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ABéTthT - A new (Gaussian) type of sﬁm.rﬁies (GER) for several
optical functions,are presented. The functions considered
are: dielectric permeability, refractive index, energy
loss function, rotatory power and ellipticity (circular
dichroism) .. While reducing to the usual type of sum rules
in a certain limit, the GSR contain in general,a Gaussian factor that
serves to improve convergence. GSR might be useful in

analysing experimental data.
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I - INTﬁODUCTION

bispersion relations of the Kramers-Kronig type have
been very useful in Optics as well as in other'fieldsl. These
dispersion relations are associated with #ilbart transforﬁs between
the real and imaginary parts of analytic function. In many cases
the dispersion integrals are superconvergent allowing for the
derivation of sum rules. In this way, several sum rules associated
with Hilbert transforms havé been obtained up to datez-s, These .
sum rules (of the Hilbert type), which have also proven to be3vefy'.
useful in geneial terms, are in some cases of rather slow conver-
genceT.

The ‘present paper is devoted to the derivation of a
different typé of sum rules, Gaussian sum rules (GSR}, in which the
convergence is impfoved by the dppearance of a Gaussian factor in -
the integral. Whenever the form of the dispersion law for a optical
function is ‘approximately known and in the complex frequency plane’
contains poles only, GSR can be explicitly:derived. The general.
procedure for the obtention of GSR is described in section II. Then,
in section III we apply that procedure for the particular case of
the dielectric permeability function of an insulating medium.

The analyticity properties of the complex refractiﬁe
index N are too complicated to allow a derivation of GSR. So,
based on already known sum rules for N, we present in section IV
our (plausible} conjectures on the possible forms of GSR for the
index of refraction and the extinction coefficient,

The modifications that are reguired for the treatment
of the dielectric permeability of a conductor are studied in
section V where GSR for such materials are also derived.  Then, we

devote section VI to the dielectric response or energy loss function.



After a pbrief descripticn of the phencmenon of natural
optical activitya, we derive in section VII, GSR for the rotatory
power and the ellipticity function which is related to circular
dichroism. Here, we base our treatment of the rotatory power on a
formula obtained recenf;ly9 that has the virtue of exibiting a correct.
limiting behavior at both ends of the frequency spectrumf At last,

in section VIII, we indulge in a few concluding remarks.

II - GAUSSIAN SUM RULES

A new (Gaussian} type of sum rules for optical functions
will be presented in this paper. Let F(mc) generically denote one
of these functions depending on the complex frequency mc=m+iv.
Ekamples of F(mc) are [e(wc)-lj, where e(mc) is the dielectric
permeability function of an insulator, [s-l(mc)-l], or [@(mcbﬁﬂq
where @(mc) is the complex rotatory power. In all these cases
E(wc) fulfils the following conditions:

i} F(wc) is analytic everywhere in the upper w, plane~
including the real axis. )

ii) on the real frequency axis, F(w)+0 for w+= . By
he Phragmén-Lindelgf_ theorem, this asymptotic behavior also holds
uniformly in the upper plane as imcl+m .

iii} F(mc) is real analytic, meaning that the crossing

relation
F*(wc) = F(-w;) ’ C : (1.1}

is satisfied.

In order to obtain our sum.rule we will need represen-

tations of the function F for imaginary frequencies. One such

representation is derived by Landau and tifshitzlo from the integral

r F :

° —wBlw) 4, (2.2)
wlay? !

taken along the contour c¢ consisting of the real axis and an infi-~

nite semicircle in the upper plane. It is easy to see that for a

function satisfying the three conditions listed above, the integral

(2.2} leads to.

2 7 wlnf (w)
™

F(iv) = Re Fliv) = 2
-] wetvw

duw, (2,3}

for v>0, ImF(iv)=0 because of Eg. {2.1}.
on. the other hand, the integral
{

f Flw) du . : : {2.4)
w24yl

along the same contour c, yields

o

Fiiv) _ 2 [ _ReF (u}
L
0

2yt du, 7 (2 .3)
still strictly for >0,

In the following sections we will wﬁrk with explicit
forms for each optical'function to be considered. These functions
have only simple poles as singularities (no cuts) and can be
analytically continued to the lower half plane in a straitforward
way. In such a case Eqs. (2.3} and (2.4) can be extended to

represent the even and odd'parts'of F(iv) according teo

™
J wInF (u} due = 1 [F(iv) + F(~iV)} (2.86)
4

m2+v2
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and
J BeF(o) gy = (/) [Flau)-F(-an)] | © 0 T 2y
widy?

o

We can now derive Gaussian Sum rhles'as follows. First,
we take the derivative of order {(m-1) with respect to v2 in Eq. (2.6},
then we multiply by [(_1)m~1 vzm/(m—l)!] and finally we take the

limit me=, vZse with (vZ/m)=02 fixed. The result is

nm-1 2m m~1 ®
Lim(m,v?,q2) 1) v i I InFle) 4 -
‘ (m=1) 1" 3(v?) 5 w2+y2
g -] 2
= ] dw we” %) rna)
! .
-1 2m m-1
- 2 o2y L) v 3 1 i _
Lim(m,v¢,0?) 0 ST 4 r{F(iv) +F(-in ], (2°.8)
where
Lim(m,vZ,n?) = lim o e IR (2 .9)
m,\)z + o -
(v2/m) =2
11

As advertized, the new sum fules contain a Gaussian factor that
certainly will improve the convergence,

A similar procedure applied to Eq. {2 .7) leads to

dae e-(NZ/QZ) ReFlw) =

Qo t——

Limn, a2 q2). (_1)m—lv2m i1 . .
ru?,22) w1 (/) [Fuv-r-in], (2.10)

(m-1})"! a{v?}

"

III - GSR_FOR THE DIELECTRIC PERMEABILITY OF AN INSULATOR

Let us consider the case of an insulating isotropic or
cubic medium whose dielectric permeability function can be approxi-

mately described byl2

-1
elw) =1 + w2 ¢ £ lwlewl-iv uw] , . ' 3.1
p I g[wlw Yg] ] { }
where W, is the frequency_fqr the transition from the ground state

to the state &, v is the {line) width of that transition, u

£

is the plasma frequency, and the oscillator strengths fl cbey the

Thomas—ReicherKuhn sum rulel3

£,= 1. o o o _ (3.2

For imaginary frequencies, the dielectrig permeability is, as it

should be, purely real

-1
- 2 2452
e{ilv) =1 + mp i f,l[mg—l-u ‘+Y£u] .

We are now in a position to complete the calculation of
the sum rules (2.,8) and (2.10} for the case in which F(iv)} =e(iv)-1
For Eq. (2.10) we need the combination

4 iv)- (-'v)] = —lTI' W £y [(m2+v2)2"12v2]"1 {3 .4)
{w/ v)[e( w)=g (=i =3 T 2 Iy . -

2z
Pyt

2

For the purpose of taking multiple derivatives with respect to. v<,

it is convenient to rewrite the right hand side of Egq. (3 .4) as



iy, (w? -Evil’é ]f_l}

(3 .5)

'{[“’i +"2"‘;' +iv, (w "-vz) & ]- -[m2+v —%Yg

It is simple now to compléte the calculation of Eq. (2 .10) for this

case and we obtain the sum rule

= 2 a2
f dp o~ (/0 | Ree (u)-1] =
o]

i ‘(w - Yz)/SI .
= —%ﬂm;'i'fl(wi“%Yi) % 7% Sin[Y Z‘l Z)JQ/QZ] ‘ (3.6)

where we have assumed that the shifted frequencies are non-negative,

2 » 1 2
PR L .
Taking the frequency 9 high enough so that -

i.e., w

2>y, (o 2.k 2y %

X T . . A X
2. o2 s L .
1742 roatos{ui=yely (3.7

for all w, and v

N Eg. (3 .6) simplifies to

Er

© 2 7 - .

- (w2/92) a] - el ' :
! du e [Rea(m) 1] = 2 WA o, {3 .8)
o]

where we have introduced the “average width"-

- . 3
e og, (3 .9)
A slightly different form for Eq. (3 .8) is

- (g2 /g2 _ -

I do e %) peciw) = % /T oa- %(nw;y/ﬂz). (3.10}

o

An infinite set of sum rules can be cbtained by taking

succesive derivatives of Eq. (3.6) with respect to o ~

derivative and the assumption that Eq. (3.7} holds, leads to

3

f 5 =(w2/02) 1 —
J du wle [Ree(w)—l] Eﬁw;YL
2 .

while the second derivative yields

Iw dw o* e_(mz/RZ,

[+]

y — = 2 v =
[Res(m) l] wmp E flTﬁtwl Y£

2. 2) -. " B

The first

(3.11}

(3.12)

A Y independent sum rule can also be obtained from a

combination of Egs. (3.8) and  (3.11), namely

@

2 (wl/n

f du (1”@ [recw)-1] =
92

Q

(3.13)

From Bq.(2.8), with F(iv)=e(iv)~1l, we can obtain sum

rules for Ime{v). These sum rules.depend on the combination

2 2
fz(wl+v )

—ﬂ e(iv)+e (=iv)=2] = —wwz —————
[ ] 2 P £(N2+V2)2-Yivz

{3.14)

When written in a form'analogoﬁs to'Eéﬁ{3.§l;'£he multiplé deriva-

tives and the limiting proceduie ¢an be'réédilY'performed 1eéding'

to
® 2/ 2 1 _(mz_%yz)/gz
I o e WY o twde = §um§_§ £, e Loer
o 1Y
. . 'z
8 {w? yz)/2 v . v (wZ==y2)7
Lt 4'g 1 ) . 21742 }
cos AL 2E 0 4z ————-Li/— sin
{ a? 2 (w2-y) 2 g2 '

which,when the relations (3.7) hold, reduces to

{3.15)
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] (w2 /02 2y - 2 ' I :
[ e 0% pne (wydu = Eva? [l S ].  (3.16)
é 2 P 02
with
2> =1 £, ¥2, w?> =L £, w?. ' (3.17)
%

The derivative with respect to @°2 of either Eq.(3.15)

or Eq.(3.16) yields

f - 2 2 . .
j we (w2/9%) 1o (w) d ="£”“§‘<“z> SoayZa) oot T e (3418)
o

;%]

" which can be combined with Eg.(3.16) to- give

had 2 - 2 2
I w(l + E;) e_(m_/Q ) Tme{w)de = éﬁm {3.19)

5 Q

IV - GSR FOR THE REFRACTIVE INDEX

For an isotropiec nonmagﬁetic medium,'the'complex
refractive index is N=/e. Even when the medium is also insulating
and € has the simple form of Eq.(3.l), N has cuts in the lower
half of the complex frequency plane. Thls fact prevented us from
deriving GSR for N. Thus, the GSR for N that we will wrlte ‘down
below are nothing more than proposals that we think are reasonable.

For w-= Eg.(3.1) gives

L N o PR 1.m27“ . . .
elw) + 1 - —E , N=ntic =/ 1= 3B C O (4.1)
: 2t c . O

where n is the (real) index of refractlon and K the extlnctlon

coefflcient. It is well known that the asymptotic behav1or of

o -

- =10-

Eq. (4.1) leads to the sum’ rules”

@ .

Ja)ImE(w)dw = iww

, :
2" " (4.2)

4]
and

&

1 o
we {w)dw = =T,
o

We then advance the conjecture that corresponding to Eq;(B.lé)'Qe

might have

=
[+

{w) = —1w

[ dw e /2 [1 + :131-——5233*—J . (4.4)

o

s
o

[¢]

while corresponding to Eq.(3.19), the sum rule for x(w) miéht'ﬁe

2 - 2 2 T - . T .
J dol 1+ 82y o /8T ) = %«u . : (4.5)
Q

2
a2 P

Also, inspired in Egs. (3.8) and (3.13) we propose

© R 9= .
“lw2 /a2y ¢ SomwEyY . .
j du e {w®/2%) [n(m)-l] = - B . {4.86)
AR .
* 2 2 /02 e
J d (1 +9 ) W) [yl =, (4.7
a?

[}
V - GSR FOR THE DIELECTRIC PERMEABILITY OF A CONDUCTOR

In the case of a conducting isotropic or cubic medium

we have toadd to Eq. (3:1): the free electron (intraband) contribu-

tion giving a dielectric permeability function14
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wzc fg
elw) =1 - —PBE 4,2 & , - {5.1)
: m(m+iyb} po % wi - ivlm - L

where now, w is the plasma frequency associated with bound elec-

pb
trons while mpc is the plasma frequency of conduction electrons”and
Tc=l/rc the inverse of their relaxation time.

Due to the pole at w=0 in the intraband term we'cénnot
directly write dispersion relations for <=. The usual procedure is

to work instead with the non-~conducting part

2
u
e (w) = e(w) + —BE (5.2)
nec .
m(m+1ne) N
which has the analyticity properties of the ¢ of an insulator.
Thus, in the present case we have to take as the function F in
section II, F(iv) = e_ (iv} = 1.
nc-

Then, Eq.(2.7) in the present case reads

(> {Re e, (w)-1]

w? + v? ’

Q= (r/8) [eg tiv)-e (~tw)]. ._ (5.4)

The derivation leading to Eq.(3.6) can be repeated
with the following differences: Firstly, in the second line m; has

to be replaced by o?

ob* Then, instead of the first line of Eq.{3.6)

we now have

b wfw? /02 - —(u2 /a2
[ dw e (w2/a%) [Re anc(m)-l] = J du e (w®/a )[Ree(m)—l].

° o]

Y Y 2 .
+ 2 ' dy e (ws/0°) . . . . (5. 5)
pc J w? + y2 : a
o <

Putting everyting together we get, for a conducting medium, the

sum rule

-12«

™ ~(w2+y?) /a2 - . .
[-am e ¢ [rectwr-1] = 2r0 [exfiv /a)-1]
° L
(22 L o2y sa2 2 L 2y 7
1, £, (wgtyemave) /2%y (w] 372) 2
- 5 wmpb I ‘—E—I—;Ta—— e S1in S ' (5.6)
2 (mE-EYE) Q
where
= y )
[+] “pc/4ﬂ"fc T S . (5.7)

is the dc conductivity and the erf denotes the error function

z __t?_
erf(z) = (2//7) [ e - de.. . G e . (5.8)
o

When conditions (3.7)'and5ﬂ>>?% are satisfied, Eq. (5.6}

simplifies to

o 2 g
- 2 2 Y f
I dq e (w5/8%) [Ree twr -1] =-2nc(1+-3- C)
o RN 'R £
Trmzb? -3 .
- —P2_ 4 0™y, _ _ (5.91

2q%

A sum rule free from y can be obtained by taking the derivativé of

Eq.(5.6) and combining the result with Eq.(5.9),

o — 3y 2 2-y . -3 o
aw e/ (g 4 Sy [rec (w)-1] = —21ra(1— °)+ Oy, (5.10)
n? Ay T
Q.
It would be interesting to plot the left hand side of this eguation.
as a function of Q"Ifbr a'given material. The tangent to the

-1 =1
curve at small @ should cross the @ axis at Q= Zyc/w,

Turning our attention to Ime(w) we notice that for a



&

conducting medium Eg. (2.6} leads to

MoIm e (w)
ng

v = in [e, (1vrve (=i -2]. B  sap

F )

o w? + i

Taking the multiple derivatives followed by the limiting process

of Egs. (2.8) and (2.9) we now obtain, instead of Eg.(3.15),

R UL W :
2 1
ve SO mmeuide = Zmed, [leerg(y/m] 4

Ctw2av2_ L o2 2
(wl+y?2 271) /a2

3 pb £
L 1,4
v, {wd-2yi) 72 y v, (w2 3v2)
{cos Lorde + % L 3 sin £ 4L }. (5.12)
Q? (mi-Yi) 2 02

For a @ high enough to satisfy relations {3.7) and 22>> Yé, Eq.

(5.12) is, approximately,

T —(e?/a) T T A Yc) .
[ ne Ime(w)de = ;wup + Eﬂwpc(gg - == +
0 .
12 2 _3
* %Méh ¢ >ﬂ:_m —) + 0™, : (5.13)

where wp is the plasma frequency for all the electrons (bound +

conduction) given by

w? = g2 + Wl . . _ (5.14)

Again, it is straitforward to obtain, by'taking the dérivative-wiﬁh

respect to &2 and adding the result to Eq.(5.13}, a ¥y independent

-la-

sum rule

2 (el /ot 1 we Y
[ w(l o+ 2 & VN o yaw = Zwed - BEC (5.15)
! 92 P I

[+]
-1 . '
A plot of the left hand side as function of & should give a
-1 -t
straight line for small @ ., This line should cut the 2 axis at

- 9.2 2.
Q ZmPCYc/wmp

VI - GSR FOR THE ENERGY LOSS FUNCTION

.. Let us discuss now the dielectric response (or energy

loss) function ¢ '(¢,k} for a medium in which the formala

- 2 : L
el w,x) = 1 o+ 278 (o)) IZ[ 1 - (6.1)
Lo .

1 ]
r
2 i & t
hk ot 1 whw g+ id

. : . . 1 . i
as given for instance in Pines book 5, approximately holds. (gk)20
is the matrix element of the Hermitian conjugate of the Fourier

transform of the local density operator that satisfies the Thomas~

Reiche-Kuhn sum rulel6

Lo oD, 12 =, (6.2)

Lo

where N is the number cof electrons per unit volume. It is then

convenient to introduce the oscillator strengths given by

_ 8ne? ty 12
(fk)ao = ;;;;E— Wy |(Dk)| . (6.3)
P

It is also sensible to introduce finite widths for each transition
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by the replacement &§- %Ylo in each cof the terms, With these modi-

fications Eqg.(6.1) can be rewritten as
2 2.4 '
(£ ) [m t l"’*zo] ) (6.4)

Our.purpose in the present paper is to derive Gaussian
sum rules for function for which the form of the dispersion law is
approximately known. We regard the discussion of problems like
the simultanecus validity of a formula like (3.1) for ¢ and a
formula (6.4} for e-l, as laying outside the scope of this paper.
In section IIT we derived GSR for g of a medium where Eg.(3.l)
approximately holds. In the remainder of this section iet us just
list the wvarious GSR for e—l of a medium where Eq. (6.4} is valid.

These are:

w 2
-(w2/02} -1 ~ _ T
[ Qe [Ree™ (. k) 1] ~;§; [i(fk)ioYﬁo]. (6.5)
ks ]
L "2 -fu? /02y . - ’ :
{ du(l + 2y & ) Tre THy-1] =0, (6.6)
Q . .
[+]
= s = (w2/02) -1 a1l = -2 ' 2 vz ]
dwe? e [Ree (w,k) l] “mp[g(fk)on20(mzo.Ylo}] '

(6.7)

O ———

- (w2/Q2) __ -1 1 -2
I we 9 Ime (w,k)dw = -Enwé 1~ {i(fk)zo(wioniﬂ)]}, {6.8)
0

e 2
J w (1)
92

(0l /02 -
e~ S/ et (k) dw =-—%-Trm;. (6.9)

Q

' VII - GSR FOR THE ROTATORY POWER

Let us consider a macroscopically isotropic substance

‘that shows natural optical activity, Such a substance will have

. s 8 . . .
two comples refractive indices ;JN+ for right circularly polarized

1ight and N_ for 1eft“poldrization with

N, {0) = n, (W +1i K, (0) , . (7.1)

where n+(m) are the (real) indices of refraction and «_ (w) the ex-
tinction coefficients.
Linearly polarized light incident on the substance

becomes elliptically polarized with an ellipticity given by
pluw) = (w/zc)[m+(M)-K_(m)]- . _ (7.2)

Phe main axis of the ellipse also rotates, per unit path length,

an angle
Bw) = (u/20) [n () on_(w)], (7.3)

known as the (real) rotatory power. The complex rotatory power is

defined by

Bla) = g) + ip(0) = (w/20) [N, (w)N_(w)], o

"and contains all the information regarding the natural optical

activity of the substance.

The theoretical expression generally used for the rotatory

power is the c¢lassic Rosenfeld-Condon formula, first déerived by

Rosenfeld long time agol’ and later generalized by Condona. This
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a

formula could describe fairly well the behavior of ¢ in the medium

18 {e=1)y . ¢/w = (B /upio/w
frequency range where most experiments are performed™ . However, 9 3 +1 2
. . [iH [} 5
: : 2 Lo 4 Lo
as it was recently pointed out, the asymptotic behavior of the £ — R 7.m
) . : w

. . 6.9 . L Lo Lo

Rosenfeld-Condon formula is not satisfactory ‘7. :

: ¥ w2 (167n) /(3hc)

in the framework of the Kuko formalism for the

R A . . . o o
conductivit ew dispersion law for the rotator ower, namel o
Y ~, 7 new dispe ¥ P ’ ¥ The translation of the formulae in section IIT yields
16w “y0Reo = :
¢ (w) = T {7.5) -{w2/92) glw) 872n :
e 2wl -(atiy, /2)2 f du e o "7 ez b %o Yo Fao - 478
o .
was recently obtainedg. n is the nimbe: of active molecules per ® 2 2 2
: dw & W) gy 8N oy oy R, - (7.9)
unit volume, ¢,  the frequencies for the transitions 0-1 while v, e ¢ to "lo 2o
are their widths, and the rotational strengths are given by
| [ qu( 1+ &y o~ W?2/R) gl _ o _ (7.10)
R, = Im[ <0|R{£><£|£l0>]= R, Q2 w
o
is the electric dipole moment of the acti 1 hile r .
where p is e electric P a ve molecules whi o w3 e”(m3/nz} Sy - 16727 Ce v B (eZ _QYZ ) R
m is the magnetic moment. It is easy to show that the rotational e ¢ Yo feTRoTio 4710
- [+]
strengths satisfy the Xuhn sum rulezo
o -
—tu2 /02 2 -
dw (@525 oy = Bzin [1—9 2w R (2 -3+2,], (.12
Re Lo Ro 4 Lo
TRy = 00 : (7.6) ! Mc v
£
. . 8 - re
(7. nlike the en - d 1 -ty2/02 2
Eq. {(7.5) shows, unli Rosenfeld-Condon formula , ’ dw e (w=/a%) 20 (w) = Brqn . mzoRza(mio_gyio)' (7.13)
an asymptotic behavior consistent with the asymptotic behavior of e L 4
. o]
the free electron gasg. Based on Eg.(7.5) we will derive GSR for s, 2 an2
awe” T 4 900w = B0 (7.14)
¢ and p. For that, we can take as the function F{u). in section R a2 3Mc
o

F{u) = ¢(w)/w and go through all the derivation of the sum rules,. : .
All these expressions, (7.8) to (7.14), are valid when 92>>Y£om

2 2z 3.2
and R >>(m10 4720)-

Or, more simply, notice that a comparison between Eq.({7.5) and (3.1} %o

suggests the following translation dictionary between the para-

meters for ¢ in section III. and the parameters for ¢:
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VIII - CONCLUDING REMARKS

It is hoped that the Gaussian sum rules for the various
optical functions presented in this paper might prove useful in
analysing experimental data. We base our hope in the fact that
the GSRIare more genexal than the usual {Hilbert) kind of sum rules.
While reducing to thé usual type in the g+= lihiﬁ, for finite but
large @, the GSR contain an adjustable Gaussian factor providing
a much welcomed improvement in convergence. A related bonus, is the
flexibility afforded by the appearance of the ¢ parameter which
makes it possible to plot the sum rules as a function of n‘}
yielding more information on the system being studied. .

The saturation of Gaussian sum rules using published

experimental data with the kind of analysis described above is,

at'present, being considered.
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