| IFUSE/P 292
ﬁégiirF}ff[;535?17

INSTITUTO DE FISICA - pl‘ﬂpl‘lnt

IFUSP/P-292

FORM FACTORS, CHARGE DISTRIBUTION AND THE MEASUREMENT

ASPECT | “-\j.‘_“S?

G. C. Marques
Instituto de Fisica - Universidade de S.Paulo

UNIVERSIDADE DE SAO PAULO
INSTITUTO DE FISICA

Gaixa Postal - 20.516

Gidade Universitdria

830 Paulo- BRASIL



FORM FACTORS, CHARGE DISTRIBUTION AND THE MEASUREMENT ASPECT I. INTRGDUCTION

G. C. Marques One of the problems associated to any measurement process

Instituto de Fisica - Universidade de S3o Paulo is related to the appearence of undesirable effects due to the

presence of the measurement apparatus. . In order to probé the

charge density of a given system, for instance, one .has to perform
experiments in which momentum and energy are .exchanged between. .. .
the system and an appropriate test body. As the energy increases,-

ABSTRACT the apparatus will disgurb the system. - Examples of such;perturbatlons

are the possibility of exciting the system (innelastic channels)..
i and, within the relativistic context, vacuum fluctuations.
We analyse some aspects of the measurement problem

ppearence
in Relativistic Quantum Field Theory. Although, as suggested in The 2 - of such uncontrollable effects of the

. : ) . . apparatus is what prevents us fr aking ms urenents of densities
the pioneering work of Bohr and Rosenfeld, what is measurable in ppara P s Om making meas s

and Field strenghts at iven int i ce. Thi blem
Q.F.T. are non local (smeared) operators, no attempt has been n iel enghts adq point in space 18 pro was

: s : 1} , .
i . sed first by Landau and Pe 1 { . d to make th
made, as yet, in establishing a connection between these objects rai b4 ieris We inten © s

) . IT. . . i di £
and quantities which are accessible experimentally, like Form point clear in section IT Our line of reasoning is different from

Factors. This paper is an attempt in this direction. that of ref.(l) and is based, in the quantum relativistic context,
on a subtle consequence of the effect of pailr creations which is
reflected on the bad properties of the charge operator obtained
ffom integrals of local densities.

As far as the effects of the apparatus are concerned,
there is always- the possibility of eliminating them or to seek
some sort of compensation for them. This program is implémentable
at the cost of abandoning local measurements.- This is thg lesson

; which we have learned from the pioneering work of Bohr and Rosen-

feld(z) who in a series of papers showed that one can get rid of

pair effects if one measures, in contradistinction with measurement
of JO(A «t} at a given point in space time, averages of the density

SEP/81
! operator over space-time regions, namely

3= ;Sd‘i&]d}: Jowky S (r.1)
T N SRR



Althgugh the objects defined in (1.1} are measurable, in
principle, the experiments required to achieve this are very
difficult to be implemented_and, as far as we know, ﬁas never been
done. This comment applies to others "smeared.operators“. l_

In this paper we will be concerned with a set of non-
local operators which, in'the'oné-ﬁhotbn exchange approximation,
implemernits the program sought by Bohr and Rosenfeld and whose .
correspondence with what is accessiﬁle experimentally can be imple-
mented. In section III we will present the requirements imposed on
the physically relevant set of operators. Aan explicit example,
taken from the Non Relativist Quantum Mechanical context, illustrat-
ing the scheme and the ideas is presented in section IV. We end

this paper with some conclusions in section V.
II - VACUUM FLUCTUATIONS AND THE CHARGE OPERATOR

In order to understand the difficulties associated with
pair creations in implementing local measurements we will analyse
the properties of the charge operator obtained by integrating local
operators, :

" Let us define weight functions G&, 8, by -
o . oo _
- Brux :.e_.!léz

Gtz @ T (I1.1)
The smeared operator Jarukt)defined from the local

operator J. &t} as
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can be interpreted, in close analogy with the operator defined in
(I.1), as the averaged value of J# in a 4-sphere centered at

P = (X, ,t) whereas the operator

Qar = (\ITrR)a. js.rto.o\ (11.3)

can be interpreted as the charge measured within a sphere of radius
R centered at the origin averaged over the time interval T. We
have defined the operators in (II.2) and {II.3) in such a way that
the naive charge operator and the local density operator are obtain-
ed as limits of {IT.2) and (II.3), namely

Q= ?J:m M Qrr = jdi)ﬁ=30u',t,'j

R=a T—o
{11.4)

TR WO R~ L

R0 T—(

In the relativistic case, one of the most important effects
is the appearance of vacuum polarization induced by the apparatus.
In order to understand this effect let us study the vacuum polari-
zation charge density induced by an external charge distribution.
The induced charge polarization density will be infered from the matrix
element

P Ty 19wy = OG0y Tow £)0ik,00 10y (IT.5)

where U(t,0} is the time evolution operator

X .
Witor= T ﬁu\a-ij T )o\m’w E A, e (11.6)
[

In lowest order perturbation theory one can write
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For t£'{ t the result obtained from (II.7) can be inter-
preted as the effect of the measurement on the stéte at later
timeé, and for t'» t as the effect of the developing state on a
megsurement in the future(3).

Following ref.{3), let us consider a very simplé, and
important for what follows, example in order to illustrate the

“AL mt
situation in the relativistic case. Suppose %{: (Ao,&ﬂ and that

v

Aownik ) is given by
e
Avstiz e Bpw Bg, ) (£1.8)

AL

The charge density associated to (II.8) can be axﬁiy‘

infered. The most important feature is that for Ixl & Ry the

charge density is approximately constant and given by fa(x\n, 4

RZ
For the charge density given by (II.8) it can.be shown(B), by using

the Jost-Lehman representation that

(] Ty 1wy ~ ' (11.9)

Ry~ o0 R

which means that the polarization charge follows the external charge

distribution for 1Ki4Rs .

The asymptotic behavior of Qg;l, the total polarization
charge within the volume R, 15(3)
W 3.3
(Pl Qgr 1YY ~o R], (I1.10)
LT (R%4RE ja’z‘

Ryrman
It can be readily seen that if one makes R=R_ then the

total polarization within the weolume R behaves like

1
L)y Qa‘i ey ~no o R (II.11)
R~ 00

In view of (II.9) this result is easily understood.
Since, within the volume R, the induced pelarization charge density
is approximately constant the total polarization charge within the
volume is just given by the product of the charge density times the
volume. An interesting lesson to be learned from this example is-
that as the volume increases the total charge increases leading
to ardivergent result in the infinite volume limit.

These vacuum fluctuations are yet responsable for another
peculiarity of the relativistic theory: the difficulty related to

Noether's theorem(4’5)

{(for a pedagogical review see ref.5}. From
Noether's theorem one would expect -that the naive charge operator

(I1.4) would be the generator of the symmetry transformation, That
will require, for inst&nce, that Q annihilates the vacuum. That is

not so. In fact the norm of the operator QRT applied to the wvacuum

has the following asymptotic behavior:

|| Qar oy* ~ R (T1.12)
R-—sm

Expression (II.12)indicates that the norm of the state

resulting from the application of Q to the vacuum is a divergent

one. The reason for this peculiar behavior of the naive c¢harge

(4’5). The operator Jpyxt) when applied to the

operator is known
vacuum creates pairs. These vacuum fluctuations are evenly distri-
buted over the space in such a way that when summed over the wheole
space one gets a divergent result. The situation is very similar

to that described in the previous example.

Integrals of local densities do not have the expected

properties of the generator of symmetry ‘transformations. ' The physical

meaning for the divergent result (II.12) is that local measurements
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of densities are not possible. The formal object obtained by
integrating a local density is meaningless as a result of the vacuum
fluctuations which are bound to be induced by any attempt of measur-
ing. doikd) at each peint in space.

The program of constructing the generator associated
to a symmetry transformation was implemented in ref.(4). (For a
review see ref.(5}). In scattering theory, where the kinematics
is described by the asymptotic configurations, a Generator G can
be written in terms of the asymptotic "in" and "out" creation and
annihilation operators(5}. The relevant properties of the Generator

are that it satisfies the commutation relaticns
+ *
[G,Q..‘..&&Eé] < foor B ok 0 : (I1.13)

LG, W ppen ] = - fm) Qs ok o

and that

{0|Gloy= O : (IT.14)

where g_m.\ can be infered, by using (IT,13) and (II.14), from the matrix

element of the generator between one particle states.
IYI. NON-LOCATL DENSITY OPERATORS

In the last section we have seen that, as a result of
the vacuum fluctuations induced by the apparatus, local measurements
of-the charge density operators cannct be implemented. At the
formal level one would say that the charge, associated to a local
operator like (II.4), is not a hermitian operator. Since within
the Quantum Field Theoreticalcontext smeared fields yields to well

defined operators one expects that the. analogue of a classical

observable density, which one requires to be an hermitian operator,
to be a set of such operators. The motivation from the point of

view of measurement, for introducing the smearing is to eliminate

‘the uncontrolable effects of the apparatus.

A class of smeared densities relevant in the construc-

tion of the Generator is given by
-0 . . ‘ ' - !
o) = jdl.[d*’m eruut\J(am-m Jow AN (IIT.1)

where 5““‘ (qfu\\ is a sequence of § Uﬁ) (5&4\ real functions
which converges, when 80 (To0) , to w1 5ty ) 51
In close analogy with (I.l) and (II.2), Jiﬂﬂﬂﬂ will

3

represent the average value of J in a 4-sphere with volume TR

0
centered at P=(X ,t).

Another class of smeared operators of interest,denoted
by Jo(x.qd), is the one defined in a manner similar to {III.l),
(6)

namely
Joun\m = th‘quu') NNCER 7 (I11.2)

where an adiabatic time smearing, qu Y , is defined as the one

satisfying

ﬁwro): 0 for bo < A (III.3)

where ?bulbﬂ is the Fourier transform of ng&l and A is a parameter
characteristic of the system and which will be denoted by the "cut
of £ parameter". .

The choice of an adiabatic TH is associated to a very
careful process of measuring the charge density where by an appro-

priate adjustment of the cut off parameter we will be able to



eliminate the undesirable effects of the apparatus(s).

For instance
if one wants to avoid that <j%£JPA) creates pairs and consequently,
that it annihilates the vacuum ‘

P 10y =0
we have just to'require thatf\s}xﬁwhere y‘is the smallest mass in

the fheory {for a theory with no massless particles).

An explicit example of Ypﬂﬁiis given by

‘rl.m) = j%o@(\—i%l]@%t . rr.

where A 1is the cut off parameter ‘and € is the usual skep functions.
Let us consider the smearing functions 11& t, %% )
defined by '

' L et ~ i8-8 )
Y]git.u‘-ﬂ?_ Sd’nﬁ]dﬂo Yl“’\”’“-‘e‘ (]w.la“\ e {II1.5)

where 9@1) is a sequence of real functions which converges to
‘bsL\) when R-»0 and 'Tl{qeioﬂ_?-l is, as yet, not specified.
By using these smearing functions one can construct a

fairly broad class of smeared operators, denoted by'j:_, where
:D : - 1 -0 ) .
deq M0V Z ]dk jfﬁ’l J7W 'qa(’c K%Y (I11.6)

The operator JP(Xp)} will be defined as the limit

Touns e I (I11.7)
R»0

By choosing appropriate TL functions in (III.5) one can
get the smeared operators (III.l} ox (III.2}. as particular cases of
(IIT.6). A specific example of operators of the form (ITI.6) will

be studied in chapter IV.

_lo_

Before proceeding we will recall some basic facts on

the measurement problem. In order to probe the charge distribution

-~ of a given system one has to make use of a Test Beody {The

electron, usually ).  The effect of the Test Body on the system
to be probed can be represented (within the one photon exchange
approximation) by the action of the operator J}aﬁ&& on the state

iB} which describes the state of the system, namely

Jdott) 18y
As we know, the apﬁlicaﬁion of Jeimk' to By leads to the
possibility'ofrpair creations as well as to the possibility of
exciting the system. From the point of view of the ﬁeasurement N
of the charge density this effects should be avoided. This requi-
rement folloﬁs from the need of making ourselvés sure that all
the momentum transfered to the Test Body be solely due to the system
one wants to probe.

Any experimental set up, or any maﬁhematical construct
like the smeared operators (III.l) which elimihates the undesirable
effects of the apparatus will be said to implement the Bohr-Rosénfeld
proéram. '

We are now ready to state some requirements which should
be met by the non-local operator which we would select as
being more appealing from the physical point of view,

A) From any such an operator one should infer the
Generator of symmetry transformation.

In the case of an operator of the form (IXII.2) or (III.7)
this is equivalent to requiring that the integrals of these
operators over the whole space leads to well defined operators
satisfying (II.13)—-(II.14}).

B) This operator should implement the Bohr-Rosenfeld program.
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C) This set of operators should alliows us to establish
some analogy with classical cobservable densities.

The third requirement is a very relevant requirement
and a . more specific way of formulating
it,is the following: let us consider a classical density, ()BU‘l
associated to a system B. From such a density one can construct

a classical two-point correlation W(x} defined by

W) = Ed%\\j PB(A-}) ea(smj) (111.8)

Since after the integration of  W(K) .over the X —-varia-
ble one gets the total charge of the systems B squared, one can in-
terpret Wu) as the probability of finding charge within the
system B at a distance X (8{ .

The requirement of analogy with classical observable
densities will be met if correlation functions involving these
operators are Identical {or have Identical behavior) to classical
correlafion functions like (IIX.8). For the operator defined in

{III.7) all one has to do is to reqguire that
-— _ L] ] .
{81Jotx,00 Joto0r I8y = jd‘j Q L d Q (Ray) (£11.9}

Having stated the basic requirement, the next step will
be to show that there are, in fact, operators obeying them.

Operator defined in (III.l)do obey condition A. It is
possible to infer the Generator of symmetry transformation from
such operator. The eguivalence of such operator to that satisfying
{IT.13}) was shown by Orzalesi Sucher and Woo in ref,. (7).

The operators defined in (III.2) satisfies requirement
A and B. In order to see this let us stick to the particular

example of smearing functions given by (III.6). In this case one

=-12-

can see that it is possible to ajust the parameter A in order to
implement the Bohr and Rosenfeld program. For keeping A emall
means to keep the energy transfered to the system small and conse-
guently one can allways prevent the application of Jbu&.wu y
to a given state B}y from making transition to another state
{excited statelor frdm pair creation. That integrals of J;cx‘nm}
over the whole space leads to well defined operators having properties
similar to those of the Generator of symmetry was shown in Ref.(3).
In this example properties A and B are.inFimately
connected, In fact this was one of the motivations of Horowitz
and Raby in the paper of Ref,(3), namely, to show that the construc-
tion of a well behaved charge operator is intimately associated
to Bohr-Rosenfeld's prescription.
Within the relativistic context one doesn't know
of operator satisfying conditions {(A-C}. However‘we shall see, in
the next section, that by an appropriate cheice of the smearing
function YLO&t}we will find operators having these desirable

properties within the Non~Relativistic context,

IV, A SIMPLE EXAMPLE

Let us consider a Non-Relativistic system of N
particles whose dynamics is described by the Hamiltonian H. In
this case one can give an expression for the charge density opera-

tor in terms of the position operator of the i-th constituent at

A
the time 1t - LS This expressicn is
2 h v Lty -
Jo ) = L Ay b 2 (IV.1}
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Where +Mm1 is the Form Factor of the i—th constituent.

By using the Heisenberg representation one can write’

A it " ~uik
Jowtl= € Jouay © (IV.2)

Within Born's approximation, the action of the appa-
ratus on a system whose state is I44% (which will be taken as the
ground state of the system) is described by the application of the

charge operator density to the state WY , that is

Jnm\‘u hpo) = z_ 411};-\%1)“\“ \\vu\ \"P;} (Iv.3)
A

By making use of (IV.2} (and making ‘atq)z qt .

i.e. the charge of the i-th constituent) one can write, for the

‘matrix element in (IV.3}, the following expression

. R S
HelT o) gy= € € o iy (1v.)

~
Where db;(m) is the transition form factor defined in terms of

the intrinsic wave functions 5% and ﬁ% of the ground state and

excited state respectively as
¥

Tean= ) o [T 6V §(mz Vot g s

g =/ 8 j " N Qoo TN T Ty) (IV.5)
o

and % is the momentum transferred by the Test Body.

By looking at (IV.3) and (IV.4} one can readily see
that in this example the apparatus will induce transitions from the
original state %Y to an excited state 1ﬂ%1. This is, from the
point of view of measurement of the density, an undesirable effect
of the apparatus since the final state is not the same we have

started with. As a consequence of the different obiects we have

=14~

at the initial and final Stages of the experiment one cannot say
that the momentum transfered to the Test Body is solely due to

the system one wants to probe.

Suppose now that one eliminates all the unwanted

effects due to the Test Body. It is possible to construct an ope-

rator asscciated to such a careful measurement. Let us consider’

the test function Y‘R E i) given by -

’ ‘m; {i - 28[1-9 e:bq;téq‘:u[“.ﬂ—u’ (1.6
s [rfig g (87 e v

‘By using this explicit ¥R °’'in (III.6) and from

(IV.3) and (IV.4) it follows that the action of J2(xu)

on ) will be expressed as

Jp %0} 1 peoy =

f. P 30] e T v |
2011 -E.g, )} € LRy 1
Bt J ( _&E?m] o (7Y Qremy 1) (I¥.7)

P in (IV.7) is the total momentum of ‘the system. Due to the
recoil of the target it can be infered that E; in {(IV.7) will
be expressed as E{_—, —E; .\.f’ (Eﬁ\-;) and conseqguently one can write for

= M . .
Jo (%,0)1§,) defined in (I11.7), the following expression

L?K’/

JD“,N 14, 20y :zjdaﬁ’iﬂ(:s;a.&\ e i;tﬁ By (1v.8)
' 4y
From (IV.8) it can be seen that the role of the test

function T]R is just to select the elastic contribution, since all



other states have energies higher than the fundamental state. More
explicitly

- Wy
Jo 0V I R0y = jdame_

-
Joo @) 14 2y (1V.9)
-~

dee(IP).. . in (Iv.7) is the elastic Form Factor of the system whose

definition in terms of the wave function is

» -
r’ < o W _
Jootth) = L% Mdgye ~ 3{Iwmk) Lo &7 I (1V.10)
A K=t - *
=1
We will check. now.that the operator Jo 1%,0)
whose action on the state W, Y is given by (IV.9), satisfies
properties A-C of section III.

First of all one notes that

A fad i

Q lwu} = jduuﬂ{:‘iw’x W{‘u\l = { Eq! ] "mv) (TV.11)
j=r

On the other hand, from (IV.9) and (IV.10), one can

see that
- 3
j.om Tox,01 140 —_—[\L 9| W (1v.12)
J=t

Expressions (IV.11) and (IV.12} shows the equivalence
of the charge operator and the operator obtained by integrating
Eicx,o) over the whole space.

As explained before, the operator 3;(&03 was
deviced in such a way as-to get rid of all the excited states.
These are precisely the ones which should be eliminated in order
to implement, in this case, the Bohr-Rosenfeld program.

Finally, property C emerges when we consider the

-16-

two=point correlation function defined in (III.9). By using {IV.9}

one can see that

LR X

= = = i
(o1 Totxi0) T r001 Iy = j‘f‘“’ Joutip) Joy ity & (1v.13)

It is easy to see that the right hand side of (IV.13)
can indeed be written under the form proposed in (IIT.8) and (III.9).

The associated charge distribution will be written as
(LN
: e(&‘f\\ = Bd;“’ e Fop L0y (IV.14}

and consequently we have been led, ultimately, to the well know
relation between. Form Factors and charge distribution. The proce-
dure for getting the charge density in terms of Form Factors is, in
this context, somewhat related to that one proposed by us in Ref.

(9).
V. CONCLUSIONS

We have reviewed the problems associated with the

measurement of some local operators within the context of Relativis-—

tic Quantum Theory. In the case of the charge density we have emn—
phasized that the restriction in implementing local measurements
can be infered from the bad behavior of the naive charge operator.
From this it follows that only smeared (or non local) operators
are measurable.

In order to select some smeared operators we have

required that the physically relevant non-iocal operators exhibts

three properties: that the Generator of symmetry transformation be

infered from them, that they  implement the program of eliminating
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all the undesirable effects due to the apparatus and that correlation
functions constructed with these operators assume the form of
classical correlation funétions.

Within the relativistic context we have pointed that
there are operators satisfying some of the properties required but
not all of them. Consequently, the construction of operators similar
to the one described in section IV deserves more investigation.

In the non-relativistic case we have constructed
operators exhibiting the desired properties. Furthermore correlation
functions constrﬁcted with them assume the form of correlation func-
tions involving classical densities whose Fourier transform are the
Form Factors. This latest property is relevant because it sheds
some light on the connection between what one measures experimentally
(Form Factors) and some formal constructs of Quantum Field Theory

{smeared operators).
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