,the

.15,

unitary nature of the time evolution. The second one contains the
"jrreducible collision effects" and introduces non unitary correc-
tions to the mean field evelution. In this section we prove these
statements and alsc derive expressions for the two corrections.

In order to do this, it is of interest to obtain
expressions for the time evolution of p and R where the correlations
do not appear explicitely. This can be accomplished in a standard
way, using the projection technique described in (15} at the
expense of intreducing suitable memory effects. The technigue wé
ﬁse to single out the two different correctiens is the following:

First we write the memory terms in the representation introduced

'in the previous section, because in that representation the

separation between unitary time evolution of subsystems densities
and non-unitary collision terms is natural and unambiguous. This
shows clearly that the effects of correlations, as contained in
the memory term are of the two distinct types menticned above and
yields closed expressions for them.

We begin by writting the fuil density F (which
for simplicity we assume to be associated with a pure guantum
state |y>} as

F= w?&} = Rp +F!

(1I-1)

where R and p are defined as before (eq.(I-2) and {I-3)).

' Using the methods ‘of reference (15} we obtain the coupled eqﬁaths

for the densities as

' it . i . T ee) AL YT
T R R

L N . y ' L vrIo2)
Y
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Here we used H = H_ +HI'+H' and a corresponding’

separation of the liouvillian I . Brackets denote averaging over

the appropriate densities at times indicated in the subscript. wWe

defined
Lho ploeds _eu
A, L'-<e )I',c <L >c,t .
and used
t
Gl - Tw.r (H( Sd{: [1‘”{“}] L ) (II-4)
‘Ll
where
Pl) = RieYTh 4 pt®) f_- RWptIT Ty

{I1-5)

P(t) 1is a time dependent projecticn operator., It

has the property

PLEYF - Rp . _ (II-6)

The first term on the r.h.s. of the coupled eguatiocns

comes from initial correlations, i.e., F' at +t=0 . At this time -

the memory terms obviously vanish. We may immediately notice,
moreover, that at any time t , the memory terms may be replaced

by correlation terms as

t
} -jmg G4, pide - R (UF') g,

provided one has ¥'(0}=0 , namely,in the absence of initial
correlations. From here on we restrict ourselves to this case,

The contribution from the memory term, eqg. (II-7)

.17,

contains -all correlation effects. Using the SchrSdinger deconpo-

sition of |¢> and the definitions of F' (eg. (ITI-1)) we get,

Fiey. [H' Zlql IR WP I
L [ > ey, 8 il a‘)@kr !_f (r1-8)
from which we obtain in a straightforward way

(II-%9a)

g (LFUO) €U 0 4R ] i 2> fy e

or, eguivalently,
~ o . : 0
T (L'F'B) = L r+iz.“’—g>’t’~<‘of5
T Cory 3 4 (II-9b)
The first texm on the right hand side of (II-9a)
gives the required correction to.the unitary evolution of p.
It has vanishing diagonal slements in the representation of
natural states |C;5:

E 2, ey &?“3‘ (C‘;'f (TI-10)

o ig#i

The last term is the "irreducible collision term" which, as
explicitely shown, is fully diagonal in this representation. We

may thus write, using (II-7)

_ t
Arﬂm: _g'(Ca‘L(‘A.@_L‘G('E,‘L A L>~ ?&)dtlic > {II-11)
(24 w)

and also

+ |
el Jd{' QLGHE] A£‘Li>1‘,t~ P e

a (I1-12)

1’;;_’
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Analogous. expressions hold for the corresponding -
objects. in the equation for. R.. The characteristic features of
corrections (II-11}) and (II-12) can be made more conspicuous if we
express the bracketed part of thg:inteq:and_in tgrﬁs of_nétural

states at the appropriate times as

CBLGHE) AL, =
Z 'c;“"““) Z T ) F;lff')(c,j‘.“l’ O] (1113

l 'f(l!f|
gl i}
i
The round bra-kets on the r.h.s. are a Liouville
space notation for the Hilbert space operators |C5>(le and
|C}‘)(C2|] respectively. Inserting this notation in eq. (II-11)
we get
t .
A :_,:Sd‘c'z 0, ) pif‘)fkf'i
ﬁlm 0 "3“ ‘-{““.3 a (1114}

(24w )

This correction involves past probabilities in the
characteristic non linear fashion of self consistent mean field
theories. It has wvanishing diagonal matrix elements in the natural
representation for time +t.

We now proceed to dbtain_a closed equation for the
probabilities f&(t) from eq. (II-IZ).'.Inserting {11-13) in

(II-:2) we get,

t
‘ A—t‘ Z lH: 't') E{.ti) (tl)
Conservation of probability %; ézf 0, allows

us to bring this eguation to the form of a non linear pre-master

equation

.19,

P

2

J"H:'Z _' [tt)?ltt\r){tl}
P i kgh h
a,fe
(IXI-16}
‘1 (t't )
i (t')
ta#e -
This form is of course exact. Independently of the
explicit introduction of randeom ingredients, it can exhibit

"irreversible behavior“{s).

This will of course depend on the
dynamics. As an example it is enough to consider a situation in
which a markovian approximation makes sense: the dynamics should
be such that the time dependence of Plt') is slow in comparison
with the time cut-off contained in ['t§t') . This will lead to a
non linear master equation, possibly with time dependent transiticn
probabilities.

It is interesting to notice that the appearance of
"irreversible behavior" will depend crucially on two factors:
a) the glcbal dynamics; b) the particular subsystem chosen. It
might be that a different choice of subsystems would NOT exhibit
"irreversibility", even if the global dynamics is the same. This
means, in other words, that from the point of view of quantum
correlationg, different sets of subsystems exhibit different aspects

of the dynamics.

ITI. DEEP INELASTIC AND CORRELATIONS

In order to apply egs. (II-2) to deep inelastic
processes between'heavy nuclei we may take the reduced density o
to describe the collective degrees of freedom involved in the
relative motion of fragments, while other, intrinsic variables

are carried by R. As t+® we have_separated out going fragments,
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a situetion.which implies the vanishing of the interaction terms
H' (0ox L’l._ In this situation all information, such as relative
momentum, and orbital angular momentuw, regarding the state of
relative motion of the fragments can be retrieved from p alone.
Moreover, energy conservation allows one to oeduee from this
information a corresponding energy distribution for the intrinsie
subsystem. An adequate treatment of the correlation between
collective and intrinsic subsystems is of course essential for one
to be able to establish such a correspondence(s). The knowledge
of p is thus what is required to obtain the information relevant
for objects like’ dlo‘h\lgg .

However, eqs. (IT-2) express the time evolution of

. the reduced densities p and R in terms of a pair of coubpled

equations. The equation containing R, in particular, involves

again all the complications of the nuclear many body problem. Any

program aiming at a calculation of p must therefore include a

procedure enabling one Eo effeetively deal with these complicatioﬁs.
The Coherent Surface Excitation Madel (CSM) of

Broglia, Dasso and Winther(8'16'17)

can be readlly understaocd as
provxdlng one such 51mp11fy1ng procedure. Schematlcally, this
model attempts at an extreme 51mpllfloat10n of the 1ntr1n51c -
dynamics by means of a judicious choice of a few slmple relevant

degrees of freedoh to be treated expllc1tely, namely the surface

'v1brat10n modes of the colliding fragments. Furthernmme a classical

llmlt to the full quantum dynamics implied in eqs. (II-2) is taken.
Thus, starting from the full'quantum'Liouville—von'Neuman equation -

for the density F (eq. (II-1))

F= L[HF]
R :

{ITI-1)

we can write to lowest order in T

F:wé { prw,‘l‘ o ' (111-2)

where thé curly brackeét denctes now a Poisson bracket of the Weyl
transform H ~of H' and the Wigner transform F, of F (18).
ThlS linear, first order partlal dlfferentlal

equatlon for . the full ngner transform F contalns-eqs (II“Z)

'under the stated assumptlons. By_maklng a decomﬁoeitlon of F

"analogous to eq. (II-1) we oan in fact derive-coupled equations

which are formally identical'to'eée. (II-2) using aporopriately
defined projection operators(ls). Alternatlvely, we may just note
that eg. (III-2) is nothing but the classical Llouv1lle equatlon
for phase space distributions of the system under consideration.
Its characteristics are just classical trajectories for Hm : Thos,
the information which would be:obraihed.from a solution of the
coupled egquations analogous tozeqel.fli-z) is also given by a '
direct solution of eq;'(iii-Z),'which can in turn be reduced to
finding the classical erejectofles.of Hm'. This will ahx)inchﬁb,

in particular, the effects of ell'correlations which survive the

.claseical approximation used'for°tﬁe ooupled dyﬁemics;

We turn now to a discussion of initial conditions.
For sharply defined classical iﬁiﬁiéllconditione;:i.e.
T

FBangitee) - SERSEA)BET)SE-E)  rrs

w1 f

where P and 6 refer to collective, f and T to intrinsic

degrees of freedom, it follows from eq {II-2) that

h‘,(l;,af,{ ;.‘t ) = S(P_ P(tJ)S[@"a(ﬂ) B T- K(ﬂ)c(i ?’&}) (IIT-4)

where P(ETO) =Y , etc. are a classical trajectory of Hw .
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This shows explicitely that in this case the correlation part of
Fm , F; , vanishes identically and thus that there are no correlations
developing in time and no memory effects in a description analogous
to egs. (II-2). It was found in refs. (8), (16} and (17), howewer, that
effects due to guantum fluctuationérof'the initial intrinsic states
are of iﬁporténcé; These can be included in a straightforward way
by replacing the sharp initial.céndiﬁions'for E and T by the
Wigner transform fw of the appropriate initial quantum state.
One has then to consider sclutions of eqg. (III-2} subject to the
initial condition

i

FBZ,R & t=0) =3P 5066, )f (£3)

(III-5)

Writing now the initial conditions for a classical trajectory of

Hm in terms of positions and momenta at. time. t ,

3 - .
G(o)= au(s,a,‘t,"i,t)
TI;!O) = PQ(B,E,T?lglt)
-3 A
¢ (d} = gb(_P,a,t,glt)
“t_EL (o) = T‘E’b(?,_"ﬁ ‘E,%,‘t )
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intrinsic degrees of freedom. To the extent that the distribution

fw is introduced as an essential artifact of quantum mechanics,

these correlations can be described as a guantum mechanical effect.
Note that they embody the conservation of energy along classical
trajectories, so that the time evolution given by eg. (III-7) qoés
beyond just the average energy conservation typically given by
mean field theories.

A possible alternate way of dealing with the 4iffi-
culties of the many vody problem in the second eg. (II-2}) involves
an attempt at effectively decoupling the two eguations by means of
a suitable set of consistent statistical assumptions on the inter-
action H' (or L'} and on the reduced density R. We do not
pursue this further here., We note however that a connection should
be possible between the resulting effective equation for p and
eq. {6.4) of ref. (7) in view of the fact that they give the same
asgsymptotic information. Such a connection would be especially
interesting as it would provide a link between the statistical

approach of ref, (7) and the CSM.

IV. DISCUSSION

In the preceding sections we described a guantum mechanical
scheme in which the characterization of collision corrections to
mean field theories is unambiguous and complete. From the point
of view developed there "irreversibility" effects are not allien
to the full quantum evolution law, provided one considers cobser-
vations done on a specified subsystem of the entire quantum system.

A consegquence of this is that such effects can be subsystem specific.
They just reflect the entanglement of fhe observed subsystem and
the remainder of the entire system through the works of the camplete

dynamical evolution,
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This scheme could moreover providé for a natural
framework in which to study possible connections between different
attitudes regarding the treatment of the many degrees of freedom
involved in a process like the deep inelastic collisions between
heavy ions. Thus, while the CsSM attempts at the utmost simplification
of the intrinsic dynamics to be treated explicitely, statistical
approaches can be seen as an attempt of taking advantage of the
high complexity of the same intrinsic subsystem. Tt might conoeivably
be expected that both attitudes can eventually be made to converge
in that they give reasonable degcriptions of the loss of coherence
of a particular subsystem which results from the dynamics of

quantum correlations.
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APPENDIX A

SCHRGDINGER DECOMPOSITION IN LIOUVILLE'SPACE

The density matrix F describing the mixed state
of a quantum system can be realized as a vector in Liouville space,
i.e., the direct product of the Hilbert space of state vectors
with its dual space. Whenever the state vector space is in turn
realized as the direct product of two different spaces (implying
the decomposition of the physical system into two subsystems), a
corresponding factorization can be immediately extended to the
Liouville space.

Let %iﬁ;_)a “’;\"& be a factorized base in the
Hilbert space of staté vectors. The corresponding factorized bhase

in Liouville space is written as
{IA,,L) &IB(,,)} Vool E h‘.j); (s;(ia,ﬁ)

where the correspondence hetween Liouville space {round} bra-kets

and state vector bra-kets is taken to be

LA) e (ar¥<ay)

18,) e 1o>¢kel
We can thus write any density F as
Fs L ﬁd{&md)a\sﬁ)
¢

The analogue of the'sbhfgdinger'rgprésentatidﬁ of -

an ordinary state vector |¢#> (v. eg. {I-1l)) can now be obtained
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by diagonalizing the hermitean matrix
x

M,= 2 P 1
&y (5_4F"B'{5

Thus, using the unitary transformation { LLF'} such that

& Ui Mo < S S

and defining the orthonormal Liouville space wvectors

f

) - Z?, I__.A(Q U.'(;,;.

REDAT,
u!) = d};; fUS A

.‘-.:.i
L

S“:?S !B'S)

then the expansion of F becomes
k- Z"“‘"‘ le;) 8\ L) (A-1)

It <¢an be imme&iateiy verified that, whenever F
is idempotent as an operator in state-vector space (i.e.,associated

to . a pure state), one has (ef. eg. (I-1))

\[;Z:’ = o, dd: ('$or ‘m.E i‘; )

this implies a complete equivalence of the Liouville space and the

statervectqr,space.Schradinger decompositions. in this case. Eg. -

(A~1) is howeve: more general, as it applies to situations in which
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F describes a mixture. In particular, whenever F'= in the

decomposition utilized in section II

we see that F is already in form (A~l) with a single nonvanishing
ccefficient-ﬂd . Note that either or both R and p can be von
Neuman mixtures.

A decomposition of the Liocuvillian dynamics given

by

cF = (W F)=LF

can be obtained, using eq. (A-I), in a way which is entirely
parallel to the corresponding procedure in state vector space.

Defining subsystem Liouvillian generators as
) b M —
LIC¢)=ﬂctc¢) and 1T, ) - err‘x)
we are led to (cf. egs. (I-8) to (I-10))

},;f' [(CPI@,,I"-(Q +(IPMI'IP)] = Re (CFIP{ LIF) (=2)

i .
%t}‘l:1= T (CFI[5 ILIF) (a=3)

(bt por) [T L) £ bcle) ]

=(I(z.C,!er)t(|:|Lu;_cP)

(a-4)

Note that egs. (A-4) hold for o[} .
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APPENDIX B

DEGENERATE OCCUPATION PROBABILITIES AND THE SCHRODINGER DECOMBOSITION

When a number of coefficients in eq., (I-1) are equal,
say, ofy=d, = ... :o(“:;i it follows at once that the form of that
decomposition is preserved if the associated natural states |c¢; %
and I;% (i=1,...,¥} are transformed according to

125 2 u. fe; > . -|f.>_2u* ()
« A= '3 voT iy 3

Y | Y }

5 3
{'M‘-,‘} being a N xN unitary matrizx. Indeed, unitary of u
sufices to show that

N ¥ N
2k le. Ty = & 2Ty & Z le; T2
L=t o=t

This freedom in the choice of natural states with degenerate
occupation probabilities c¢an be used to fulfill the conditioné.
[ ~ '

<c.£Iz-lHl+>—<+’lH|cJ'IC>:o; L4208 g
so that the right hand side (with the lower sign} of eg. (I-8) is
made to vanish, This avoids singular behavior of the corresponding
matrix elements of the hermitean generators hC and hI in a way
akin to the handling of wvanishing energy denominators in standard,
low order perturbation theory.

In order to further determine the matrix elements

of hc and hI within the degenerate subspace one may perburb
equal occupation amplitudes o and ol - to obtain, in terms of

N 3
the states 'Ei> and 1L ) satisfying eq. (B-1),
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2{¢ EPIT Y- <My ] =
TR Ty - LG TG T, > oy

which, together with the expression for the sum of the same two
matrix elements, on the left-hand side can be solved for each one
of them. Note that these relations explicitely guarantee the
hermitean character of hc and hI .

The degeneracy of all states in the null spaces of
the reduced densities R and p (i.e., states with vanishing
occupation) also deserves scme comments. Since for these states
both signs in eq. (I-8) give a vanishing left-hand side, it follows

that, for i#j (and di-_-d}.:o) one must have

<o GIHIYY = » (B-3)

This can be used to determine the appropriate representation for
the null space (or for the relevant subspace of it, at least) as

follows. First construct the doorway
PP HIEY < 1D,

where N is a normalization factor, and PO projects onto the
preduct of the null svhspaces of R and p . Then consider the

Schrodinger decomposition of ll)e> .

D> = Z A1l
4
where now 16:2. and 1. 1ie in the null spaces of the respec-
tive densities. These states will then naturally and sufficiently

extend the set of natural states associated with nonvanishing
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