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ABSTRACT

Uszing non perturbative methods we prove conservation
of the non~local guantum charge of the Gross-Neveu model, providing

an exact S-matrix.
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The Gross-Neveu model (1) has been extensively

studied in the last years. It is asymptotically free, displays

mass transmutation, and has a well defined 1/N expansion(l).

It has been proved that the model has the factorization property

in lowest order, providing a calculable S—matrix(Z}. Afterwards,

this S-matrix was extended to second order in 1/N perturbation

(3)

theory . However, we do not have, up to now, a general proof of

the factorization property of this model outside the framework of

perturbation theory, in confrasf to the caée of thé non linear
0{n}) symmetric o model(4). In this model we use the same
approach of ref. (4).t§ éhow'thét:the'féctoriZation'prdperty is a
non—-perturbative feature.of the model.

In section I we define the model and the classical
non local charge. In section II we defihezthe Quantum non local
charge. In section III we write it in terms of asymptotic fields.

In section IV we prove absence of particle production and the

factorization equations, Section V is the conclusion.

I. THE MODEL AND THE NOM LOCAL CHARGE

The Gross-Neveu model, is defined by the lagrangean

density
— 2 —
L= imav”auwa + %g(wuwa)z - .- (1.1

and describes 2N Majorana fields in 1 +1 space-time dimensions.

We choose the following representation for the ¥y matrices

o] =i
¥’ = [ ] =90 (1.2a)
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The Fourier decomposition win reads (free case)
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and. for -the (m)} two point Wightman function:
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The model has a conserved Noether current associated

to the 0{2N} symmetry:

ab _ ns —d b - _ a
TUE= 25 Ve Yy Vi T x) (I.6)

This current satisfies the so-called integrability

condition'?!

ab 2 ,Ac_ch ac._cb, _ T
i paad O, Lang T 0 (.7
3 3,9, 29°(3,7g a5 a0

which allows us to write down the conserved non-local charge

@

Qab = [ dy,dy. elyi-y2) J5° (t,y1) ng (t,yz}

bl

w0

-92[ ay 32 (t,p) (1.8)
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IT., QUANTUM DEFINITION COF THE NON-LOCAL CHARGE

In field theory, the expression (I.8) is ill
defined, due to the divergence of the product of two currents in
the first integral, which displays a linear divergence for small

Ey! - yzl . We look for a Wilson expansion (!

for the product
of two currents, which can be achieved and put in the form of a

theorem:

Theorem: the Wilson expansion in the Gross-Neveu nodel for

the product of two currents is given by




5.
[r, (21,3 1% = [c (z%)z%g, 2" + c_(2%)2%(z 8° +
u 'Yy 1 Fuv . u%o
+ zvﬁﬁ) + Ca(zz)zuz\)zp] sz(()) + [Dl(zz)zo(zusg _

_ o 20 po_ o 2y sPs0 _ sPsC
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1 -
+ 5 Cs(z")zuzuzgzp] 3, J:b(u) + 0’(lz|I ) {I1.1)
where Cl(zz)=--%—l— + o([z[77") (I1.2a)
24 2
(z7)
_ (n=2} 1 —2=0 .
¢, (z") ==+ #(|z] ) (II.2b)
(z%)
c (z*) =0 {II.2c)
- —p?y2 D_(z%) .
Dl(zz) (1'141?) In( : us) 3 + a;(izl 1 0) (EI.2d)
z =z
e (-p?z?) _ D -1-0
p, (z%) =- 22 -2 ezl (11.2e)
dnw z 2 %2

and u is related to the fermion mass by

u=%m e’ . ¥ = 0,577... Is the Buler-Mascheroni constant.
(11.3)

The proof of this theorem goes as follows. We

first prove a lemma:

6.
J?(z1w°(0)=-%%(aacwb(o) - 2200 + o2’y (xz.a)
if the current is normalized by
Idz‘ iF® (@2 %] 0, = 90 - sbcwa(m_ (11.5)

The proof is straighforward, using ‘the fact that

this current has to be proportional to vy" (remembering that

Jsb = 2i 'tFa 'Yu Rl’h.') and current conservation..
The most t-;enerall Wilson expansion has- the form:
ab _ p ab op ab
EJu(z),JV(D):I = Cuv(z) Jp (0) + Duv(z) ch'Jp (0) . {II.6)

Using locality, PT and CP. invariance, we have the zelatj.ons(4):

[+ &)

= = P oy =
cuv(Z) = Cvu( z) cvu(z) (II.7a)
op - P - n_; o _ 1 do h
Dy (2} = =D (~2) ~ [C) (-2)2" - 5 g" C (-2)z,] (I1.7b)
op _ 0P
DW(-Z) = Duv(z) {IL.7c)

and with Lorentz invariance, we have (II.l) as the most general
Wilson expansion.

Current conservaticn implies:

4 2% -p) = - % ¢ 2? _ (II.8a)



T,

d_ (22D, +D,) = - ¥ C,z’ S (II.8b)

dz? : 4

22 —2 (C,4C,4C,) = —(C,+C,+2C,) o (II.8¢)
az?
dCz . .

2?2 —— = - = {C, +5C,;) (11.84)
dz?

B+ Dg- =_i; (C1.+_Cz+cs_) _2_2_ . . (II.8e}

The above’ equations do not determine the cefficients

completely. We use nows
; ab 4, .- .
i[[Ju_(z) SN AE (t.O)Lu___Q. "

=icf | BP0l +edzl™) (11.9)
H Zo=0 '

For y=0, v=1l and using (II.4}), we get after some

calculation:

otz =82 Ly o(j27") (11.10)
(z%)

It follows from (II.8d) that C,, is given by (II.2a} and from

(IT.8¢c)

ca = 25 4z (II.11)

{z?)

The normalization of the current, (II.5), implies:

.8.

I dz! i{[Jo(Z).Jv(O):lab - [Jn(z),Jv(U)]ba} LT
0=

-0

= - 2 (n-2) J:b(O) (IY.12)

and this relation forces A=0 , giving (ITI.2c).

Now, D , D follow directly from the current
conservation {II.8a) and (ITI.8b). We do not need the coefficient
D; , for our purposes. Equation (II.3) can be obtained by exactly
the same procedure qutlined in ref. (4).

We can define the cut-off non local charge:

ab
o® =L [ dy,dy, ely,-y,) [3,0t,y,),3,(t,v,)]
ly,—v, 126
- %-?2 £n (us) I dy J?b (t,v) (Ir.13)

e

which is readily seen to be finite and conserved in the limit

§ +0 , by using the theorem of this section.

IIT. ASSYMPTOTIC CHARGE

b

Because of the conservation of the charge ¢

o® - ein o , ' (ITI.1)
50
we can write:
ab _ . ab — ps ab
Q" = &im g/ (%) 2im Qe (t) . (III.2)

tr—c t-re




9.

It is our purpose to write expressions for the

limits in (III.2). We write:

0 =Llay © & w2 py ] (111.3)
in(out) in(out) in{cut) :
ag = I dy,dy, e(yl-y2):J?? (t,y,)Jf? (t,¥,): (ITI.4)
in in in
ly,-v,>6
B, == [ anay et ,-n,):{s, (0 * ey e (e
s 5 y1dy, €(n,=n,):{s_( YY) U, By 2 ()
in in
|Y1"‘Yzi.>_5
+ bt a
S wy Ly, (g D4 8,00, y,-y, ) (W] (7,00, (t,¥,)
in in
at b 1 - ab
- ¢in(t'y2)win(t'y‘))}: -z £n (ué) I dy Jlin(t:Y) (TIX.5)

oo

and analogously for the out fields.
Using (I.3) up to (I.5), and taking the limits

(ITI.2), we have, after a lonhg calculation:

Zim A(t) = -~ A . (EII.6)
t+4= (+)
(=
£im B(t) =B {II1.7)
oo
where
at c
AL " [ dp, dp, €(p1—p2):(bin (pad By, (p,?
+ + +
_ .C c c b _ Wb c . 8
bin {p;} bj_n (p,))(bin(pzlbin(Pz) bin(pz)bin(pzn. {IIX.8)

.10,
B, =1 ﬁdp m EER, (bi:(p)b.?_n(p) - b?:;(p)b?n(p)): (111.9)
The out fields have the same expression.
Summing up: .
Qgﬁ = % [Ain+ {n-2) Bin:l. o ) (TTI.10)
QP = % [— Ao+ (n-2) Bout] - SRRNC 3 & JEED)

IV. ABSENCE OF PARTICLE PRCDUCTION, AND FERMION-FERMEON:SCATTERING

Using the fact that

we will achieve many constraints'éppiying"Qii on the right and-
Qab

on the left, in thé amplitude
out

<o out |Qa'b |8 in>

Calling & the rapidity defined by

g =gnB PR (1v.1)

we have, using (II.8) up (II.1ll)

ab . . A ab . . : L
Q" [8;161...8,c) in> = [6:d,...8,d, 1n>(Mthlﬂ%fh_c£ (IV.2a)



1.

: = aan IV.2b
<8,¢;...8,c, outiQ (Mout)c,-czdl—di“ed‘ 8,d, out) ( }

£ .
ab _ - 1 ac_cb __bc_ca n-2 ¢ ab

Mo =%z K<{__‘1(Ik IS x I3 ) * Imn DL {1v.3)
out ¥ C

(12P) =52 &2 -2 7 : (1v.4)

Now we need an expression {ansatz) for:
<e¢ out | B im> .

To achieve it we first prove that we have only
elastic scattering.

Consider the amplitude

2R
1 <®jei...sj,cip out|[o®[e,c8,c in> (IV.5)
c=1 s
o? comutes with the isospin operator Jab , so that
the state I [8,c,8,c in> .. is an eigenstate of 0% . Its
c o

eigenvalue can be easily calculated, using (III.10}:

g* § |8,c 8,c in> = A} |0,c &,c in> (IV.6)
n C
-2 2 2 o . .
A= 21 (222 a4+ (IV.7)
n .ﬂ,Z
8 = 8, -0,

Now let us make Q% act on the left. We should

remember that if the amplitude

<9{Ci...8%mcég out|8,c; 8,¢; in> o (Iv.8)

A2,

is non zero for some value of the set Bi R Bi r (IV,5) should

?  act irredutibly on states of

also be zero, because Jab and Q

particles with definite momenta.
The eigenvalue of Q° , when acting on the left of

(IV.5) in zero rapidity (8, =08, =... =8;y=0)} is given by the

value of (IV.7) on the threshold:
-2.2 z
X = 2(n-1) ) (1+4[—}; En(d +/I'«"-T] ) (IV.9)

However ) should be an algebraic number, because

2

Q acting on the left is a matrix with racional coefficients and
a=2%gn 0+ /I

should be an algebraic number, which is impossible by a theorem

of number theory(s)'(T).

Sa we conclude:
<8ict...83,¢C5, 0ut]8,c; , 0,0, in> = 0 (IV.10}
and as a consequence:
<ge) 8,c, out|e,c, B,e, in> =

. , clel eies
= (4m* &(81-06,16({0;-02){8 8 g, (0)

c1C1 ©icC2 cic: €ac;
+ 8 8 0,(8) + & § 03000} ~ (8, « 8,) (IV.11)

The equation:




.13,

IR ab * :
<0;c,0,¢, outl(Qout) |6,c:8,c, in> =

= <6jcieic] out|o® [0,c,6,c, in> (1v.12)
gives a set of equations for o,, ¢, , 0, , which can be solved,

giving as result:

. g, (8)
2 2
0,(8) = T — (IV.13)
. g {8}
a,(0) = - g%i — (1V.14)

V. CONCLUSION

The Gross—Neveu model has the factorization property
exactly. When we proved absence of particle production, it was
already enough to prove this assertion because of a well known
theorem on S-matrix theory(e). To calculate the exact total
S-matrix, we need to know the bound state spectrum. This is

already used in the calculation of ref; (2), and what we proved

is that their S-matrix is the exact one.
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