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ABSTRACT

- We give 6ptima1 éﬁnditioﬁs concérhihg the raﬂge of
interactions for the absence of spontaﬁedﬁs breakdown of contimwous
symmetries for one- and two-dimensional quantuﬁ and classical
lattice and continuum systems. TFor a class of models verifying

infra-red bounds our conditions are necessary and sufficient.

Using the same techﬂiques.we obtain "a priori”
bounds on clustering for systems with continuous symmetry improving

results of Jasnow and Fisher.



1. INTRODUCTION

There are by now several papers {},2,3,4,5} proving
absence of spontaneous breakdown of continuous symmetry for one-
and two-dimensional systems at non-zero temperature, for not too
long-range interactiohs. Thié ié what we call the Mermin-Wagner
phenomenon, as the basic ideas {(and in some cases even the tech-
niques) are already present in their original papers [5,73,vtmxe the
absence of spontaneous magﬁetization was proved for the guantum
and classical Heisenberg models.

In this paper we obtaiﬁ best possible results
concerning: the range of the interaction for the absence of sgmﬂz&eous
breakdown of continuous symmetries in one- and two-dimensional

1

systems. In. fact, our condition J E(p) d“p =« for a suitable

: ipl<e
function E{p) depending on the range of the interaction, is also

necessary for a class of systems satisfying infrared bounds and
sum rules. As proved in [B] for instance, for these systems the
condition [ET%T dvp <= implies breakdown of continuous symmetry.

The basic ideas of our proofs are borrowed from [1}
and our contribution consists in giving optimal conditions for the
validity of the arguments in [1] and also in showing that the same
ideas can be used in proving cluster properties of certain corre-
lation functions. This last result is a sharper version of results
by Jasnow and Fisher [9].

our results apply to classical and guantum systems
both in the lattice and in the continuum cases, and the only
property of the eguilibrium state we use is Bogoliubov's inequality.
In particular we do not assume either translation invariance of

the state or of the interaction.

We also prove cluster properties of the type

.3,
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for A (or B} of the form A = EJ,C] for some local ¢ where J
is a infinitesimal generator of the symmetry group. These bounds
are a improved version of results by Fisher and Jasnow (3] as
they are pointwise with no assumption about the "sign" of the
interaction: they depend only on the range of forces and include
many body interactions.

our bounds are so to speak "a priori" as the rate
of decay of correlation functions are model and temperature
independent. Better (temperature dependent) bounds are, of course,
possible as for instance in [lﬂj, but they will be model dependent.

In the Appendix we prove some est;mates of
independent interest as they extend results of [§] concerning the
infrared behavior of one and two dimensional lattice systems with

long—range interactions.

2, LATTICE SYSTEMS

2a,. ABSENCE OF SYMMETRY BREAKING

We begin with lattice systems in order to make our
ideas more transparent. Our system is described as usual [11] by
a C*-algebra of observables 0Z=Aiézh where the union is
taken over all bounded subsets A of Z?w , v=1 or 2 ; the bar
indicates norm . closure and XA is the C*=-zlgebra of observebles
in A. The continuous symmetry group is described by a one-
parameter group cof auvtomorphisms {cs , s ER} of 1  such that

0‘S DIA = a‘(A . A state w is said to be invariant under the

- symmetry group if w(cA)= w{ph), YAEOl and s€ R . This is




equivalent to

n
(=]

d
_— i (cr-sA)

is ' : Yaeot .

s=0

If we assume the existence of local generators

1
J(x) eu{x} ", % €& Z  such that

d =
3 (o) = i[s,.a] . Yaed,
s5=0
where ‘TA = [ J{x) , then the invariance of w«w is eguivalent to
XEA
wi[g,.a) =0 . ¥AEO, and all A.

1
For each x € & let os(x) be the action of the symmetry group
at the site x; Following an idea of L. Landau (see [1]), for

")
a given function f£f:Z + R we define

cs,(f) = @

«£2" Ysf (x) {x) . i 2.1

The only property of an equilibrium state we arer.going to assume

is Bogoliubov's inequality, which may then be written in the form

E].Z] :

2

d A*A +AA"‘]-
2 wlogtnn) |s=0 < B u.\[-—-—--—i-—— w{K) (2.2)
N
where K = 3o 3¢ ]:Us(f)o‘t{f)ﬂj w0
t=0

5.
From (2.1)
w(K) = i E(x}£(y) i(x,y) (2,3)
X.YEZ"
. _4daa T T
where Jj(x,y} = 3= 3t w(as(xlat(y}l{} a=0 - In terms of local
£=0
generators K= | [10, [0 H] adw® = [ @I e([Tx, T, ).
xyeg® : xyeZ’ - .

Tﬁe assumptions on H and f we are going to make
(see section 2¢}- will ensure that «(K) i& well defined by (2.3)
provided £(x) € 1’.1( Z’) .

Theorem 1
Let jix,y) satisfy the following properties

1) J(x,y) = ily.x)

i) jx,.0 € 52"y and §  jxp =0 , Vxe2”
yEZ’

iii) There exists a function g ELI( Zv.) such that

fate, )| 2 glx=-y) . V¥Yx,v e 2 - and
d’p '
J sy == forall  §>0 (2.3)
Ipl <&
where
E(p) = Z (1 ~cos p.x}g(x} i (2.4)
xEZ‘

Then the state « satisfying Bogoliubov's inequality (2.2) is

invariant under the symmetry group.

d
Proof =~ Let A & O, , for some finite A CZ2 . For simplicity

let us take 0 EA . Then



d
E N(US(E}A)

d .
= ~ ST
s=0 £10 =0

ds

3

m(GSA) (2.5)

for any £:2° > R such that £(x)=£(0)#0 ¥xE& A. Bogoliubov's

inequality then reads:

oba S (A*A+AR*Y.. w(K)
— w(o A)L#O' < Buw|= — ]- (2.6)
‘ds s : 2 !f(o)lz
From 1) , ii) , and iif) " -
] <3 § -t iy <
X, 782 L
(2.7

1 2 [ a 2
25 I E@-Ey) gy = [ —=E= £ |© (@
z g (2m
v e

with the Fourier. transform' E(pl -given by

.f(p) = 3 e™P* £(x)  and B, = Cem ]
' vou

Whithout loss of generality (see Remark at the end of the prooi)

we can assume that there are >0 and 6>0 such that:

B > vlel? for .|P| <8 c (2.8)
We intrcdgce

E, (p) = E(p) if lpl <8

L (2.9)
E (p) = max{E(P),Yéz} if Ipl, > 8

and for ¢ >0 we choose £ by

fg(x) = ca(x) + he(x)
where
e (x) = J d’k  cos k.x
e B, (2m" E, (k)%
and
v .
d'’k l-cos k.x
c (0)-¢c (x} = J L=, XE A
e e s (2“_)\) E+(k) +e
v
h (x} =
£ .

0, x € A

Notice that the choice of hE is such that fE(x)=c€(U)

where

[ aY% 1
o (0} = J(ZH)v E, (k}+e

We estimate ]f;(p)lz by

= 2 ~ 2 - ~ -
12 ) |12 <I3, @ 1% + 218 @) 1B ) | + |E_(p)]?

For Ee(p) the following estimate holds:

|ﬁe(p) < QLAY <

where ©Q(A) is a constant depending on

fact, from the definition (2,12)

A

» but not on

€

(2.10)

©(2.11)

(2.12)

Yxe 4,

(2.13)

(2.14)

{2.15}

Iin




v 2 v 2
[ES(P’ < ” d kv l-cos k.x < [ ) lle ” d kv k
xEA BU(Zﬂ) E+(pI+E XEA (2m) E+(k)
&’k k°
and since I= J_“___ < w (because of (2.8)) (2.15)

2m” B k)

2
follows with Q(A) = I } 15%— .
XEA

Since

EE(P} =‘E:T§T:E (2,18)

using (2.7), (2.14) and (2.15} we get

a’p 1 2 { a’%p
lw(k) | < I—‘P“ ——— + 2Q(4) + QM) I E{p) =
(Zw)v E+(p)+5 ) (zn)“
v
= ¢ (0) + D(A) (2.17)
where
W
by = 200 + an” [ S ey <=
. B (2m}
v
is independent of e.
Therefore, from (2.6) and (2.17)
2 . ‘ e, (0) +D(MN)
4 wio B} < 8 w[A*A ;M*l £ - {2.18)
dslg=g S = e (0)

This concludes the proof since

.9.
: . r dUE f dﬂE '
lim ce(0)= lim | = o iff J = » g.e.d.
€40 et TylPVHE ' olss E(p)
Remarks:
Since
E(p) = } g{(x}{(l-cosp.x)

with g{x)>0 we see that for v=1 if xo¢0 ié such that g(xo)>0 then

Zg(xo)

E(plzg(xo>(l-cosp.xo)2 "
w

2 .2 < W
(xo| ) for.|p|_ =T (Of c?que
if g(x)=0, ¥ x ¢ 2V then automaticaly %Em(csh)|s=0=0}. For v=2
then either there are xoztxé,xé) and_yoé(yé,Yéf with x2#0 and y;#O

(x, may be equal to yo) such that g(xo)#o and g(yo)fﬂ and so

> c|lp|? in some

E(p) 2 g(x ) (1-cos p.xo}+Q(yb)(l-cos P¥,)

neighborhood of p=0 or then the problem can be reduced to the one-

dimensional case. In all cases we verify condition (2.8).

2b. CLUSTER PROPERTIES

In this section we show how the methods of [1] and
of the previous section can be used in the derivation of bounds

and cluster properties of certain'éoffelatioﬂ functions.: In general

we do not expect clustering for all correlation functions as there

are models in two dimensions [13] with short-range interactions and
a continuous symmetry exhibiting 10pg range order.

Without 1o§s of éenerality we shall consider two
regions A_20 and AEBR; with Aof\ AR=¢ , and three observables

A,DE &, , Bo & mh such that
fa) ' R

d

S 9Pl (2.19)

A=



.10,
i,e,, inh terms of local generators,
a=1i [, ] ' {2.19")
. a :
The key point of our analysis is the identity

a o
- 2 (o (£} (DB} |.
mLABRl;=-a§m s & a0 (2.20)
_ . £(0F

prbﬁ;“ed £ is chosen such'that
- (E1#0, x €A .
) = : (2.21)
and arbitrary otherwise, In other words the action of the
group is constant in Ao and is the identity in AR .

The following choice of £ is convenient:

fR(X) = cp(x) + hy(x) (2.22)

where T S :
c (x)—J a’k  cos k.x - cos k.(x~2R} _ [ a'k_ 1-g HK.R

L CRYRATLL ) o u
B, {2m) o E+(k) By (2m E+(k)
(2.23)
and . . cR(O} - CR(x), x€ Ao

hgp(z) = —CR(X) ' . X€ AR (2.24)

0 otherwise

With the above choice condition (2.21) is met. The

choice of ¢p was inspired by [}0].

Bogoiiubov's inequality together with {2.20) yields

ik.x
e

.11,

[weaBg) [* < 8| |Bg}| ||p]|] —2KL_ (2.25)
lfR(O) | 2 :

Assuming again (i), (ii) and (iii) of Theorem 1

we have

v ~
lw (K} {2 J ?%—fg |£,(p) | 2E (p) (2.26)
T L
By

Lemma: The following estimate holds:
[heip)| =2 Q(AO.AR)CR(O)1/2

where Q(Ao ,AR)<m is a constant depending on the sizes of Ao' AR

(but not on R).

Proof: From the definition of hR:

hp(p)= E e”ip-x [ d ) (1-etR-X)

& v
XEA B, (27) E (k)

(1—e~2ik.R

4

) PRV .
+ ] eTiRx I d’k  cos k.x - cos k.{x-2R)

x ey B, zm” B, (k)

Using Schwarz inequality and the identity cos a -

cos b = 2 sin (Egg)sin(géé) we obtain:

- ’ V.
|hR(p)| < g z ( J d'k 1-cos 2k.R)1/2
x€ A B, 2m’  E ()

rogv -
x (] aVk vl cos k.x,1/2  , I d“k  |sinfk. (x-R}sin(k.R)|
By (2M : E+{k) - xEﬂR i (zm ¥ E, (k)




.12,

. Qv ;
< 2 M ) lx11t/2p [ Ok lkllsin kB (g g,
xBA

v
o Bv(ZW) E+(k) %EAp

V. 2
where I =1 ak k <= as in Theorem 1. Since
Y]
B (2w E+(k)

, where diam A =

EXA x| < (diam Ao)|!\.0|, 7 [x-R| < (diam AR)[AR[

L xEAR

= max |x-y| and |A| is the "volume"™ of A, applying once more
x,y6A

Schwarz inequality we finally obtain

=~ . . 1/2 1/2
(o) s V2 I:(diam A Ayl + (diam AR)IAR|] 2 0
which proves the lemma with

_ . 1/2 -
Q(AO;AR) = V2 [(dlam AO)|A°|+ (diam ARJIARE] I . g.e.d.

From (2.26) and the lemma we estimate

'd\J B ~ ~ ~
w{K)| < 2B E(p)[ e, (pt|2+2|c_(p) | |hy (P) [+|h, (p) 2]
| l_iv(m\, |6 (B} 1242], (p) | |y 0|

A
22 enl0) + 272 Q(AO,AR)CR(O)I/z J %;ET;(l—coszp.R)l/z +
: H .
AVl

v,
2 dp g
+ O (AO'AR)Ch(O) [ (Zw)v (pl).
B,
Since both integrals in the above expression are

finite, uniformly in R, it follows that

13,

o) | £ alh  Agdeg(0) + b(a_,Aglcg(0) /2 (2.27)

-where & and b are constants independent of R.

Theorem 2: Let j(x,y) satisfy properties (i), (ii) and (iii} of

Theorem 1. -If A&  BEO, |, with AN A, = ¢ and
0&0 AR o] R

_d
A = ds(osD) for some D€ mh “then

O

520

alh_,Al) b(A_,A)
lutaBL) |2 < g |[Bg||||D|}]| ——2— 4+ 2 'R
R R cg(0)  cg(0)>/2

where a(AO,AR) and b(Ao,AR) are constants depending on A 'AR but

0
not on R.

Proof: Immediate after {2.25) and . (2.27).

Remarks:

1 - The clustering of @ (ABL} is implied by the
fact that cp(0)s= as |R|+ = if | { avp E(p)‘l=oa (see lemma A.2
pl<$
in the Appendix). In this case for large enough [R], cR(0)>cR(0)l/2,
and we can rewrite the bound of Theorem 2 in a simpler form:
ved A
|utaBg) [2 < 8]iBgll1[D]|2-{-0rR)
cR(O)
2 = For one-dimensional lattice systems the results
of Dobrushin [14,15] imply Ll-clustering if J|g(x)]|[xi<= - (here
g is the coupling). Therxefore our results are weaker in this case
but are new in the cases where : ! g{x) Ix] has logarithmic diver-

x[<R
gencies (see next section).
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2¢c. APPLICATIONS

The discussion of this section is to provide a
content for Theorems 1 and 2. In fact we shall exhibit classes
of models for which conditions i}, ii) and iii} are verified.

Qur discussion. is based on D}.

We assume that to each finite region A czVis
associated the |A[-body interaction H(MNE '0&, such that for each
xe 2Y, L [[H(A]]|<w .

Asx :

‘The Hamiltonian is formally defined by

H = b H(AN
re 2y

in the sense that for Ae 0(1,, I‘sz

- Y raem.
[ B,a] o nig fa(a),a]

is well defined (the series is norm convergent in &),

Also -

d. _ a.
o (x).Hls=0. = AE_B i % (x)g(fs} |

ds x 9 s=0"
which in texms of local generators is

& 5 (x)H] = I TG, 5]

ds s 5= Aax

and the corresponding expression for the function jix,y) is

jlx,y) = 5 wilgea, [|m), 3]
A3 x,v

Condition i) is a consequence of [cs(x),csjy)j=o_

The first part of condition ii} follows from the bound:

.15,

[3,y) | s allgeo {Haw [} 1 [EM) ]
A3x,y
so that
L, 0 1§, = 1 fitey) | goemse. (3G 1] [A[TlEM) ]
ye 2V Arx

where we assumed that sup ||J(x}|[<= and ] |A}f[H{A}]] <=
v Ao

for each x€ 29 . xe2

In particular if the interaction is at most N-body,

that is, if H{A)=0 4if |[A|>N then

113600 1] geomst g 1) ] <o,

The second part of ii) is a statement about the

invariance of H(A) under the symmetry oj,

o H{(A) = H(A) for all Ac 2°, which implies

. _ d -
5 ji{x,y) = Agx w{id(x), s GSH(A) |s=0 } = 0.

Finally condition iii) will follow from the uniform

bound:

fiean i sallacall [[Jx=201] ) ey (] =
Azx,x-2
< glz) for any x,y€ Zv, where z=x-y,
In the case |{J@ai] = [[J(0)]||, for all x & 2zY,

and H(A) is translation invariant the function g(x-y) may be defined

by
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glx-y) = 4iiJ(0)i§2 TooofEM]
[ o'd

Notice that no assumption is made concerning
translation invariance either of the state w(.) or of the
Hamiltonian in general.

As a more concrete application we shail now consider
the simpler case of the Heisenberyg model defined in the lattice
(with two body interaction}.

To each site X'Eig there correspond spin operators

Sl(x) r Sz(x) . 53(x) with the usual commutation relations, and
3 2
with ] 8; (x) = s(s+l).

i=1
The Heisenberg Hamiltonian is given {formally) by:

He ] [ s 8 0 5 5,005, + 1,608,605, )|
%YEZ

with Il(x,y) = Il(y,x).
The symmetry group consists of rotations around
axis 3, which local generator is 53(x).

With the notation of section 2b we choose:
AO = {0} , A_={R} , D= sz(o) » Bp = 8, (R)
and Theorem 2 reads
2 const.

{m(Sl(O)Sl(R))IZ <BS _E;TET_ for |R| large.

The dencminator cR(O) is given, as before by

a’k 1 -cos 2k.R
(am¥ B

cR(O) Lo J
B
v

17,

with  E(k) = 4§° §  (I-cos k,x) g{x)
: x€z2*

where g(x) 1is such that IIl(x,y)i < gix-y) .

We assume here that g(x) is such that E(k) has
no other zeros than k=0 , so we can take E+(k) = E(k}) , without
worrying about other singularities of cR(O).

Taking }R| + = implies cp (0} » = , provided

avk
J ) =« (lemma A.2 of the Appendix), the rate of divergence
Bv
depending on the singularities of E(k) * at k=0 .

If we have

] 1Y g ) =a <=
x£ )

then
[v

B <282kl 7 [x” 9 ®0 = 2a 8% |k
x€Z

and

c, {0} > a’k ~ gn|R[ , for |R| large.

R - (Zﬂ)v

20 S2 I l -cos 2k.R
Y,

B x|
v

If the v-moment of g (X} has only logarithmic

divergencies, that is, for some m > 1

1 v
sup 1A
0 £nQ £n2 Q...Kan Ixl<

x{Y g (x) < = ,

where Enk Q =£n fn...EnQ (k times), the behavior of E({(k) for

|k| sufficiently small will be



.18,

-1 -1 -1

E(k) < clk]” enik]™" &n, ik T,k |K]

(for a proof see the Appendix) and c (0} ~ £nm+l|R| . IR| large.

3. CONTINOUM SYSTEMS -

In this section we briefly discuss as our results
and techniques'can,be extended to.cover classical and guantum
systems defined on the continuum R . We shall not discuss in
this paper the features of the interaction and of the states
necessary for the assumptions involved to be valid,

Continuum system are also described by a C*—algebra

o= ,%_g; and we will also assume the existence, in the re-
Al

constructed GNS Hilbert space, of local generators (in general

unbounded operators} J(x) , x € ®” , of the symmetry, i.e.,
o (1A = e1STID) 5 718TIE  gor  ae O

where J(f) = { a¥x E(x) J(x} -with  £(x) =1  for xEA

(J{x}) need not be strictly localized, see ref. [16]).

.As in section 2a. we define

w(K) = I I a¥x a¥yv F(xYE(y)(x,y)

with

jxy) = -(TE,I®])  and Sy = 4 et Pawm e’.itHLO

L19.

Theorem 3
any state o in a continuum system satisfying

Bogoliubov's inequality and
(i) j(x,y) is measurable and j(x,y) = jly,x} a.e;,
(1) 30,0 € LB and [y dy =0 ae,
7

. ¥
{iii} there exists a function g € L} (®) such that

[9{x,y)| £ glx~y) a.e. and

v
Ar .
[ ) , for all g >0 '

pl<s

where E{p) = [ {1-cos p.x)g(x)d“x

is invariant under the symmetry group.

The proof is entirely analogous to that of theorem

1, with a slightly different choice of the function ce(x):

v
dk cosk.x

(fo’ E(k) +&

c (x} = I $ (k) (3.1}
R.v'

with ¢(k} € ¢ () , 9(k) = ¢(-k) , ¢(k) =0 for |k[>§ ,
for some &6 >0 and ¢(0) =1 .

Here we need not define E+(k) as in (2.9), due
to the introduction of the large-~k cut-off ¢{(k) in (3.1). Also
notice that for any € >0 , cE(x) decreases exponentially fast
as |x| »= , which will ensure a "bona-fide" definition of J(f)
in most cases.

The continuum analog of Theorem 2 is:




.20. ' .21.

Theorem 4 . APPENDIX

Let A €0, ,BEO, , with A N A =% and -
d & o R In this section we extend some results contained in
A = ={o D} for some D € 81, . Then for any state in a
s=0 EB] and, for the reader's convenience we give a simple proof of
continuum system satisfying the hypothesis of theorem 2 we have:
- the divergent behavior of cR(O) as. |R| »=,.

. -
Let !\N tZ , v=1o0r 2, be the "square"
2 Ql(.A ALY Q, (A, AL) .. . . : . ;
} < 8| |p}| -y o R o R centered at the origin with sides 2N , N integer , that is
| @asph [* < R c. (8} 372
R cg(0) g = (N,-Nel, WY
- Lemma Al
where Q; (A A ) and Q,.{A _,A)) are constants depending on -
o R 2 0"'""R <
, Let E(p) = § (l-cos p.x)lg(x) with g(x) > 0
A,Ap but not on R , and where x €z’ o S o
and let K(N} = J Ix|Vgx) .
x€ Ay
d“k 1 -cos 2k.R . : -
e, {0) = f _ — ¢{k} K (N) - o .
R amY E(k) If s;p TENIR, N . En N < for some -k > 1
with ¢(k) defined above. then, for |p| sufficiently small,
Again the prcoof is similar to that of Theorem 2, . '_ y
- - -1
where now E(p) ﬁch?lu n |p| L £n, Ip| 2...£nk|P| -
: _ avx cos(k.x)— cos[k. {x-ZR))
CR(X)_ —J PP 506 ¢{k} . Proof:
The proof is along the lines of that of Theorem
5.5 in [8].
Here also, by Lemma A2 , lgzl.lln CR(O) = if Since 1l-cos p.x E% |p|2 |xl2 and
v
I Ed(kk): = w» , which gives clustering for w(ABR) . l-cos p.x < lpiix|
Ikj<s
As a fln.al remark we notice that theorem 3 and 4 E{p} = | (l-cosp.xdgi(x) + } . (l-cos p.x}g(x)
are also valid for classical systems in the continuum case, xE AN %€

oy
replacing commutators by Poisson brackets. '
<lel” 1 Ix[Ygtx) + 2 § _glx)

For M >N
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M

M v _
3 glx) = } % I—}iL\;q(.x) < i —13 I IxlYgx) (a1

xE(AM\AN}_ _ rel+l x €90 |X| rn—*N+lﬂ XE A

as [x]™ > o’ ‘for | x'€ 3A, . .

Now

;I 1x}Y g(x) = RK(n) - K(n~1)

x €34
n

and so (A.l)} is hoﬁnded by

M T
) g{x) <} —%—{?(n) - K(n-1)] =
xE(%&Nﬁ) n=N+l--n. :.: - el
_— o . _ .
= 1 E\;——-—l—;]mn)+—{,1<(m)—-—-—1—;mmg
n=N+1 (n+l} M {N+1)
M-1
<Lxom +3 K2 (A.2)
e n=N+l n
But K{n) < Cdénn {n, n...Zn n (2.3)
and hence
eim KM _ g (A.4)
M= M

Taking the limit M»= in (A.2) and using {A.3) and

(A.4) gives:

= fnn ... n
) c glx) = X ) zn3+'l znk
xEAN n=N+1 n

" i x in X X
2
530{ ST ax
N X .
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Integration by parts yvields

“ftn x fn_ x...0n_ x
2 k _1 1
[ TFT dx = G < &y N ky N...én N+
N x N
1[0 1
+ 5 J —;¢I.(£n2 x...!ink x + £n3 x...znk X4+ ... + 1}dx (A.5)

Nx

If N is sufficiently large

In N > fn, N > ... > foy N > 2

which leads to

®fn x fn_. X...0n,_ X
I 2 S dx < =2 -—1—£nN£n2N...£nkN

4 xv+l — 2y=1 Nv
By choosing N = D;ﬂ'd] we conclude the proof.
‘ g.e.d.
Remark
For the one-dimensional case (v=l) better bounds
can be obtained [1] for particular g(x) . For instance if
g(x) = _J;? then
1+x
o . . @ SjnZE ccsinz_p%{_
] (L-cosp.x)g® =4C } —— 5_4(:[ —ye X =
=0 oxl I o
msin222; oosinzxz:
=4c lpII >—5 dv < 4C Ipij —5= dy < constant |p|
o Pty A :

which improves the bound from Lemma Al.




24,
Lemma A2

‘Let G(x} be a continuous function on -Bv ={0}
such that G(x) >0 and J G(x)d"kx == ., fThen

By

£im I {1~cos 2R.x)G(x}d"x = = .
R+
v

Proof

Let [|Rf, = max{Rl,...,Rv} . For R#0C let us

v
divide R  into cubic regions with sides of lenght , such

-7
[Rie
tihat x=0 1is the center of one such region, and let Ijgkd,.“,nﬁﬂ
be those cubes contained in 'B“ , not including the cube centered

at x=0 , Then

3=

N(R)
J (1-cos 2R.x)G(x)d (x) > J J (1-cos 2R.x)G(x)d"x >
B I,
v 3

N(R) v N(R)
> 7 E:in G(x)] J (l-cos 2R.x)d"x = | |1_] [min G(x)]

j =1 WEI. = .
] 3 I. j=1 xEI:I
3
since J cos 2R.x d"x = 0 .
I,
]
But as R+» we have that |[R|_ + = and hence
N (R} N
) |z, [min G(X)] > J G(x})d x = = .
o1

xE8 I,
3 B,

g.e.d.

0]

REID

“

1
(6]

7]

[e]

[

]

.25,

REFERENCES

A. Klein, Lawrence J. Landau, David Shﬁcker, "On the Absehce

of Spontaneous Breakdown of Contlnuous Symmetry for Equlllbrlum

_ States in Two DJ.menSJ.ons" to a.ppear in J. Stat Phys. 26 505 (1981 .

J. Frohllch and c. Pflster,.“On the Absence of Spontaneous
Symmetry Breaklng and of Crystalllne Orderlng in. Tw}{hnenaumal
Systens”, Commun. Math- Phys. 81 277 (1981}.

C.E. Pflster, “On the Symmetry of the GlbbS States in Two—
D1mensxona1 Lattice Systems B Commun. Math Phys..79 181 UBSD.
R. L Dobrushln and S. B Shlosman, "Absence of Breakdown of
Contlnuous Symmetry in Two Dlmensional Models of Statlstlcal
Physics", Commun. Math. Phys. 42, 3 (975,

P.A. Martin, "A Remark on the Goldstone Theorem in Statistical
Mechanics", Preprint Lausanne 1981,

N.D. Mermin, "Absence of Ordering in Certain Classical
System", J. Math. Phys. 8, 1061 (1967).

N.D. Mermin and H. Wagner, "Absence of Ferromagnetism or
Antiferroﬁagnetism in One- or Two—Dimensional Isotropic
Heisenberg Models", Phys. Rev. Letters 17, 1133 (1966).

J. Frohlich, R. Israel, E.H. Lieb and B. Simon, "Phage

Transition and Reflection Positivity, I", Commun. Math. Phys.

62, 1 (1978).

J. Frohlich, B. Simon and T. Spencer, Commun. Math. Phys. 50,
79 (1976).

D. Jasnow and M.E. Fisher, "Decay of Order in Isotropic
Systems of Restrrcted Dimensionality I, II", Phys. Rev. B3,
895 and 907 (1971).

0.A. McBryan and T. Spencer, "On the Decay of Correlations
in S0(n) - Symmetric Ferromagnets", Commun. Math. Phys. 53,

299 (1977).



.26,

(11] . Ruekle, "statistical Mechanics", Benjamin, N.Y. (1969}

Bl] W. Drlessler, L J Landau, J. Fernando Perez, “Estlmates of
Crltical Lenghts and Crit1ca1 Temperatures Eor 013351ca1 and
Quantum Lattlce Systems M J Stat Phys. 20 123 (1979)

[}33 S B Schlosman,."Phase Transitlons for TWOaDlmensional Models

__with Isotroplc short—Range Interactions and Contlnuous

Symmetries", Commun. Math, Phys. 71, 207 (1980) '

04} r.L. nobrushm, Commun Math, Phys. 32 269 {1973). '

. s} H. Cassandro, E. Olivierl, Commun. Math Phys. 80 255 (1981).

. fe] L.J. Landau, J Fernando Perez, W. F. Wreszlnski "Energy Gap,
_Clusterlng and the Goldstone Theorem in Statistical Mechanics",

Preprint IFUSP, to ‘appear in J. Stat. Phys.






