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ABSTRACT

We ﬁresent a formal derivation of the exact dynamics of
the one body density matrix. Its essential ingredients are shown
to be: a) a mean field unitary time evolution; b) irreducible non-
unitary corrections. to the unitary evolution (collision effects);
and c} effects due to the time evolution of initial state corre-
Lations {which contribute to both (a) and (b}}. A_qualitative
discussion of the importance of collision effects for the expecta-
tion values of one body operators, and a quantitative illustra-
tion in the framework of an exactly soluble model are given. 1In

this case one finds non unitary contributions as large as 100%.
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I. INTRODUCTION

The dynamical evolution of a. finite, isolated, many
body system is currently given as a unitary time development of a
state vector or, more generally, of some state repfesentative such
as a density matrix. 1In a variety of different contexts, however,
far simpler descriptions in terms of one body (mean field) unitary
time developments have met considerable succegss. They include the
familiar TDHF as well as mean field approximations dérivédzﬁy
functional integral methods. In the case of TBHF, in particular,
one works with simplified (determ;nantal)-state representatiVES
and believes their-possible shortcomings to be aajusted.té fhé
simplified dynamics in such a way as to broduce sensiﬁle fesuits
for some  few bodf observables, a£ 1east. ._ . . . .

In general one body observables ééé fully deterﬁined
by the knowledge of the one body density assoclated with the state
representative of the many body system. In this sense, it is
governed by an open subdynamics of the ovefall-ﬁnitary dynamics
which will be, in general, non unitary itself (1)}. This circum-
stance Has 1&d to many attempts to 'go "beyond" the TDHF approxi--
mation. The purpose of this work is “to' clarify the nature of the
one body subdynamics of a many fermion system, ‘exposing clearly
the origin and hature of hon unitary effects and ‘also ‘making-
connections to the familiar ideas of TDHF. We show that in ‘deneral
the exact time evolution of the one body density matrix has non-
unitary as well as'unitary aspects. Non—unitarj.effects result from
correlations dynamically produced in the many-bedy system and
from the time development of corrglations present in the initial
many-body state. The unitary effects can be dg;cribedrip terms of
a Hartree-Fock type one-body hamiltonian with unitary cqrrectiops

which arise from the same scurces as the non-unitary effects. A
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formal derivation of the exact time-evolution of the one-body
density is given in section II and discussed in section IV, In
section’ IT, ‘we give a general discussion as the importance of non
unitary ‘effects on the time-evolution: of one body observables and
illustrate the main points with the consideration of an exactly

soluble’ example. -

. . S e . ) . o
II. IMPORTANCE OF NON-UNITARY CONTRIBUTIONS TO dd%> t AN EXAMPLE

Consider the expectation value one body observables A

in é-time.dependent context. (These are ﬁﬁe'stahdard objects for

which TDHF ﬁas'beéhzextéhsiQelfuﬁééd'as'aﬁ.appfOXimatiOn in the

context Bf'ﬁﬁéiééf éhyéiéé);” Theéiaré'fﬁlly'defefﬁihed‘by the one
body density matrix of the ohserved sYstéﬁ'fWhichiwe choose for

convenience to répfeééni'iﬁwﬁérmé'bf'natural dne'body.orbitals)
5 : oy TY s S . .
= T“L (C' |CLF)_ = {) S},)cl {II-1)
o T T RAL T A A

where. . F. describes .the state of the_systemJ_ The;usual TDHF
apprqximgtion.is,basedrgn a determinantal anéatz.for PaB at all
times. . This implies a non-linear, one body (mean field) evolution
of single particle states.with constant unit occupatiqn; . This

. .gives: .

L AA Z"‘<}~I[A.Mp]lx>i"
‘It should be ‘stressed that the determinantal ansatz
'of ‘the TDHF approach involves a twofold aggression to the true

description of the time~evolving system. First, it implies in

general the replacement of the time {(in Jéneral correlated) initial
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state by an uncorrelated approximation; second, it replaces the
~omplete dynamical evolution by a unitary (mean f£ield} one body
approximation (with an appropriately chosen effective interaction:
in the context of nuclear structure). The importance of this
twofold épproximation has been recently stressed by Alhassid and
Koonin (3). As mentioned in the introduction, the successes of
TDHF can be seen as.resulting from a happy destructive interference
between these tﬁo simplifications, which is in fact nothing but a
reestament of the commonly held view that the TDHF state should
rather be used as a device to evaluate few body cbservables.

Let us leave aside, for the moment, the gquestion of
the specification of the initial state and consider more closely
the properties of the exact time development of the one quy
density. On éeneral grounds (1) one must have corrections not
only to the unitary one body time displacement generatar hHF ’
but also'non unitary effects which manifest themselves as time
dependent occupation numbers Ea in the one body density. Thus

eq. (II-2) should be replaced by

LA _ T, p MLA LTINS (8 2 p ALY
ry A . A

(11-3)

Hote that there is no restriction in the one body character of
h , but that in general h need not be of the Hartree-Fock form.

Conservation of probability gives, moreover,
. .‘
Z p, = o (TI-4)
A A

This shows that the importance of the last term in eg. (II-3} will
be related to the dispersion in X of the natural orbital

expectation values <A|A[jA> .  wWhenever these expectation values
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~are strongly clustered around a common value the Hartree-Fock form,

eq. (II-2), displays a correct structure, as non unitary contributions

<> ’
to dd% become small. This shows that an improvement of the

TDHF description of the time evoluticon of one body densities should
involve, in particular, non-unitary corrections (usually known as
"collision terms"). There have been recently several versions
proposed for such corrections (2), based on diverse approximations.
In section III bellow, such non-unitary effects are formally
isolated in an exact way. Before that, however, we exhibit the
action of non-unitary effects in the context of a soluble model.

It is worth stressing again that this example should be understood
in the sense that the correlation free initial conditions to be
used completely describe the initial state. The effect of inital
state correlations will of course, be crucial in general, and will
be dealt with in sections ITII and IV.

A simple, closed example of non unitary effects on
the expectations value of a one body operator is the time dependence
of = <J_ > {the "inversion") in the Lipkin model (9}

_l Jsat_a
¥ 2 ps PTOPS
Jp = Z g Cpr

He T, 4 Lg 2034 )

(IT-5}

= ki
In the simplest case of two particles, the exact, time dependent
one body density associated with unperturbed (x=0) ground state as
initial condition is given by

P&-H+ = Pﬂ:*lﬁ' = OLM?"K-M?'% (- tes lu.ut)

Pa-t- = Proa-
[Jdra = 0 o€=l=[3 {II-6)

cor ¥+ e X 2 aind K car ¥ e 2t

1]

.6.
where Huw = (cor %)
This gives
Oy = - [ewt 2% s aimizteos 2t ] nren

The fact that pl(4), eq.. (II+6), is diagonal at.all times implies
time independent natural. orbitals. .All the: tife. deperdence appearing
in eq. (II-7} comes.thus. from non unitary effects (namely, the. .
time dependence df the diagonal elements. - the bccupations Py
of eqg. (II-6}}.

The ‘unperturbed ground.state,. on: the other hand, is
a static solution of the Hartiee-Fock,approximati@n, stahie fdr..
X < ®/8. This means;: of . course.that. the TDHF_ve:siqn-of _<Ji§._is

time independent:
{I,> &y = -4 S (11-8)
HF e

The e#act time dependence of the "inversion', eq.
(II-7),together.with its Hartree-Fock countér part is shown in
fig. 1 for some values of Yy . Inrthis example, therefore, the
difference between <J_>{+) and =<J-Z>H,F{+) comes from the time
dependence of the occupations p; and can become quite largeﬁfor
values of the couplong above tg2X =.3 . Moreover these. two
cbjects are gualitatively different in terms of their time
dependence. Note that the natural orbital expectation values are
in this case $1/2 . - As mentioned hefore this is an essential
ingredient for the importance of.non-upitary contribution to
a .

acd,> - In fact, it is easy to werify that
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<:J>:2;:<£1>HF (TI~9)

where N is the number operator for the Lipkin model, which has
degenerate natural orbital expectation values, <A|ﬁ|A> .

Dué to the well known “"parity" symmetry of the
Lipkin model, the exact one hody density associated with the time
evolution of the unperturbed ground state of the N particle
Lipkin model remains diagonal at all times. Large discrepancies
hetyeen <Jé$ “and <Jz>Hé_iwill thus octur: also in thQIN"particlg
case for sufficently strong interaction term in H .

It is alsc interesting to consider a case where the
initial condition is not a étatig:solution?of the Hartree-Fock
.approximation. 'We‘thustOnsiQe:'initially'a'determinant whiéh, in
particular, is "deformed® in the'sense that it is not an eigenstate

of the exact constant of motion 32‘:

W = et ef 1 > C(1r-10)

where the rotated single particle: states - 'C'Pr ( b= i 2.--‘ gt )

are defined as:

.

L _ | g3 o at
C;* . e m,motP . e r pt
+ = - ' iy + (II-11)

The values of '<Jz>(£) for the exact time evolution and as
obtaihéd in the TDHF approximation are plotted in Fig. 2, for the

given values of ° aﬁ and wp . In both cases one gets periodic

results, but the periods are unrelated. - Moreover, the mmerical (10}

TDHF solution is not harmeonic while the exact values of <Jz>(t)

-8.

are given by the simple closed expression
<Jz>(-t) = ,L‘S’S.’l +.622F¢ey lw‘t+,01}04 ’Jal:%-lrw-t (I1-12)

In this case both the exact occupation probabilities and the
natural state orbitals are time dependent. A formal study of
such time dependences, including the consideration of initial

correlations, is given in the following section.

III. FORMAL CLOSED EQUATIONS FOR THE EXACT EVOLUTION OF THE OMNE
BODY DENSITY

We will here consider the question of the time -

evolution of the one hody density matrix

Pt = <HOlaka fb0> e

given the exact development of the'many body state vector

-Ht ' '
4> = e [0} > (ITI-2)

We look for closed equations which separate explicitly unitary and
non—unitary effects in the time evolution of paB(t)-. As shown
in ref. (1) the unique separation of these two types of time
evolution is easily achieved by using'the natural oxbital represen-

tation for paB(+) .

(¢ )= ' =
Pu.P_ ) —> P})-‘.FJ?) f<‘l’(ﬁlc>} C’LN&» - Phgn‘-l' (TII-3)
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Note that this is a time dependent representation, i.e.,

v ot
= ¢T
SERaaUS
The real accupation probabilities p, are of course also time

dependent in general. The (herhitean) one body generator of the

unitary time evelution is defined by

(ITI-4)

[{H:), C+}.]

or‘équivalently, using the natural orbital representation for

h({)

g, &) et
>‘| 7\)} }‘

~-
(e
bl

(ITI-5}

Taking the time derivative of eqg. (III-3), using

(IXI-2) and (ITI-5) one easily gets

‘g\-x)‘l(P-}"‘P)‘) ()‘*)‘i) (ITI-6a)

= b [ H oo ikl

(ITTI-6b)

P, = i (o] [H e, ] 1H D

"which identify unitary and non unitary time displacements. Note

that, since we work in the natural orbital representation, the
diagonal elements hAA are left undefined by eq. (III-6a}. This
point is discussed in more detail in Appendix A.

These are not, however, closed eguations, as they
involve the many body state wvector |¢(4)> . Actually, this
enters only through the expectation wvalue of a two body operator
(assuming that H has a two body character) so that what is really

needed for eqs. (III-6) in addition to the one body density is the

density
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two body density correlation function {cumulant)

(I111-7)

E}AVXP' = P;:x[» - [‘))uf: [)\J)\— P}“)‘P"P]:_._.

(2)

where p is the full two body density associated with [y (4>,

Ag is well known, an attempt to get an aqguation for p(z) will
bring in the three hody density 9(3) etc.. Using egs. (III-7),

eqs. (III-6) can be put into the form

- P))a').)xl (Px' Pk)'e*v;)' +_'

~ - {III-8a)}
A2 O Y = U e '
+y FZ}P ('-\r)‘\;‘)}; ; wg\'-v )uv\P }'WN )

Pz —i (v v .6 {ITI-8b)

£ 5 B oo Tpop Srgpe)

The Hartree—Fock hamiltonian h?f; is.giﬁeh by
HF . .

Ao - 2’ 10)‘ P L, )

and ¥

AupG are antisymmetrized two body matrix elements in the

basis of natural orbitals. "Collision term® effects are to be
associated with eq. (III-8b), of course. They are related in an
essential way to-irreducible’ two body corrélations as shown by the
vanishing of éh. together with the two density correlation
function {(III-7). ' - '

We now proceed to'formally-close.eqs}-(III-G) for
the time evolution of the one body density. The.first crué;al

step for this is to obtain a decomposition of the many -body-

1> E)) L e
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(IEI-10)

where F; is such'tﬁat"'
Th (*.“-t.C,; F) = Tnleli F)= Pt (TTT-11)

and all density correlation functions vanish, i.e., F, contains
) . * PN s
no irreducible two or many particle correlations . This implies

that F; is of the form (4} {in terms of natural orbitals)

F,= —IT[(i—P,‘)c,‘c*; ¥ ?g’-‘t‘_—;] (I1I-12}
A e

where the P)_are_the océupation probabilities of the natural
orbitals. An alternative form for FL is

&
—waete,

O T e
(o} > o
(T

(EE1-13)

-

' -1 : _
with P} ={i-e A) . This form for the uncorrelated part
of the many body density carries all antissimetrization properties.

In particular it gives rise, in eq. (IX¥I-19a}l below, to a non

* The development given below parallels a formalism recently given by Ayik (2).

In that referenge, however, the form adepted for the uncorrelated part of the

 many body density (eq.(2.4) thers) and the related operator C,{t) (eq.(2.7))
do not deem adequate to us. In fact, uncorrelated, non determinantal many
body densities are necessarily of. the form (ITI-12) below. In particular, they
have a non vanishing fluctuation of particle nuwber (5). Due to this fact,
they are best written in Focdk space. The ocomplete absence of correlations for
a many body density of the form written in ref, (2) holds only for pure

- daterminantal states. On the other hand, the time dependence of the operator
Cyley fust Le guly taken into aocount in tha derSvation of eqations (2,10)
and (2.11) of reference (2). : R

‘gives !
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determiantal Hartree-Fock type contribution to the generator of
unitary time displacements which includes exchange effects. This
is achieved at the expense of having a nonvanishing f£luctuation
in particle number’(S). A compensating property of course results
for F', since F has a definite number of particles,

. The second crucial step is to express the correla-
tion part F' of P in terms of F which is, as seen, fully deter-
mined by the one body density. This can be formally accomplished

by the construction of an operator ¢ in Liouville space such that
E' - QF - (IIT-14}

Q can be time dependent, but it must be determined solely in terms -
cf the information.contained in the uncorrelated part F, of the
many body density. Technical details of the constructions of Q
are given in Appendix B. With such én gperator the Liocuville

equation for the full density F

= fHEY =LF | (I11-15) |

(L%_QL)F' = QLF,

(ITI~16)

where equation (III~10) has been used on the r.h.s. of equation

(ITI-15}.

Introducing now the Green's function
t .
Gl,t) = Tarp (-ij{f‘t Q)L ) r1-17)

we get
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R = Gito)Flle) - jAJc‘Gtt,t'Ja(ff)j_ ) - (1r-18)

which is .as close as we can get te our aim. Note that an initial
correlation term involving F'(0) still remains. Eq.(III-18)
sxpresses the correlation part of the full density at time t in
terms of a time integral over the paét of the uncerrelated density
F. plus initial.correlation terms. This shows that the complete
elimination of correlations can only be achieved when the initial
state is such that F'{0)=0. lThis was the case, in particular, for
the example discussed in the.preceeding'section.

Using this result, egs. (III-6) can be written as

fegyi (B=Par) = Ta(DH, etie, Gt 0) F'l0)) .

+ .
+‘T}L ([ H '(‘.{;- c’)«) Fo ) -4 T"L([H‘f-;c)]g&tf G’(‘t;t') Q.H‘”_E H’.‘]J (ITI-19a)

By = 1 T (MGG F @)

ot
+ T ([H, e, gdt' Gl tYauery ) F.,{f’)) (IT1-19b)

This closes eqgs. (ITI-6) except for initial correlation
terms, which must then be supplied together with the one body initial
conditions in order to determine the full time evelution of the

cne body density. Actually eq. (III-18) contains far more information

than needed in egs. (III-6). In fact, only the two density correlation

function of F'(t) enters in egs. (ITI-19) as discussed in connection
with egs. (III-8} above. The fact that the full correlation part
is needed to obtain the exact time evolution of this object

prevents one from dealing just with the minimally required final

information at all times. The second term on the r.h.s. of eq.

.14,

(11I~1%¢) simply reproduces the H.F. hamiltonian. Thé,first and
last terms of .the same equation represent respectively initial. .
state and dynamical unitary correlation terms which .correct the
mean field.

In order to bring out the crucial effects of initial
state correlations for the reduced one body dynamics we may. consider
the particular case of the density associated with.a (fully - -
correlated) stationary state of H as initial state. - In this.case
we must have ’5}7: 0 and (.:1 = E)-Ct«" i.e., constant.eccupation
probabilities and diagonal one body unitary displacement generator
4% A + This is achieved, in general, as. a result of the
cancelation of nondiagonal elements in the second term:in. the r.h.s.
of eg. (ITXI-1%a) (the "Hartree—Fockflike? time displacement
generator) with compensating non-aiagonal_terms;afising'from the.
first term, i.e., due to the two—densitygcorrelaticn'funqtién.of_
the stationary.initial state. At t=0 the last term in this’

equation obviously vanishes: .
IV. DISCUSSION

There are two types of question to be considered
in connection with the possible use of egs. (III-19}.. On the one
side one must deal with the'problem of a treatable_impleﬁentation
of the formal objects such as G{t,t') and Q(t') which appear
in these equations. On the other side, one must face the prohlem
of initial state correlations. Due to the interplay of the
later with the dynamics these two questions must be dealt with
consistently. We will not attempt here to carry this program
further, and limit ourselves to a brief discussion of other
approaches which have been put forth to deal with these guestions.

It should be nqted from the very start that this

approach relies on an adequate ‘description of the state of the
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system.  The values of (one body} observables appear as deduced

quantities. The "contraction of the description" involved in

egs. {(ITI-19) consists in retaining the minimum essential information

required to fully deal with the special class of one body obser—
vables. This approach is to be contrasted with other methods
which attempt to calculate directly the values a few relevant
observables, without' an explicit consideration of the quantum
state of the system-in general.  Functional inteqration methods
associated with: stationary phase approximations have been wildely -
used: in: this sense: (&), (F¥. An~alternative—variational approach
within this framework has recently been put-forth by Balian and
Veneroni: (8). ' -Here, one “ccntracts~the=description"through the
device. of restricting the variaticnal- spaces siowed for state.
represéntatives‘and observables treated. in.a complementary fashion.
One obtains in this way dynamical® egquations. which are in general
specific’ to the éhqsen-observables, so that no general validity
can be attributed to the state description.  While such concen-
tration on the values of a. few rquired observables may be of
pragmatic value in that it allows for a greater technical simpli-
fication, it gives nevertheless-iimited insight on the general
dynamical behavior-bf'thersystem.; As a result of this the.
accuracy. of ‘the obtained results.is difficult to assess.

Even though egs. (III-19) are not directly amenable to
calculation,-they.reveal the nature of the minimum dynamical
ingredients whigh-are required: for a full description of .the: one
body aspects of a many body system. They_include in general
full jinformation on the initial state correlations and the fuli;
history of the uncorrelated part of the density. This later
information eventually suffices: to determine correlation aspects':
arissing dynamically which are not directly tied to the initial
state correlations. In the soluble example given in section II

we considerad cases which involved no initial correlations

.16.

(determinantal initial states). It should be stressed that, accord-
ing to-our point of view, these initial states are taken to be

fa .thful representatives of the state of the system rather than
appro#imations to it. The non-unitary one body effects obtained
from the exact solution can thus in principle be obtained also

from the time development for t » 0 of the uncorrelated part of

the full density alone, in this case, as shown in eq. (III-19b).

If one uses instead the approach of ref. (8), restricting oneself

to general uncorrelated densities {(which in the case of the

example can fully describe the initial state} and to one body
operators, one gets a fully unitary time development. All dynamica1
correlation effects are thus missed. As shown in eq. (II-3) .
they are generally present. Their quantitative importance depends
on the particular chservable under consideraéion. In the particular

case of the example, we founﬁ-important guantitative effects for (Ji}
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APPENDIX A

We discuss in this appendix some apparent ambiguities

in the determination of the one-body unitary time displacement
operator in terms of eq. {IXII-6a). These ambiguities stem from
two facts: (a) only A # X' terms are allowed in eq. {(III-6a), so
that diagonal elements hhh are left undefined; and (b) a bother-

some zero factor appears in the l.h.s. of this equation in the

case of equal one-body dccupation probabilities in different natural

orbital_s, i.e., p:~=p>‘l with )\,e A"'

Concerning point (a)}, it sufices to note that the
equation which gives the time development of the one body dengity
in the representation of its natural orbitals [A) (note that

this is a time-dependent representation}

P = %Il)p}n()\\

(a-1)
reads
idp o T, [, NS pal- mopihy ]
at AN T o
w42 0% P>.<>*| (a-2)
*

Both unitary and non-unitary effects appear in this equation( and
the structure of the unitary term (first on the r.h.s.) shows
directly that diagonal matrix elements h }%xnake a vanishing
contribution.

In order to deal withlpoiht (b) it is convenient

to ook at eq.(III-6a) rewritten in the form (ITI-8a):

HF
('QLM.' “‘q\xx‘ )(f,n‘?x) = A Y . (A-3)

.18,

‘where the anti-hermitean matrix fl;p is given in terms of the

two-body potential v and of the two-denéity correlation funetion &

as

Ay -t (%, 6 % o 6
_ —AF i -
i =5 AV Nu v\ : v) (r-4)
S Sl SV AR B 74
The freedom associated with occupation degeneracy now allows for
the selection of natural orbitals which dfagonalize the matrix

A W {including diagonal terms!} in the subspace of .natural

orbitals with degenerate occupation. This guarantees the

consistency of eq.(A-3} (note that \#N there) but still leaves
h At undefined. It is also easy to show, however that the time

developement (A-2) of the one body density becomes independent of

h uv when the orbitals }" and V¥ have equal occupation. Ia fact
writing out explicitely the terms of (A-2} which involve h}au
and i‘vyA (the prime in the first sum below indicates the

ommil.ssion of such terms)

TR LY T BRSNS B DA -RoN
dt A S

Ny, IV >[’}‘<y\ - l}:)[’r“'awf

+ ﬁ\,}* Lpy gy <vi = vy F\,f}‘\&)«v

‘ . (A-5)
we see immediately that, when G‘= fL . these terms cancel out
exactly.

It should be stressed that the occupations of the

degenerate orbitals still ¢change as prescribed by 1;‘ and PV .
These are, up to a factor of i, the eigenvalues of the matrix
E}kxi within the degenerate subspace. It is only the unitary

part of the time evolution which becom2:s irrelevant there. This
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is in fact an obvious consequence of the invariance of the one- APPENDIX B
body density under one-body unitary transformations pgrformed within

subspaces with degenerate occupation.
) We describe here the construction of the operator

Q appearing in eq. (II-14}. It should be emphasized from the
start that Q- is time dependent and is not (and, in féct;need not be)
a projection operatox. In order to allow for the closure of eqgs.
(FTT-6) it must fulfill condition {III~14) and be fully determined.
by the uncorrelated part F, of the full density F.

Consider first the sequence of operators (cf egs.

\III~12} and (IIT-13)) indexed by the integer N

NN
+ 4 e L
FPN.: uz':,i [E %(L‘P’“) c}.f-},‘ +Ff‘e}’cf‘ !]7 s (thv T"'(cvcv )+_'
pet | R
+ ey et Te(c et ))] -
N ) _ 3 .
- (-0 TT {“’ﬁ*) G+ i c;cfS’ v i e

rzf

If we let ﬁ; act on F we clearly get a trunceted version of eq;'
(II1-12) where the product is restricted to N terms. We may

therefore write
(B-2) -

where P is hermitean, time-dependent and is such that pF; =PE.-

so that it acts like a projection operator when acting on F. HNote
however that for any other Liouville vector the idempotent property
of P does not hold (note thét DN is defined by eq. {B-1} where

the c-numbers f% and the second guantized operators C;I QF are

defined in terms of the one body density associated with F, at time )

Using eq. (B-2} we can now write
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Fls (t-?)F | (B-3)

which does not lead directly to (III-14) in view of the time

dependence of P . 1In fact

LI - .
F' - (I-P)F - p¢ (B-4)
The last term of eq . (B-4) can be evaluated in a straightforward
way as %ﬁn¢ PM F. wWe get, using egs. (III-5) and (IffI-6a) to
> 0o
handle time derivatives of the C+ . ¢
O
. . ' + +
2 Z-Z i [("'?A)Cx(’)-* F;f-;‘:x] x

VvV MY
‘ +
x[c;_cuTr(ctc)‘.LF)+CVC}T|—(C;"CVLF)]
' (B~5)

*
- el b
since, moreover, LF= ¢ F | we can take eq. (B-5) as defining an
Ll

operator P such that
[ ~ -
PE=PF (B-6).

id

Note that the ingredients which enter in the construction of [
appear already in P . eq.{B-2}).

Taking this result now back into eq. {(B-4) we are

finally left with

Tie
I
)
T

Elo ((-P-P)

(B~7)

which completes the construction of Q.

1)

2) -

3)
4)
5)

6)

T

8}

9)
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FIGURE CAPTIONS

FIG. 1 - The expectation value 23> for the two-particle Lipkin

FIG.

model as a function of time. The dashed line shows exact
values for the unperturbed (x=0) ground state as initial
condition and several values of x. The full line at <J>=

= -} is the TDHF expectation walue (stationary in this

. case) for the same initial condition.

Z -

The expectation value <J,> for the two-particle Lipkin
model. as.a function of time for the initial condition

@y =70% a,=85.9% ,=45% v,=0° and for tg 2x=-1.5..
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