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ABSTRACT

A new dispersion formula for the rxotatory power
is obtained in the framework of Xubo formalism for transport
coefficients. Unlike the well known Rosenfeld-Condon dispersion
law, our formula is consistent with the free electron gas

asymptotic behavior.

I. INTRODUCTION

Natural ootical aCtivity constitutes an.inoortant
tool in the study‘of the structurée of asymmetric molecules. It can
also give'useful information on asymﬁetric crystais. It is, of
course, not easy to translate'optical activity measurenente into
relevant molecular structure information. fThis point will not be
touched upon.in the preSent oaper. Our main task will be; instead;
to obtain a general expre551on for the descrlptlon of natural
optical activity free of the problems that affect the, up to now,_t
generally accepted Rosenfeld-Condon - (RS) formula.' TheSe problems
have to do with the higﬁ freqhency.asymptotic behavior of the RS
formula. - ' _ .

Rosenfeld’ obtalned his rotatory power dlsper51on'
law over flfty years ago. It was generallzed nlne years later by
Condon2 and it was qulte recently that its unsatlsfactory behav1or
was pointed out3, apparently for the flrst trme._ The expresszon-
we will obtain looks very much llke ‘the RC formula except for the
1mportant power dependence on the frequency. Unlake the RC formula,
our rotatory power dispersion 1aw is con915tent Wlth the £ree
electron gas like hlgh frequency behav10r that any electronlc c
system is expected to- have. _' = ' ' .

Lfter a presentation of:the_funéamentais of'natﬁral
optical activity in'eection_If and a phehbmenclogical aescription
of optlcal rotatory power and dircular dlchrclsm4 in sectlon III
the Rosenfeld Condon theory is dlscussed in sectlon IV, partlcularly
in relation to the asymptotlc behaV1or. ) '

our formula for_the' rotatory power will be derived

from an ahalysie of the conductivity tensor in the framework'of the

Kobo formalism5'for'transport'coefficients;_ Thus,_the very elegant
Kubo approach is outllned 1n sectlon V, where EY famlllar expre551on

for the dlelectrlc functlon is also obtalned




In section VI, our complex rotatory power dispersion
law is derived from the antisymmetric part of the Kubo conductivity
formula aﬁd its asymptotic behavior is discussed. We also present
a sum rule which might be used, in conjunction with experimental
data, to decide which of the dispersion formulae, RC's or ours, is
the correct one. Finally, in section VIT we briefly discuss local

field corrections.

IX. CONSTITUTEVE RELATIONS AND CONDUCTIVITY

Natural optical activity is the ability of certain

substance; to change the state of polarization of light.
| The reaction of the medium through which light

propagates, manifests itself in the appearance of the electric
polarization vector P and the magnetization M . For non-active
substances P 1is proportional to the electric field E while M
is proportional to the magnetic field H and the polarization of
the wave does not change except at boundaries. It should be clear
that if P and M were each related to both E and H , the
polarization of a wave éould, in principle, change while traversing
the medium.

That kind of response of the medium can be described
in a somewhat different way. In a non-active isotropic ( or cubic}

material an electric field gives rise to an induced current6

j{xg,w) = o(WEX,w) = (iw/4m) [l-e @ ]E(x,w) {2.1)
where o({w) 1is the conductivity and c(w) the dielectric function,
both frequency dependent. The induced current is related to the

polarizability ﬁ(i’“’) by

.j(i'm, = 3 BP(x,w) /3t = -iv P(x,w) . (2.2)

The situation changes in the case of optically
active molecules. An example is provided by organic moleculeg that
have helical structures. Consider electrons in such a molecule
constraint to move on helical paths. In this case, there will be a

term in the induced current parallel to the magnetic field acting

on the molecule leading to

(iw/4m (1-e(w)] B + wE(w)B

[
]

(iw/4m) Q-e(w] E + [ctlw}/4x] k xE {2.3)

where, in obtaining the second line we have used Faraday-Maxwell

equation6 for a plane wave field of the form

E(x,t) = E_  exp ik . x -wt) . . (2.4}

AN AN

From Eq. {(2.3) we see that the conductivity is now given by the

tensor

Tglurk) = (1w/4m fl-(w] 8.6 " [cg(w) /4] Sapy Ky - (2:5)

As before, the polarizability vector is related to the induced

polarization charge density p and the induced current through

3p/3t = - v.o(ep/et) (2.6)

V.3
WA

while the divergenceless part of the current, is related to

aM
the magnetization by

Jy = elxn . 2.7
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It ig easy to see that the type of response described
above is equivalent, to first order in the small parameter & , to

a phenomenological theory based on the constitutive relaticns2

D(w) -E(w)]

47 B (w) (5w -1] E(w) +if(w)Bw} (2.8)

an M) = [Blo) -Hw] = - 8 Hop)r . (2.9)
The same parameter £ appears in Egs. (2.8) and (2.9) since both
31 and EL criginate from the same induced current (2.3).

In the following section the material (constitutive)
relations will be used, together with Maxwell equations,in order to
relate the measurable optical activity parameters to E. On the
other hand, all the relevant information in relation to the response
of the medium to an electromagnetic wave is also contained in the

conductivity tensor (2.5) which will be studied in detail in

sections ¥V and VI,

ITI. COMPLEX ROTATORY POWER

Let us study the propagation of a right (left)
circularly polarized pléne wave in a nonmagﬁetic isotropic (or
cubic) mediﬁm in which the relations (2.8) and (2.9) hold. The
electric field of such a wave propagating in the 2z direction is
5

+
E-(_) = E_ (& + iéw) exp iu{N 4+ (w)(z/c)-t] . {(3.1)

TRy T (-]

where éx and éy are unit vectors in the respective directions
- -

and

6.

N (w =n, (w *+ie, (@ , ' (3.2)
(-) (=) % : - :

are the complex refractive indices.

Adding equal amounts of right and left - -circulariy.
polarized light we can form a linearly polarized incident wave.
Since the material shows circular dichroism, i.e., the two circular

components suffer different absorptions, the wave becomes .elliptically

polarized with an ellipticity given by2

ole) = (w/2c) [k (w) - ¢_(w)] . C (3.3)

At the same time, per unit path length, the main axis of the ellipse

is rotated by an angle

$(w) = (w/2e) [n _(w) - n_(w}] . (3.4
${w) is also known as the rotatbry gowér of the substance. Both
the rotatory power'and the élliptiéity can be analysed togethef
in terms of the complex rotatory powér ' S

Blu) = ¢lw) + iplw) = (w/2¢) [N, (w) = N_(w)] . (3.5)

From the constitutive relatidns (2.8) and (2.9),

together with Maxwell equationss, one can derive
-1
N, (w) = [Ve® :e(]-g2/6]" * /eTad t8{w (3.6)
which, together with Eq. (3.5}, leads to

$lw) = w Elw)/c . (3.7}
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Thus, the complex rotatory power is simply related to the anti-
symmetric part of the conductivity tensor (2.5}). 1In section VI,
an analysis of this antisymmetric part will allow us to derive a

formula for the complex rotatory power.

IV. -ROSENFELD-CONDON THEORY .

The first gquantum mechanical derivation of the

rotatory power is due to Rosenfeldl who obtained
o¥(w) = (87 nw’/3kc) § R Euz - mz]_l (4.1)
h n g % Lo : "

Here, n is the number of optically active molecules per unit

ﬁolume, w is the transition frequency from the state & to the

o
ground state 0 and the rotational strength is related to the

matrix element of the molecular {(or active unit} electric dipole

p and magnetic dipole jul through

(4.2)

R, = Im [<0|£|£I><£[£10>'j =-R, -

It is easy to show that the rotational strengths satisfy the Kuhn

sum rulej'2

As it.stands, Eg. {4.1) is unable to describe a

nonvanishing dichroism of a substancea, This fact prompted Condon2

to modify Eg. (4.1) by the introduction of finite widths for the

transitions thus obtaining the generalized complex rotatory power

.B.

-1
ERC(M) = (Bw nw2/3hc) Z R Enz - wz - fwy ] (4.4}
¢ o fto Lo ) :

This formula is generally accepted as giving a correct description
of the natural optical activity phenomenon.
There is a problem, however, in that, in conjunction
with Egs. {2.5) and (3.7), the rotatory power (4.4) yields a
conductivity tensor behaving asymptotically as
RC

s 2 -
cas(m) —_— (1wp/4wm) 6&8 (2n/3hw)

]

E Yoo Pro Sapy Syt (43
for a wave with k -~ (m/c)g_; §, being a unit vector and mp the
free electron plasma frequency. The first term after the arrow in
Eqg. (4.5) is precisely the asymptotic form of the free electron gas
conductivity. The sgcond term, however, should be unacceptable3
according to the usual argument that being photon energies at very
high frequencies much larger than electreonic binding energies, any
electronic system should respond, to first approximation, in the
same way as a free electron gas.

More recently, Thomaz and Nussenzveig3 (TR) propeosed

for the complex rotatory power the formula
3™ (y) = (8mn/3hc) § w2 R [wz - tutiy, /212 - 4.6)
(w) = n ¢ %o to Lfo Yo RS

which does lead to a conductivity tensor having the free electron
gas asymptotic behavior. However, ETN does not vanish for w0 .
Unless corrected, this is a serious drawback, as the authors
themselves pointed out, since o (w) , B(w) and M(w) being

oB
TN _ 5TV

propotional to £ /uw [%ee Egs. (2.5}, (2.8) and (2.9)]

would develop a pele at the origin.
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V. EKUBO FORMALISM

As was already remarked, the complex rotatory power
is closely related to the antisymmetric part of the conductivity
tenscr. Thus, a possible approach to the cbtention of & consists
in the analysis of the conductivity.

Some time ago, Kubos developed a very elegant
formalism for the study of transport coefficients in the context
of the linear response approximation. For the particular case of
the conductivity tensor of a medium where Ve is the total number
of electrons per unit volume, the Kubo formula can be written asg

2,.
Tug s = - (Vpe”/imw) Sap * ZGBQE'w) ' 5.1
with
B ! , ’ -iwt
Eas(l‘.,"*” = (1/hw) J‘dt‘e(-—t) <Du(£,0),33(;5:t)]>Av e,

- (5.2)
Here, (-e) is the electron charge, m its mass and 8(t) Heaviside's
step function. The Fourier transform of the induced current in
Egq. (5.2} is normalized according to

I ket) = f Ax e E S 0) . (5.3)

o

We are primarily interested in the study of natural
optical activity which, as we will see, depends (in first order)
on the interaction between the electric dipole pa and magnetic

b ad

dipole n? of the active part a , summed over all parts per unit
A
volume. We are talking about active parts or units because we

want to be as general as possible. These parts could be atoms,

.10,

moiecules, portions of a molecule, unit cells in a crystal, etc..
For simplicity all the n parts per unit volume will be assumed
to be equal, each containing 2z electrons. The total number of
electrons per unit volume is Vp = nZ .,

The subscript Av in Eg. (5.2) stands for an averaging
process, In principle, two kinds of averagés are involvedlo. One
is a thermal average that has to ‘do with the population of the
active unit states with respect to which the expectation value of
the retarded commutator is taken. For simplicity, our analysis
will be done at zero temperature and ‘only expectations with respect
to the ground state will appear. The second kind of average, which
is very important for our problem and will be done later on, ‘is an
average over the orientation of the active units in relation to the
direction of wave propagation.

Next step is to approximate the current in Eg. (5.3)
by the sum of its electric dipole gf(t) and magnetic dipole Ef{t)

terms according to6

n .
jo,t) = 1 Dp*tersoe + ick x > (t)] . (5.4)

Neglecting the term quadratic in m , Eq. (5.2) can be written as
v

_ L (m)
Tag o) = 0 2 (k,w) +0 g

wp Ko@) (5.5)

with

al® o0 = (1/me) ]

md ~iwt _ a -5
a'b[ €T 0 _t)<[1§>g(0) cBae]>

—-co

(5.6)
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{m) V= - (4 r' -iwt
Tap (¥ = - (ick,/Mw) | dt e ?(-6)
-} b a -b
a§b {em <[5 (0) ,m, (0] > " S _‘ﬁ‘x‘q"ps_‘t’:!)}a‘, ,(5.7)

where, as usual, é: = 3p2/3t .

c(P) is proportional to the dieleqtric function and

af
will be studied in the present section. The analysis of G;?)

which the rotatory power can be obtained, will be left to the

from

following section.  Integrations by parts transform Eq. (5.6} into
Q[P)(k,m) = (1/Ma) '} 1wdt'e_iwt {mze(-ty <[p_(0),p (t)]>
B Can a,b o 8
- iwd(t) <[p_(0),p,(£)]> - 8({t) <[p ('0)',f>"c't)]>} (5.8) "
_ o i _ o 8 v

Since the electric dipole of the molecule {or active
unit of the crystal) can be written in terms of the electronic
positions X as

p2 = -e'J x3 , (5.9)

where the sum is over all electrons in the unit, an elementary

calculation leads to

s(8) EPi(O),pg(t)] = 0 , - (5.10)

a b s 2 -
agb & (t) [pa(()).ps(t)] = vy e/ma) §, Ste) . (5.11)

Eg. (5.8) then simplifies to

.12,

(p)

_ 2., , «{Pl) '
B ko) = (vTe Jimw) + GuB QE,w) ' (5.12)

a

with

{pl) _ = -iwt _ a b
O.p (kew) = (w/h} agb Ldt e 6(-t) <[pa(0)'ps(t)]>Av .

(5.13})

The first term on the right hand side of Eq. {5.12)
cancells the corresponding term in Eq. (5.1) which comes from the
contribution of the "diamagnetic current". The more interesting
term, which we have called U;El) ;, Wwill lead us to an expression
for the usual (nongyrotropic) dielectric function,

The averaging over all orientations of the p's
can be easily performed according to

2 2

a b -1 a _ a 2
agb (BaPg) py = 3 g 1" 8 o =np; 6 np. b, . (5.4

We are trying to keep our formalism as general as
possible so as to be able to describe the conductivity in different
types of media. At this point it is convenient to intreoduce a
complete set of intermediate states that for a solid, for instance,
could be a complete set of electronic Bloch states summed over the
band index and integrated over momentum. On the other hand, in the
case of a molecular liquid, for instance, Bloch states are no longer
appropriate and we will need a complete set of molecular states.

The best way to englobe, in a simple way, different
media is to continue to assume they are composed of equal units.

In each unit there are, at zero temperature, bound electrons in
their equilibrium states labeled generically by 0 ¢, and conduction

electrons in states labeled by their momenta 'q . Due to the

v
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interaction with the electromagnetic field the electrons can occupy

excited states. The states chey the completeness relation

Toleet><t, (@] =] [e><t| + [ [g><q| =1 . {5.15)
g, ~ Ty g ~ =

A

It is also convenient to use, for the step function

in Eg. (5.13), the representation

{5.16)

where the s -+0 limit is implied. After all these steps are taken,

Eq. (5.13) is transformed into

wnd © o2 -igt
(pl) - ap ale -
9.8 (E'm) = I dt J o — iz)

i

x {<o;px(0) |g,ﬁp<y,,(3)[px(t) [o> - <0|px(t) |1,(31><1,@1px(0) 10>} .

(5.17)

Next we use the operator relation

-iHt/h

MR L (0) e , (5.18)

px(t) =

where H is the Hamiltonian, and integrate with respect to £ and

1 obtaining

8 2
(pl) T l i I: 1 1
%ut (k,@) = g z#g [tho)]go w, —u-is * w, +utis

+ {contribution from conduction electrons) . (5.19)

.14,

where are the freéuencies'for the transitions & -0 . At this

Lo
point it is éustomary to'introduce the relaxation times TRO ., Or
the widths Yoo T 2/T10 . by the replacement s —+ (710/2)- in - each

of the terms. It is also convenient to separate out the conduction:
term (intraband in solid state parlance} . These steps transform

Eg. (5.19) into

(pl) _ ‘““pc s 2““60'5 wR.OE [PX(O)] 5"0] : ORI
%ap (w) = 4T (wrigT . T T IN VI - o (5.20)
Q) B0 Wy ~(wwiy, /20°

where in the first term on the r;ght han§ side, mpc is the plasma
frequency for the conduction electrons and T theif rélaxétion
time. In the term arising from the contribution of the bound
electrons {interband te;m).it is customary to .introduce the

oscillator strengths

- 2 2
£, = (2mw, /Ae®vy) | [p (0], | . _ (5.21)

where Vg is the number of bourd electrons in a unit, The £, 's

Lo
obey the well known Thomas-Reiche~Kuhn sum rulell

- . - 5.22
E £io 1 (5.22)

Eq. (5.20), together with Egs. (2.5) and (5.21), yields the some-

what simplified but usefull formula for the dielectric function

2 2
pc 47e (an) £

T wlo ¥ 1/t + m

(]
Lo

-(w+iv20/2)

e{wy =1 5 5 (5.23)
2 %o

(an) is the number of bound electrons per unit volume.
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Expressions like (5.23) are obtained,in similar or
different ways,in several books and_articleslz_ Qur purpose in
going .through that derivation again is twofold:  First, we wanted
to outline, in a more familiar context, a procedure that will be
followed in the next section in order to obtain a formula for the
rotatory power. And second, we want to make sure that we have the
right. normalization since in the next section we will get, for the
rogatory power, & numerical factor twice as largg as in the

Rdsenfeld-céndon”formula;:

VI. ROTATORY POWER FROM KUBO FORMULA

" All the-information on the natural optical activity

m)

of the substance is contained in’ 6;3

of Egq. (5.7}’wher.e integrations

by parts yield

(m} _ _(ml) (m2})
998 = % T “as r (6-1)
with
ick,
(ml) %y { a b
UU-B (UJ’E)— o a?b EBYX <Ep0'.(0) fm}\(o)]>
a b
+ gy <[my(0) .pﬁ(m]>}AV ' (6.2)
and
m2) k= - &y ) I at e et e(-t){e <[p2(0) ;2 (e3>
UGB o R b BYX a L N

a b ' (6.3
¥ Favh <Enk(°)'p6{t)]>}Av- ' : .

.16.
with p: as in Bg. (5.9} and
b _ bi -bi
m, = -(e/2c) €, 4 E X, X, . (6.4)

the commutators in Eg. {6.2) can be readily calculated with the

result

(ml) - _a? - =
GaB (k)= (e VT/zmw)<xukB .kaxB>Av 0 ' (6.5)

where Ve is the total number of electrons per unit volume and.
xu a tipical electronic coordinate.

In order to calculate Eq. {6.3) we first average
over the orientaticns of the active units (molecules, etc.) according
to

a b -1 a _a _
agb{paml)}w 3 EZL (p*.m) 8., =

W

“(,?;El 6&1\ ' (6.6}

where in the last term we have dropped the unit label a since we
will not need it in the following. The introduction of a complete
set of intermediate states |%> , the representation (5.16) for the
g-function and the inclusion of finite widths (Yzo/z) , together

with Bgq. (6.6), transform Eg. {6.3) into

0
o af - T T {ega |- gl e><einjo>
aB o 3iR ¢ Bya wao"w-lY£O/2

<0im]e><2ip|0> <0imje><g|pl0> <Olp[2><i|mfjO>
_ = € — + e e
wio+w+1Y£o/2 ayB Woo 9 1v20/2 w10+m+lyzo/2 } '

(6.7)
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where p=p(0) , m=m(0) . Since, obviously,

<Q|m|t><k|p|O> = E<0Ip|2><£iml0>]* , gy {6.8)
using the rotétional strengths defined in Eg. (4.2) we can write

4 w R
(w,k) = - 35" kI — . (6.9)

(m
G 13
38 “apy v 2 _ ) 2
3 mlo (m+17£o/2)

)
af

Tracing this term back to Egs. (5.1} and (5.5) we see that (6.9)
is the complete antisymmetric part of the conductivity tensor. &
comparison with Eqs. (2.3) and (3.7) immediately leads to the

complex rotatory power formula

Yo Rno
2

: 2
[ W (m+1vzo/2)

B(w) = 870 :

3he . (6.10)

Besides the numerical factor being twice as large as in the
Rosenfeld-Condon expression (4.4}, the asymptotic behavior is

obviously different. The conductivity tensor

Gua(wk) = Giw/am (l-cw)] 6, + o;’é" Wi (6.11)

with the last term given by Eg. (6.9), has, to first order, the
same asymptotic {(w+w) behavior as the free electron gas. Also,
Eg. (6.10} vanishes, as it should, in the w0 limit.

Several Kramers-Kronig like dispersion relations
involving optical activity functicons exist in the literature3'8'13

Qf interest to us, is

.18,

C hwy = - 2w pj —-—zdm" L g B 16.12)

Here, P 'stands for the principal value. Multipiying.both sides
by @ and taking the w+e limit, Rosenfeld-Condon.dispersion

formula (4.4), together with Eq. (6.12), leads to

©

2 .
RC _ 43
o

Following the same procedure with our Eq. (6,10} [instead of 4.4)]

we get

-]

I plw)ds = 0 SRR ST ey

We wish we knew enough about the experimental possibilities to be
able to suggest the sum rules (6.13) and {6.14) as a way to decide

which dispersion law, RC or ours, is the correéct one.

VII. LOCAL FIELD CORRECTION

Up to now we have, for simplicity, neglécted the so
called local field correction. It was assumed that the“local
electric field E! acting on the ‘electrons was not miach diffsrent
from the external electric field E.  Relaxing this approximation;
the induced current can be connected to either EL or E: according

to

jglek) = 0 (ek) Egla,k)

] 1 - )
oas(w,k) EB(m,k) . (7.1
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while the true conductivity tensor is GBB , what we have actually
calculated in sections V and VI are the symmetric and antisymmetric
T

parts of cuB .
In the simple case of a medium with cubic symmetry.

the local field correction is given by the Lorentz relation

E' (@) = E(u) + (41/3) E(w) =[€‘—‘“§f3] Ew (7.2)

AL
which immediately leads to
. (Elw)+2 - - 1.3
O, 0k [——-—»3 ] oaa(m,k) . (1.3)
Being proporticnal to the antisymmetric part of the conductivity
tensor, the rotatory power is changed, by the local field correction,

from (6.10} to

Ry

167na e {w)+2 Yoo Fro
Blw) = [ ] ) (7.4)
3hc 3 g wi - {wHy /2)2
[o) Lo

Since the local field correcting factor (e+2)/3
goes to cone in the w+e limit, the asymptotic behavior of 3
remains unaltered by that correction. In particular, it is still
true that the Rosenfeld—Condqn rotatory power formula changes ;he
asymptotic. free electron conductivity by the addition of the
second. line of Eq. (4.5). Our expression (7.4} instead, has the
correct behavior at both ends of the spectrum. While still going
to zero in the w+0 limit, it does not modify the free electron

like asymptotic response of the medium in the ws= limit.

.20.

FOOTNOTES AND REFERENCES

10

11

12

13

L. Rosenfeld, Z. Phys, 52, 161 (1928).

E.U. Condon, Rev. Mod. Phys. 9, 432 (1937}).

M.T. Thomaz and H.M. Nussenzveig, preprint IFUSP/P-277 to be
published in Ann. Phys. (N.,Y.).

We will give a brief description of the optical activity
functions in the text. PFor a more complete description see
the classic review of Ref, 2 , or the much more recent book
by D.J. Caldwell Qnd H. Eyring, "The Theory of Optical
Activity", (Wiley-Interscience, New York, 1971).

R. Kubo, J. Phys. Soc. Japan 12, 570 (1957}.

in our notation }n relation to Electromagnetism (Gaussian
system etc.) we follow J.B. Jackson, "Classical Electrodynamics"
{second edition, Wiley, New York, 1973}.

W. Khun, Zeits. f. physik. Chemie B4, 14 (1929).

A. Moscowitz, in "Advances in Chemical Physics", vol, 4

(I. Prigogine ed., Interscience, New York, 1962).

In almost this form, the Kubo conductivity formula can be
found in Ref. 10.

J. Callaway, "Quantum Theory of the Solid State", part B,
{Academic Press, New York, 1974),

Our normalization of the oscillator strengths and the Thomas-
Reiche-Kuhn sum rule is as in J.M. Ziman, "The Principles of
the Theory of Solids" (second edition, Cambridge, 1972}, pg.
261,

A derivation specially adapted to solids in terms of Bloch
like states is given by H. BEhrenreich, in "The Optical
Properties of Solids" (J. Tauc ed., Academic Press, New York,
i966) .

D.Y¥,. Smith, Phys. Rev. Bl3, 5303 (19786).






