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ABSTRACT

We develop a simple model for the average S-matrix
that describes heavy ion direct processes in the presence of
absorption due to compound nucleus formation. The fluctuation
cross section and the fusion cross section are then calculated for
deformed heavy ion systems where multiple Coulomb excitation is
important. A simple expression for the fusion cross section valid
for abo#e—barrier energies is then obtained. The formula clearly
displays the modification, due to Coulomb excitation, in the

usual geometrical expression.
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I.  INTRODUCTION

~ Heavy ion compound and fus;on CYoss sections have

usually been calculated assuming the complete separation from the.
fast, direct tran51tions. Of course the latter are partially
accounted for through the use of appropriate absorptlve gﬁxmtuﬂs
It is by now, however, well emablished that the presence of
directly coupled channels affects not only the values of the
transmission coefficients needed in the calculation of the compound
nucleus (fluctuation) and fusion cross sections, “but, more
importantly, the structure of the'etatistical theory {i.e. ‘the
Hauser-Feshbach theory). This is borne out by several investi-
gationsl).

An interesting example of directly coupled-channels
effects on the compound nucleus and fusion cross sections of heavy
ions is that of multiple Coulomb excitation. These effects have

160 + Psm (a=14s,

been very nicely demonstrated for the system
150,152,154) at sub-barrier energies by Stokstad et al.z). Earlier
discussion of these effects in & -induced reactions on deformed
targets was given in 3),

For the purpose of simple analyses , several
concepts have been introduced, €.9., static deformetion4?,dynamic_
deformationsl, zero-point vibrations), etc.. Clearly theee
concepts are physically motivated and represent to a large extent
a simulation of the overall physics'involved in a more complete,
coupled channel description of.the fueion process., In such a

calculation one identifies the fusion cross section OtF, with the

difference 1: = R. Z 0’ ..+ where _0_' is the total

. reaction cross section in the entrance channel, and z ;. G‘

I#o
represents the total direct reaction cross section.
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In the present paper, we develop a thecry for 0“#
as well as the different components of CT' ., the fluetuation
cross sections, whlch takes expllcltly 1nto account multiple
Coulomb exc1tatlon.. We predlct in the sharp cut-off limit,
approprlate ‘for above—barrler energles, the following general two-
parameter expr6551on for the fu51on Cross- section 1nvolving

quadrupole deformed target nuclel

2 £ LT RM B(_e;ﬂ‘ﬁl?ﬁ)g (1)
o;__ = Tt:ﬁ',.e.[_t— _._'-"-._.:._-———.225 _h,_ é’z+ e ——r%-.;-;;]

where 'Eé and 'Rc' represent the critical energy (fusion barrier)
and critical fusion radius respectively, Eli_the excitation
energy of the 2t state in the target, ZP y ZT are the projectile
and’ target charge numbers respectively, and finally R: KE}') is

a well known function in the theory of Coulomb excitationT)

. Mote
that Ec and Rc are quite close to the correspmrﬁng quantities of the Coulomb

barrier for M energiee not too high above the barrier.

IT. SALIENT RESULTS OF THE STATISTICAL THEQRY

The general formula for the fluctuation cross
section describing ‘the transitiom- o(.__>/_-s for a given partial

wave—J isl)

T

T T el
T Top * Tup g
Tr -I : o _ (2}

1 _
G-”‘F' T =

where T is Satchler's transmission matrix, given in terms of the
L .

average. S-matrix, 5 , that describes the coupled direct channels
A . .

part of the problem.

1.

Wl

T =4 -

Ao,

Fui

f

(3)
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Eg. {2) is valid when the number of open channels,
B , is large. Notice that unitarity is approximately satisfied
in the sense:
7 (—rrz’)
S o Mgy= T, + Y17 Jxe

g o=e bl T T

= Ti« "'9(%‘) (4)

where the second term on the right hand side, of order 1/N ,
measures the violation of unitarity in Eg. (2). However Eg. (2)

l), by neglecting the same type of term as

was originally obtained
the ene above, Therefore to be consistent, we shall neglect this
term when calculating the total compound (i.e. fusion) cross

section,cr% ;, and write for channel

(et )
a
F

-Z-ZL @ren) 1.7 )
T=

where J is the compound nucleus angular momentum (which is the

same as the incident orbital angular momentum for the case of

spinless projectile and target considered here).

Although we agree fully with Mahaux and Weidemxf.!lller‘s_s)
warning that the Hauser-Feshbach formula lacks a foundation in the
case of heavy ion systems, we shall however, use it as the basis
of our theory. We remind the reader that the statistical, Hauser-
Feschbach formula Eg. (2} (without the second term) has been widely
used, and with success, in heavy ion compound reactionsg).

It is clear from our Egs. (2) and (3) that the
basic quantity in our theory is the transmission matrix, E . In

order to construct this matrix one has to solve for the average

S-matrix, S , which reguires a solution of the full coupled chamels
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problem describing multiple Coulomb excitation in the presence of

compound nucleus absorption. Although exact numerical solution

of this problem is now feasible for heavy systemle), what we seek
here is an approximate analytical solution for 5 that would lead
to a transparent expression for T and accordingly CT} ,valid in

A

the presence of multiple Coulomb excitation.

IT¥. SIMPLE MODEL FOR THE AVERAGE S-MATRIX

A very powerful method for solving iteratively the
many—-coupled-channels eguations of heavy ion Coulomb excitation
problem is the inward-outward integration scheme developed at
Copenhagenll). we shall use this formulation to obtain an
approximate expressicon for the matrix E{. In the inward-outward

method, the solutions, +f(r)  to the coupled radial Schroedinger
of

equations

"_Z+h:~— Lotlatd _ 24 4, ¢ cr)
dy? r? P A X

=Z Vx/;w k-};[*”) | i '(.s)
£

which are reguiar at the'origin ( 4’ (6) =— o ) , are written
. _ o

a

in terms of r-dependent coefficients d.¢h), ¥} of the

& :
regular and outgoing, PLlv) , }\ ] ¢ parts of the homogenesous -

(uncoupled} optical wave function

e
' tpt=a i P L a o, 41 (N
i

Hﬁ? 4 & E& ol « kyh

ol . ol o

Inserting Eg. (7) into Eg. (6) we then obtain the following two

sets of coupled linear equationsll)

EAF a«(” = JE?I: w) Z{; V tn gDﬁcn ‘4,3&)

L+) b o
- ~h (r)ZI V cr) L\ cr)—d C")] 8y

.L+i - i o =) .
a“CP) = - [?(HZ V (y-) h (P)__a cr)
S ke
2
""PCP)Z, vV, Cr) (r)-— cr)] (9)
O

It should be clear that we have the freedom to

4
dr

consider a part of the channel-channel coupling in the generalized
potential U . This is précisely what ‘we shall do. The inter-
action \/ contain only the long—rénge Coulomb coupling, whereas

U contains all short range (nuciear) couplings as well as the
average effect of the coupling between thé open—coupléd-channei
space and the compound nucleus (absorptlon due to fusion} . we
shall see that such a decompoaltlon would be qulte convenlent for
our purposes, The above implieg that the S-matrix resultlng from

' =) '
-

solving'the homogeneous equatidn (6}, S , would be generally

non-diagonal.

To 51mpllfy the dlSCUSSlOH we shall use in what
follows matrix notation. Recognlzlng the fact that outSLde the
range of the short-range nuclear coupllng the wave functlons @)

and h cr) behave like

per) L L 23l Hale ao
T 2 5 ‘Qﬁ

T
3
3W



hﬁ-) lom ) i -
y) =— (r) e—— 1
) € ) H ) k/:.
+ ) :
where H is the outgoing {(incoming) Coulcomb wave function

and ¢ is the Coulomb phase shift. Inserting Egs. (10) and (11}

into Egs. (8) and (9) and dropping rapldly osc1llat1nq terms

)
involving the products H 't P{ (P) and H <V) f1 ,
we obtain!0P)
4o | ) 16
2. A = — % (r)\/(r} (r).-__. e OLor)
ir 2 k kl/ (12)
A —IG'EP i bl —-@)
4 ST LT L i Ve Hae
dr 7 |2 k’ﬁ”' , .
—_ € (- } &)
vl g9H Hoy Ve H m— |e aw)
t T 5
1 )
'Li - H (HVC") H m e (13)
L

Equations (12} and (13) may be further simplified by recognizing

the fact that hecause of strong absorption, the long-range coupling

potential, V(r), modifies the wave function of the system at

radial distances larger than the classical turning points. At these

separation distances the following approximation is quite good .

“)

{7’
H o owVen Hon = 2 Fery Very Fer) (14)

where F represents a vector whose components are the regular

Coulomb functions in the different channels. Corrections to Eq.

(14), involve rapidly oscillating terms that would contribute very
little when integrated. In.what follows we use Eq. (14) for all
values of r. o

We introduce the feollowing matrix

.8.
r
= _l.. F(r) VCr) FtrJqlV‘ ——-I- {15)
Cw = o "
[-]
We then have
Vo
4 ¢%am =1 2 omle aer) (16)
Ch' dr ™ .
—i8 ) 1] =@ = g
'4- eL a((” = '_f}:‘j S —4— Ciw + .‘A-C(r) e a(”).
dr “ Ar g s
-0 &)
-t 4 cm e a4 v (17)
b dy ~

Egs. (16) and (17) have to be solved in conjunction with the

boundary conditions.

Ao > = 1 (18)
) o)
(+,
a %o) =0 g Q)= “’(t -t ) (19)
~ Ann

where t is the total t-matrix and t{O)

Cad ey

is the corresponding one

w) ) L0 —to) [
for the homogeneous equation {V=0), i.e. ‘E =57 I1—e S e )
0f course the original eguations (8) and (9} also satisfy the
above boundary conditicons.

Bquations (16} and (17} with the conditions (18) and (19)

can be solved analytically, if we ignore ordering effects, namely set the

dpn]l 4
commtator [ J;., &r £C =0 , vhich we believe to be related to the
sudden approximation . We thus £ind .
—io -6

dcr)y = & 2xp [i [ECH -—g]] e {20)
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Lo . . . .
) - - LC&) -t (v - C T
_ e (o} t - {
a iy = —— [ S —e & “”Je -~ (21
2 Lo € 2 €
» & = CCv = )
Aen A
Thus
le . . .
@ Lo} =t} -LC _toy —LC ] O™
a,(oo)::TF[‘t -t ]z—‘g,—[s —e* S e ™le (v
A ol kX3 o, An
and finally
1 -1 ¢ —ey 8 o
1 — ¢ e ST e e
7Tt = (23)
m~ AL

Therefore the total average S-matrix can bhe identified through

—

£t = 11— %

A

2 4

) A {24)

Equation (24) is our principal result of this section. It is
interesting to observe that in the limit of pure Coulomb excitation
—(g

, § = 4 , the S-matrix becomes exactly the one obtained by
A

Alder and Winther in the sudden limitT), namely

- o tg —2tC  ta (25)
S = ¢ e &
~A
The approximation (14) have been used previously
in a more restricted sense and was found to give results quite
close to the coupled channel calculationslz). We call the above

approximation the on-shell plus off-shell corrections meth0d13).

We shall discuss the compound and fusion Cross

sections at energies higher than but close to the barrier. we

.10,

thus feel confortable in ignoring the short-range nuclear channel-

channel coupling and take ?5(01 to be diagonal.

With ?é}O)__diagonql, Eg. (24) written as
.C . . .—, L:C .
— (o) t'ﬂ -_"o' — Lo M
ST = e e S e e (26)
A " 2 e Lo : .

supplies a nice example of the Engelbrecht-Weidenmiiller transfor—
oo 14) . ZJiC .. . Tios S9
mation The matrix U =e'® diagonalizes ¢ S & . in the
d_ A . B A
—i0 ~i _
sense UT S‘e U =S CO) and also dlagonallzes the transmlss,lon

A

matrix given in Eg. (3) " in the sense HT T U= S@S(.'* dlagonal
However, since the matrix e—ig correspondzuég a physical process,
namely the transition operator for pure Coulomb excitatien at half
the strength (see Eq. (25), we do not need to deal expllCltly

with the EW transformatlon in our analysis, as we show below.

iv. THE TRANSMISS5ION MATRIX AND THE FUSION CROSS SECTION

In applying our resu}ts of the previous section,
we shall assume that sevéral collec?iﬁe channels (members of-.a
rotational band of the deformed nhtieus) are strongly coupled,
thus giving rise to non-diagonal elements of the transmission
matrix. We also assume Ehé preéeﬁcé of ﬁany more weakly coupled
channels. The totality of all the channels is assumed to be very
large such that | T >> 1 .

The transmission matrlx,ﬁg ;.is'éﬁtaiﬁéd'difeétly
£rom the averaqe S—matrix through Eg. (3); ﬁsing oﬁr’expreéSion

for § of Eq. (24) we obtain the Hermitian matrix
"

-t $+i O ey = e
T = e e - 7— e e e
Av A
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with
-
o) — (8 )
T 24 — 9 S (28)
ol 8 m ” .
If we further assume 510) to be diagonal we cbtain
A

for the elemeet

..
+ £ o) -1 C '(.“_-
Z, ( ) T”(. )a’“el..?_-

The channel label ¥ implies {ll, T}  with £ being the

3

(29¥

orbita;langular momentum, I the intrinsic spin of the excited
state,_and J is total angular momentum of the channel which is
conserved and also represents the angular momentum of the compound
nucleus.

The diagonal elements,'r;ﬁrhame a very simple

physical interpretation

j';. Z ‘@—1 C‘)dx . (0)'.. _ . .. (30).

Eq. (3) demonstrates the fact that the flux in the
entrance channel is distributed among the strongly coupled channels
before fusion takes place. Since the intermediate channels are not
observed, the transitions from the entrane? channel to these
channels is“deseribed by the factors / é_‘* ” ltkhich are the usual
inelastic peobabiiities calculated.et half theﬁvelue of the coupling
strength.

Using the fact that the operator e }E is unitary

we can rewrite Eq. (30) as

.12,

T = RN [T

At above-barrier energies, the second term on the right hand side

1

of Eq. (31}, which represents the coupled-channels effects on the
compound nucleus transmission , is always negative since the

critical angular momentum associated with the bare entrance channel
(o)

transmission coefficient 'E;

{v) __r. to)
channels -Tl’ . Therefore one may conclude that “a(< T

is larger than that of the inelastic
The reason is leakage of some of the flux to other channels. This

is clearly seen in the particular case of two channels labeled 1

and 2,
-TL _ _Tl_r.o)_ ‘(e‘-;'s)ll ,?—[_rl @) —E_wJ | -
T =T @) [T @

and the non-~diagonal elements

T, - STVE9EN TR

1(0-0) rr+i QY 7= € ©) +© '
] + ~ 35
T, - cTPEEE, T
)\ 2) i .
Therefore the corrections, to the compound nucleus transmission

coefficients, due to channel coupling is proportional to the

differences between bare transmission eoeffcients;pertaining to

different channels. As functions of the angular momentum (J) ,

these differences correspond to narrow windows centered close to
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the critical angular momentum.
We furn now to the fusion cross section in channel
 (entrance channel with the two nuclei in their ground states)

defined in Eq. (5). Using our result for _’; given in Eg. (31)
¢

we obtain

<)

- oy £
% nd D) T,
2

_-Zﬂt+:)z !(Q-LE ,,“U_] [ T T:;:QJ (36)

lr#-'o

where the total angular momentum of the ccmpound nucleus, J , is

set equal to the orbital angular momentum in the entrance channel,
A : since the ground state spins of the two nuclei are assumed to
be zero. Notice that /£ ’c'ould only have the values permitted by

7}

the selection rule
U+2X +2 = even |, (37)

where A denotes the multipolarity of the transition.

’
At sub-barrier energies, the sum over £ in the

second term on the right-hand-side of Eg. (36) has to be evaluated

(-
very casefully since the difference (‘T“”“z —_ ’.l".z‘)! is
IO
non-zerg even for very small value of £ . At higher energies,

the contribution of this difference is centered about the critical
angular momentum for fusion in the entrance channel, i.e. the
Ly
angular momentum that specifies the value of f—-:‘ %(2}-}-})7’; o !
s

which in the sharp cut off limit becomes

2
e T, 5 2 (4] 4) Ge)
7
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Since 1 >> i for heavy systems, even at

energies sllghtly hlgher than the barrier {(e.g. for "160 + 'lSZSm

)
at E.CM a 11 Mev' ,fcr ~ 25 ), we expect that an
A
approximate evaluation of the _{ -sum :anolvn.ng consideration of
[OY 4 i
the average value of !1 - 715:_)’( , to'be adequate. The
10

correction to this approximation would be proportional to _?_".__’é .
-3

. . . cer
@here q_’is the guadrupole strength pa.rameter-”),which is a small
[ ]

quantity for = the systems studied so far (for 165 + B2gn
considered above, _Fo—3z i _.od).

N

Therefore we set

-;c e ©4 2 £

I ( ’ I ( T - T-/ )
0, £ &0 2T
L' £o

Z ’(Q “.c.m[ [@(}2‘“’ @(ﬂm ” ] -

with

@) | —
!c} A # ﬁ (E' £ T E £ )

(40)

/3.4':.)2 (-E)

and £I is the excitation energy, and # is the step funetion.

Lz

In Eg. (39) L = represents an average

value of angular momentum which corresponds roughly to the mean

of ‘8‘”’ and ‘E" with ’z representing the Sommerfeld
> 7,
parameter.
The sum over £ can then be performed immediately,
yielding
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A (zf" ) (*?/"?)Z ("‘C £ @D
F k* g ﬁ" 10,2 14

-
M
SlnceZI ( ) I represents the Coulomb

lﬂ)fr
excitation probabllz.ty for the transition o—» I at an angle

giv__ep-_by _z_g.-zarctan(.__f.- ), _evalu_._ated_ at haI_L£ the value of the-
coﬁpling .s.trength., we identify the I-sum in Eq. {(4l) with the
average collective energy transferred iﬁ the excitation process,
corresponding to half the value of the couplihg strength. This
guantity is eva_l_uated by Alc_ier and Winther”._. Thus for a guadru-

pole rotational coupling

A 4 ar 2

2
Z'(ﬁ o, 2" ll.ftg'_'f_:g _?gi:-_)ﬁj('é)ﬂz(}) (42)
ks -

Where, % is the guadrupole coupling strength given by
o3 1

- LelfMeeff2)
[l Sl

{43)
T E_e
.
lezfg)is given by ( & _ £ = )
2 Z “ 7

/-f'.f

/{7 (,e) = .____ ( 74‘“1) (40)

2
with '~ ﬁ2(1=o) :-—-i-")--
and" x?sz) is the semiclassical energy loss factor tabulated in
Ref., 7) and f is the adiabaticity parameter for the o35 2

transition

(45}

vy
il
~3
1
—~y
HH
N

Z__.___

RUIN
+

with & " being the excitation energy of the 2t state. In Eg.
2

{43)° '71 and a, represent, respectively, the Sommerfeld parameter

I
and half the distance of closest approach for head-on collision,
in channel I.

Ignoring the difference between ? and 7 nd
that between a, and ao , and using Eg. (40b) for ﬂ , we finally '
cbtain Eq. (1}*

2
(o) Bt RBIG)E
o =HR |4i= E. - 4“ _ '
F [ E 225 4°¢ & T2 2 ?%‘ “J{l)

The correction to the usual geometrical formula of
d';? s arising from multiple Coulomb excitation, depends on the
center of mass energy as depicted in Fig. (1), where the functicn

i 2 ’ E (R
R?_(B Yy E ig plotted vs. _E°.> . It is clear

therefore that the correction term is important at energies close
to the Coulomb barrier. At much higher energies the function

2 N :
R (8) € attains the following asymptotic form
A

W
m
n

£

(46}

[

2
R,(8) gt~ 2

o,
m

. 193]
The total reaction cross section in channel & , O-E ,is of

course cobtained from the elastic element of the average §- matrix,

namely crp‘:"k -'E%Z%“')['fg’ “] = o +—- Z(m»ZIS |

ze Fte
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We have estimated the above correction factor for
the system 160 + lSZSm at E =70 MeV assuming a value of
E_ v 63 MeV, The effect is about 5%, Although this is not a very
large correction, we expect equation (1) to give a more precise
fitted values of the parameters Rc. and Ec'. We remind the
reader that our finding that at above-barrier energies, Coulomb
excitation results in a reduction in O‘F is substantiated by
the results of Ref. 5).

As we have mentioned earlier, at sub-barrier
energies, the dispersion in angular momentum exemplified by the
.etsum in Eg. (36), must be treated very carefully, as in this
case small ,! =values give the dominant contribution to the
difference ['r;?i -"T::: ] . It is expected that the correction
factor would become positive at these lower energieSZ). What is
interesting about our formula Eg. (36) is the clear separation
between what is calied static deformation effect, having to do
with ﬂLsum i.e the dispersion in angular momentum, and the

dynamic deformation effects related primarily to the presence of

the "reduced" transition probabilities. A fuller accounts of the

results presented in this paper, together with further developments,

will be published later.
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FIGURE CAPTION
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