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ABSTRACT

Sum rules are derived for the logarithm of the
absoluté value and the phase angle of the amplitude for normally

reflected radiation.

SEPTEMBER/1981

2.

-Many sum rules, involving different optical parameters,
have been chtained up to datel"4;' . Unfortunately, . the.methods
employed in the derivation of these sum rules were.not directly
épplicable in the case of the near normal refiectivity.which is
the experimentally most "accessible optical quantity over a wi&e-
frequency ;ange"l. The purpose of this note is to fill the gap
presenting-suthsum rules for the_ref;ectivitj_cqefficienté, _

. Some timé”ago_Qaﬁédas, following earlier swmﬁstﬂﬁss;
pointed out the:advantages-qf Ehe'reflectivity.method.fo:,obtaining
the_absdrpﬁion.coefficient. ,Wﬁat ;s_dirgctly measured~133tﬁE;,_.
normally reflected internsity which is proportional .to the. reflectance
coefficient R =|r|%2 ; r being given by the Fresnel equation for

the émplitude of normally reflected radiation, namely
r = (/oD = rlel® : (1)

Here, N =n+ik ' is the complex index of refraction.

Were R(w) known for all frequencies, the phase

8(u) could be obtained from the dispersion.reélation>

8 {w) T o3

P r’ £n R{uw')dw’
w2 ~wr2

#o
Cate

o

where P stands for the principal value. It would then be easy

'ﬁc Calcuiafe the freal);refraqtive indeg n and the éxtinction

‘coefficient Kk by solving the sistem of eduatibns'

CR=[(n-D1)? + € 2]/[) 2 + 0],
tan 8 = 2¢/(n?-l+k2) o . ) - . (3)

Since it is not possible in practice to measure - R



i

for all frequéncies, ifs-behavior-beyond the available frequency

range Has to 'be somehow estimated 'S, 1t is for this reason that

sum rulés might be very useful in putting restrictions on possible

extrapolations for R.

In order to obtain sum rules for some function it
is, of course, not sufficient to know that it obeys.a dispersion
relation. It is ‘also necessary that- the function vanishes

sufficiently fast at infinity. The knowledge of the asymptotic

behavior of most optical functions is based on the well justified

assumption that ativery high frequencies any medium should respond
like3a;freé electron gas. ' Thig condition is easily translated

into
am -t} ==L @2, amkw]w'=0 . (@)
(AT ) W )

where -mP is the plasma fregquency. It is slightly less general

tb assume, for the extinction coefficient,. the asymptotic behavior
ko). o+ Ywi/ed o, . (5)

where Y is a non—negative constant. In the Lorentz model9 ?
is the average of the damping coefficients,
Our derivation of the sum rules will be bhased on

the_follqwiﬁg_fuhction:

Flw) = .(.4./mé) [bzm; - mz -. ié...uspw}. riw) . "., o | (6) .

where a and b are constants to be determined later.
The asymptotic behavior of its logarithm is

2 _
£n F(m)"{(ﬁ‘b)(mp/m)z + av(mp/wz) +

+ (Lw) [ﬂ. Wp "?‘!‘ ('@P/w)?‘(.b"?— "2-_ ?‘I-% wp)]j , o

4.

and, besides, {n F(w) is analytic in the upper half of the w
complex plane. By the Phraghén—Lindelaf'theorem the asymptotic
behavior (9) holds in any direction of that half plane. Further-
more, the crossing relations F*{w) =F(-w) , [In F(w)]* =4n F(-w)
can be shown to hold. These conditions are suffiqient to guarantee

the existence of the relations9

Re £n F(w) = 2 P J dw' w' Im £n F(w'} ) )
K w'?- 2
o
Im £n F(w} =29 p J dw' Re £n Flw') ’ o)
T 2 2
o w -w

When we multiply Eq. {(8) by w? and take the o=

limit, using Eq. (7), we get

o«

. i __ = 1 — 2
[ dw v In 0 F@) = - 3o (Gu +ay-EW,) . (10}
Q

With F{w) being as in Eq. (6} and with the choice of a frequency
f above which the hehavior (7) approximately holds, Eq. (10) can

be rewritten as

|

12

_, awa
dmml:e(r.u)— tan —-—-—-—P—-:] =

T 1 2
Bu2 -2 2 tUP(‘4 “p tay:b wP)
13

+ Jm"‘“ [a,-wp_?+.(wr/w)z-(.bIY-%?ﬁ'%wp)] (11)

4

+

This equation only makes sence for &=)9h¥in which case we have

Q wFq w2
- tan! R ¥ I FE A ) -4k -
ldmw[ﬂ(w) tan E‘wﬁ-wz] 2E,Jp(4_ By ]+-E£’-(1 4b), a2
P




5.
i . 1 2_—--7-/(‘)1_ .. .
With =YW, in the last equation we get, in the @+« limit,

-1 af
I dw w [3(&) - tan —-—:I = =
2 2]

o il '}

r (13)

=]
=
o e

which shows that asymptotically 8 +w .
The crossing relation N¥*(w) =N(-w) leads to a

similar relation for r , i.e., r*(uw) =r(-w) or
lr(-a)] = [r(w)| , 8(-w) = - 8w . (14)
Thus, the square bracket in Egq. (13} is, for large w , of order

-3 .
0(w )} . An integration by parts of that equation yields a sum
rule for the slope &' = de/dw ,

> ¥ (w?472)
sz dw [e'(w) - - 1- Trw? . (15)

o (w2-¥2) + mZ’T’ZJ B p

It is, of course, easy to obtain sum rules for higher derivatives
by further integrating by parts.

- Let us now proceed to derive sum rule for £n R .
If we multiply Eq. (9) by w , take the w +« 1limit and use Eq.

(7} we get

o ’ N
l dw Re &n F(w) = 3 (awp-F) . , (16)
Let  be again a frequencY above which £n F(w) behaves as in

Eg. (7). Then, using Egs. (6}, (7} and (16) we have ,

.6.
for 2b=a,
{* aomnfa’+ 22 R =
w2
° o
= mlaw Q?)- - £ +..2:;ﬁ— 1}1%) ]H o | (17)
P & 2 7p 2 e - _

for any nunber a. The sum rule that holds in the Q + = limiﬁ'is

now

® p2d - .
I dutn(a? + %EE)R(U) = ﬂ(amp-y). {18)
o » . :

The sum rules we have derived, depeﬂdin@ as theyfare
on ?, will be useful whenever that parameter could be estimated.
On the other hand, a knoledge of the reflectance will allow us to

compute Y. From Eg.(18) we get, in the a + 0 limit,

|
i
)
Al

r’ dw znkzw/wp*){Rtw)] '. | , | (19)
[e] .
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