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ABSTRACT

We have performed, within the framework of the
ordinary gquantum mechanics, a detailed study of the energy
eigenfunctions of N identical particles using the irreducible
representations of the permutation group in the Hilbert space.
It is shown that the para—étates{ as occurs with the boson and
fermion states, are compatible with the postulates of guantum
mechanics angd with the principle of indistinguishability. This
paper gives a mathematical support for the existence of para-
bosons and para-fermions and justifies, in a certain sense,

Gentile's quantum statistics.

1 - INTRODUCTION

about four decades ago Gentile 173 invented,

without any quantum-mechanical or another type of justification,
a parastatistics. He has obtained a statistical distribution
function for a system of N T"weakly interacting" particles
assuming that the quantum statés of an individual parficle can
be occupied by an arbitrary fiﬁite numbér d .of particlés.

The Fermi and the Bose statistics are particular cases of this
parastatistics for d =1 and d == , respectively.

(4)'has shown ‘that in

Ten years later, Green
guantum field theory, the para-Bose and the para-Fermi guan-
tizations, considered as generalizations of the Bose and Ferni
quantization, were theorétically possible. After this, many

paperscs"lo) have been written about the para-particles in the

domain of the quantum field thecry. Messiah and Greenberg(ll)
have also analysed this problem from the usual gquantum-mechanical
standpoint. o
In this work we perform a detailed study, in the

ordinary guantum-mechanical approach, of the energy eigen-
functions of N identical particles using the irreducible
representations of the permutation group in the Rilbert space.
Analysing these energy eigenfunctions we arrived at the
following conclusions:

1) The para-states, as occurs with the boson and the
fermion states, are compatible with the postulates of the

Quantum Mechanics and with the Principle of Indistinguishability.



2} In the limit of weakly interacting para-bosons or para-
fermions, the occupation number d , for the guantum states of
individual particles, can be an arbitrary finite number.

This anaiysis, which gives support to the
mathematical existence of para-fermions and para—bééons within
the framework of quantum mechanics, justifies, in a certain

sense, Gentile's guantum statistics.

2 - THE IRREDUCIBLE REPRESENTATIQNS OF THE PERMUTATION GROUP
IN THE HILBERT SPACE

Let us consider an isolated system, with total
energy E , compesed by a constant number N of identical
barticles that ig described by the particle guantum mechanics.

. If H is the Hamiltonian operator of the system,
the energy eigenfunction ¢ , that obeys the equation Hy =E¢ ,

. . . N > =+ -+
is given by % =g (xl,s . X 5.) , where xi and 55

TALE e
denote the position coordinate and the spin orientation, respec~

tively, of the ith particle. ' We abbreviate the pair (§i,si)
by a single number i and call 1,2,...,N a particle con-

figuratioh. The set of all poSsiblé configurations will be
called the configuration spacé E(N).

The quantum states ¢ of the system composed
by K identical particles are described by tensors{lz) in a
Hilbert space .J?é'(s(w)) of all square integrable functions
(N) : . S

over £

-set is a representation of

ha

. The permutations P (i=1,2,...,N!} of the labels
i
1l,2,...,8 of E(N} constitute the symmetric group S(N) of
order N! . To each Pi we c¢an associate, in a one—-to-one

correspondence, an unitary operator U(Pi) in the ng(e(N)).

Starting from the general substitutiocnal

expression for the permutations ‘Pi(l3).
= ay Pl + a, P2 + ... + aN: PN! {1}
where P1 = € is the identity permutation and the ai are

numerical coefficients, we comstruct the unitary operator U(w)

such as
(2)

Now, it is well known from group theory that
we can construct N! linearly independent substitutional
expressions of the form (1) and that any substitutional
expression can be written in terms of them,

We assoclate to the linear operators Pi’Pj""’

in a one-to-one correspondence, a set of matrices }{(Pi) P

H(Pj),-.-. such that H(Pi)'H(Pj) = H(Pipj) . This

S{N) in e(N) .

The representations of S(N) in a(N) are

related to the partitions of the number N. Any partition of

N will be denoted by Gzlrazx---,akj » where o, +a, ... to =N, with

e, 2&2 2., 2ak - In what follows, when no confusion is likely




to arise, we dencte the partition simply by (o) . Of course,

{x)

an irreducible representation of § corresponding to a

partition (a) of N is not unique, although all such represen-
tations are equivalent. 1In this work we shall use the natural
representation.

Now we specify the N! linearly independent
substitutional expressions 1 that will constitute the basic
set of units, in terms of which any arbitrary substitutional
expression can be decomposed.

The natural units, in an irreducible represen=-

() (13)

tation (w), of the symmetric group 8 are given by

(o} _ () (u) (a) . '
9., = (1/8 | f Ele MNig (3)

() a)

=nte® gl

where 9 the dimension of the square

sub-matrix associatéd to a given partition (&) , Eéz)(r,t =

=-lﬂ,..”f(uh are convenient substitutional expressions to be

defined in the seguence and n(a) are the matrix elements of

ts

o

() satisfy the Frobenius theorem J (gl
: o

When N <4 , the calculations are simplified

2
H. che ¢ ) o= N

and the equation (3) can be read:

(o) (a) (o}
grs = {1/8 ErS , (4}

Corresponding to any partition (a) of the muber
N , a certain arrangement of N. spaces, called a shape, can

spaces in the first row, « in

be constructed having « 2

1

the second an so on. . By .permuting the N . positions we get
W! different arrangements. Each spatial arrangement is called

a tableau of the given shape. Of the N! tableaux of the

shape (o) there will be a certain number ﬁ(a) which have the

property that the numbers in each row and in each column are

in crescent order. Such tableaux are called standard tableaux.
(}

If, for a given partltlon {a), we deflne as an element

of the p051t1ve symmetric group of the rows of a standard

(ot}

tableau and N as an element of the negatlve symmetrlc

(o)

group of the columns, the E are dEflned by the product

re
Ei:) = P; @) Néu) . This completes the deflnltlon of E(a) .
o obtain the natural units géz) , given by equation (3}, it
is enough to calculate the expressions é:) , which is a

straightforward procedure.

The one-to—-one correspondence between T and

U{m) , defined by equations (1) and (2), respectively, implies
a similar correspondence between the units géz) and the
wavefunctions Téz) , that, in the natural representation are
given by
N
a
w(z) =cle [ 3 e w.} (5)
r j=1 ] J

(a} (@), _y ;

where C is a normalization constant, Ej (r,s) are

coefficients that assume the values o, +l and -1, and the

wavefunctions [%l .Wz ""'WN'] are base—vectors in aﬁ;(eﬂﬂ)_

The tensors ¢\ % = [%i:)] , with r,s=1,2,...,



L7
f(a} . . . . (W
, are the irreducible representations (o} of 5 in
aﬁ Le(N)} . The wavefunctions W(:)  that obey the equation
(ul _ (o) . : . ()
= EY rs . belong to an irreducible sub-space h of
2
J? (e(N) . The dimension of h(u) is (f(u)) .
.Since the sub-gpaces h(a) and h(B)', ﬁith

a #B aré irreducible, the scalar product <V (a‘w(8)> =0 .
There are two irreducible sub-spaces of special

interest: {a} =(N} and ({a) =(1N} . Since in both cases

f{u) =1 , the corresponding sub~spaces are one-dimensional.

The wavefunctions associated to them are, respectively:

ML :
(f} = (1/M! 1172 ) v.o= ¥ E (6)
l j=1 J
AN . N
(17 1/2 :
yirt = amn I o6, ¥.=v¥ : (7
11 : . P, .
j=1 Fy 3 A
where 6?' =1 , if Pj is an even or an odd permutation,
respectively.

There are conly two one-dimensional sub-spaces.
Rt

In the remaining sub-spaces , with dimensions going from

22 up to (N-1)2 , the functions w(“)

are symmetyic with
respect to some permutatlons, anti-symmetric with respect to
others and have an 1ndef1n1te symmetry with respect to the
rema;nlng ones. '

To illustrate the above results, we consider

the simplest non trivial case of N=3., 1In this case the

dimension of aﬂ;(8(3)) is N!=6 . Indicating by Eﬁ'¥2'""%i
= [h(123), w{l32), u{2l3), uw(231), u(3l2), u(321)] the base

3
vectors of J?z(e( )} , the wavefunction {i) = WS -that belongs
to the sub-space h(3) , assocliated to the tableau
is given by:
B 1/2
vy, = (1/6) (u(123) + u(l32) + ... + u{321})) {8)

s

The totally anti-symmetric function ?A = W{i }.

associated to the tableau is written as

2

172 {(w(l23) - w{l32) - u(213) + uv(231) +

¥ o=
A = (1/6)

+ uf{312) - uw(321})) (9)

Besides these two one-dimensicnal sub-states

there is only cne sub-space, with dimension 4, which is

asscciated to the tableaux |1 2| and 1 3] . The wave-
3 2 . |

functions corresponding to this sub-space are:

Yll = (1/2) (u{123} + w(213) - u(231) - u(32l))

¥1o = (1/2) (u(132) - u(213) + u(231) - u(312))
AL

Yoy = (1/2) (u(132) - u(23Ll) + u{(312) - w(321))

&
t

= (1/2) (ui{l23)’

u{213)

22 u(3l2) + u(3zl)}




V9.

These functions, as one can easily verify, obey

the properties of symmetry and orthogonality cited above,

3 - BASE VECTORS OF THE IRREDUCIBLE SUB-SPACES h(a)

(

Since the Wrg)(r,s=l,2,...,f(a)

}  form a set
of linearly independent functions in h(m) we can construct

by an orthonormalization process, the base-vectors of the

sub-space h(a) which will be denoted by the column vector
Y(a):
Yl(a)
¥, (o)
v = (/2 |2 (11)
Y (o)
where T = (£°°)2 i5 the dimension of h'® |

The base vectors of the one~dimengional sub-
spaces are given simply by YA =W# and YS =Ws , where WA
and Ws are defined by equations (6) and (7).

We will show now that all physical properties
of our N-particle system represented by a given sub-space
h(u) can be obtained by using the base-vectors Y(a) satisfying
both the probabilistic interpretation of guantum mechanics and
the principle of indistinguishability.

A given permutation P of the particles in

.10,

E(N) is represented by an unitary operator U(P) in J%(E(N)).

Thus, under the permutations, the base-vectors Y(a) € h(a)
is changed into a vector X{u) € n(® .given by X(a) = U(B)Y{a).
This permutation operation can also be represented by an .

unitary matrix T s X(o) = T Y{a} . Since the irreducible

(14)

sub~spaces are equivalence classes different sub-spaces

have different symmetry properties which are defined by . Ta

(@ na 7, e nt®

matrix. This means that if Ta € h g

, Yesults
Tu#TS if o« #8 .

For the one-dimensional cases, since X =

A
= U(®) YA = -YA and XS =U(P} YS= YS ,.the T matrices have
only one component TA_= -1 and Ts = +1 . The permutation

of particles changes the state-vectors only by a numerical
factor; X and Y belong to the same ray in the corresponding
sub-spaces. We see that the permuted state-vector X and the
original one Y describe the same physical state, that is
IX[Z = ]Y[2 . This permit us to interpret the permutation
invariant function |Y|2 as the probability density function.

{o)

. . . +
For a multi-dimensional h since Tu’Tu=1,

the square modulus of Y(o} is permutation-invariant, that

is, Y'(a) ¥(e) = x"(0) X(w) . So, for these cases, the
2 + .T 2
|¢{a)| =Y () ¥{a&) = ] [Y (o)l can be
- =1 Y
interpreted as the probability density function.

function

We note that for the one-dimensional cases the

symmetry properties of Y are very simple because T = *} ,

(o}

whereas for the multi-dimensional h the symmetry properies

are not so evident because they are defined by Td which has



[%{a)}z components.

To obtain the energy eigenfunctions our basic
hypothesis was that [U(F} ,H] =0 . Consequently, [B(P) ,s(t)] =0,
where S{(t} 1is the time evolution operator for the system.

The expectation values of an arbitrary
Hermitean operator A = A(l,2,...,N} for the energy state-
vectors Y(a) and X{a) are defined by KY = <¥{a) |Aa|¥(a)> =

T

(1/7y ] <Y (e)lalt,(a)> and A, = <X(a) |A[X(a}> =
jop 1 i X

{1/7%) .§1 <xj(a)|A§Xj(a)> , respectively, Since X{a) = T ¥(a),
3=

we see that KX = <X(a)|AJX(a)> = <Y(m)[TZ A TatY(a)> =

<¥{a) {A|¥{a)> = EY ¢, implying that [U(P),A] = 0 . Moreover,

if U(P) commutes with S(t) , the relation [b(P)}A(t)] =

[u(p),s¥(t) as(t)] = 0 is satisfied. This means that A (e) =

Kx(t) at any instant of the time. This expresses the fact

that since the particles are idgqtical, any permutation of them

does not lead to any observéble effect. This conclusion is in

agreement with the postulate of indistinguishability %)

- In the limit of weakly interacting particles iet
us indicate by a,8 , Yrans the individual states that can be
assumed by the particles. 8o, writing the bése vectors
BEJ {i=1,2,...,N!) of aﬁz[s(N)) in the form Wi(m,n,p,...)=
ua(m) uB(n) uy(p)... » one can determine the maximum value 4
for the occupation number of a given state. We verify that
for YS' d =N , which can be arbitrarily large, d =1 for Y

A
and d geoes from 2 up to N-1 for the state-vectors Y(o)

of the multi—dimensional sub-spaces h(a) . That is, for a.

system of weakly interacting particles, the maximum value 4

W12,

for the occupation number of an individual guantum state can be
d=1,2,3,...,N. It is equal to the number of spaces al of
the first row of the Young shape that is associated to h(a)

We must note that the general solution of the
equation HY =EY , compatible with the principles of gquantum
mechanics and with the postulate of indistinguishability of the
particles, should be given by a linear superposition of the
state-vectors Y{a) :¥ = } C, Y(®) , where CQ are arbitrary
numerical constants. Thig general eigenfunction should be a
column-vector with N! rows composed by the column-vectors

(f(a))2 rows.

¥{a) , each one with

To illustrate this section we return to study
the case of N =3 . To simplify the notation we write the set
of linearly independent functions Yoo 7 defined by the

equation (10), as a "column-vector" [X] :

¥11

y
x] =i 12 (12)
Y21

Y32

The base-vector Y of the 4-dimensional sub-space,
constructed orthogonalizing [x] is given by the linear combina-

tion of the ¥__:
rs

1 0 0 q wll‘l
1/¥3 2/V3 0 -0 ¥
12
Y = -3 00 2/ 0 | v, = S[xl
~-1//3 -2,{3 2/3 4/3 _ L‘*’zzJ




.13,

.Applying an arbitrary permutation P, the set [x]

is changed into a new set [x']:

a 0 B 0 wll
[X'] - 0 o O 8 ?12 - gP [x]
Yy 0 & o] Wzl

22

Indicating by P12’ P and P the corresponding transpositions,

13 23
we get
a=1, B=-=1, y=24 and § = -1 for P12
a =-1, B =10, A == and § =1 for P13
and ’ a=0, Bg=1, vy =1 and § = 0 for P,oge

With this new set [x'] of linearly independent
functions we obtain the base-vector X=S [x'l . Thus, using the
above relations, finally we obtain the relation X=TY as fcllows:
X "“‘(P[X'] = S(?IX] =S())S'l Y = TY, where T=S@8_l is
unitary, as can be easily verified.

In the limit of weakly interacting particles,

d=2for ¥=Yandd=1for ¥ =Y.

s’ A

4 - CONCLUSIONS

Due to the indistinguishability of the N parti-

cles, according to sections 2) and 3), the energy eigenvalue E

.14,

is N! degenerate. The energy-eigenfunctions ¥{a) that belong

o
h( ! are column-vectors with T

igs the dimension of h(&), The general

to the irreducibles sub-spaces
rows where 1= (f{al)2
-solution of the equation HY = EY is a column-vector V¥ with M'
rows, given by the linear superposition of the state-vectors
¥(a): .

g C, Y (o) =cg¥. + C, ¥, o g'. c', .Y" (o),

where we have put in evidence the one-dimensional representati-
ons YA and YS and we have denocted the multi-dimensional repre-
sentations by Y'(a).

We must note that.it is not possible to détermine,
by any quantum-mechanical consideration, the values that can be
assumed by the constants Cu.

However, since the sub-spaces h(a) are eguiva-
lence classes it seems reasonable to expect that the particles
with a common characteristic should be represented by a specific
Y(x). Indeed, up tc now, for all particles that have heen
tested experimentally ¢ is only given by ¥ = Ys Or hy ¥ = YA'
In the first case, the particles, called bosons, have in common
an integral spin. In the second case, the fermions, an odd
half-integral spin.

Thus, the bosons are represented by YS and the
fermions by YA. The state-wvectors Y'(a) of the multi-dimensional
sub-spaces should represent particles that are neither bosons
or fermions. They are called para-bosons if they have integral

spin a&né para—-fermions if they have an odd half—integralsxﬂnehj’sl



.15,

Since only bosons and fermions have been observed,

T15-18} | .ve been written to prove that only totally

many papers
symmetric or only totally anti-symmetric functions can exist in
quantum mechanics if the indiétinguishability of the particles
is assumed. However, the arguments that have been adopted for

the proof are not completely satisfactories since, as it was
{11} (19}
I

shown by Messiah and Greenberg and by Haag they are
equivalent to impose the one-dimensionality of the eigenfunctions
¥.

of course, it is quite possible thaf all physical
particles obey the ordinary quantum statigtics and that para-
bosons and para-fermions do not exist in nature. This should
be an enormous simplification of the N-identical particles
problem because all multi-dimensional representations are eli-
minated, remaining only two very simple one-dimensional repre-
sentations.

- As, at least in principle, there are no theore-
tical inconsistencies at the level of wave mechanics in adopting
any irreducible representation sub-space for describing the
quantum states, we are obliged to accept an "a priori" argument
to rule out the inconvenient representations., We adopt in this
case the Symmetrization Postulate which can be interpreted as
a supplementary condition for the quantum problem.

The Gentile parastatistics(l—3)

was developed to
treat particles which have an arbitrary finite oceugation number
d. The fermion and boson descriptions are obtained as particular
casegs of this parastatistics for d=1 and d=o regpectively,

The para-particles should be described for a finite d > 1.

.16.

Even assuming that the para-particles do not
exist in nature, in our ogpinion, Gentile's approach is very
important as an improvement of Bose statistics., It is able to
deseribe;more realistically and more accurately the systems

Ll-3'20'21). In this

composed of a finite nunber ¥ of bosons
sense, Bose statistics should be rigorously walid oniy in the
limit of N+l as it occurs, for instance,'with the photons in
a cavity(zz).

In guantum field theory, specific theoretical

(4,5,6-8)

models have been proposed to see if all particles obey

either Bose or Fermi statistics. Among the alternatives for the

problem(23) (4}

we quote that Green showed that gquantum statis-
tics can be considerably generalized if one guantizes fields
according to a system of axioms that abandon the usually accepted
c-numbers postulate, i.e., the requirement for the commutator

or the anti-commutator of two fields to be a c—number, A strong
indication in support of Green's parastatistics conjecture is
given by the decomposition of a parafield. Thus, for instance,

a para-Fermi field of order p may be written as the sum of p
mutually commuting Fermi fields. The ohservables should be
functions of the parafield and the theoretical possibilities

for their selection are restricted by the principle of locality.
By adopting the point of view of Doplicher, Haay and Roberts(24'25{
if the net IL.of algebras of local observables is the basic
mathematical object of the theory, and if we consider a set EE

as states over W as representing the states of interest in

elementary particle physics, it is possible to show that the

pure states of this set are subdivided into superselection




.17,

sectors. Each superselection sector is labelled by generalized

charge guantum numbers and possesses a "statistics parameter“}

which determines the nature of the representations of the group

S(n) of the permutations on n elements, for all n. This group

is analogous to that considered in sections 2) and 3), which
arises in wave mechanics when permuting the arguments of the N-
particles state-vectors.

Thus, if taker in a very cautious sense, we can
follow the analoéy, and say that Gentile has antecipated the
formulation of parastatistics in the scheme of wave mechanics.
It is also interesting to note that the assumption of a finite
4 in the guantum statistics of Gentile is compatible with the
occupation numbers deduced by Green from his qéantum theoretical
field reasoning. - However, to pursue such an analogy is outside
the scope of the present work and only this brief remark isg

permited here.
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